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Max-margin learning

Prior knowledge, 
bypass model selection,

Data integration,
scalable inference

…

generalization
dual sparsity
efficient solvers
…

nonlinear transformation
rich forms of data
…

Regularized Bayesian Inference

Learning GMs
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Bayesian Inference
 A coherent framework of dealing with uncertainties

 Bayes’ rule offers a mathematically rigorous computational 
mechanism for combining prior knowledge with incoming 
evidence

Thomas Bayes (1702 – 1761) 

• M: a model from some hypothesis space
• x: observed data
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Parametric Bayesian Inference

A parametric likelihood: 
Prior on θ :
Posterior distribution

is represented as a finite set of parameters     

Examples:
• Gaussian distribution prior + 2D Gaussian likelihood    → Gaussian posterior distribution 
• Dirichilet distribution prior + 2D Multinomial likelihood → Dirichlet posterior distribution 
• Sparsity-inducing priors + some likelihood models → Sparse Bayesian inference
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Nonparametric Bayesian 
Inference

A nonparametric likelihood: 
Prior on   :
Posterior distribution

Examples:
→ see next slide

is a richer model, e.g., with an infinite set of parameters
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probability measure binary matrix

function

Dirichlet Process Prior [Antoniak, 1974]
+ Multinomial/Gaussian/Softmax likelihood

Indian Buffet Process Prior [Griffiths & Gharamani, 2005]
+ Gaussian/Sigmoid/Softmax likelihood

Gaussian Process Prior [Doob, 1944; Rasmussen & Williams, 2006]
+ Gaussian/Sigmoid/Softmax likelihood

Nonparametric Bayesian 
Inference
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Why Bayesian Nonparametrics?
 Let the data speak for themselves
 Bypass the model selection problem

 let data determine model complexity (e.g., the number of components in mixture 
models)

 allow model complexity to grow as more data observed
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It is desirable to further regularize the posterior distribution

 An extra freedom to perform Bayesian inference
 Arguably more direct to control the behavior of models
 Can be easier and more natural in some examples

likelihood model priorposterior

Can we further control the 
posterior distributions?
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Can we further control the 
posterior distributions?

 Directly control the posterior distributions?
 Not obvious how …

likelihood model priorposterior

hard constraints
(A single feasible space)

soft constraints
(many feasible subspaces with different 

complexities/penalties)
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 Bayes’ rule is equivalent to:

A direct but trivial constraint on the posterior distribution

[Zellner, Am. Stat. 1988]

E.T. Jaynes (1988): “this fresh interpretation of Bayes’ theorem could 
make the use of Bayesian methods more attractive and widespread, and 
stimulate new developments in the general theory of inference”

likelihood model priorposterior

A reformulation of Bayesian 
inference

10© Eric Xing @ CMU, 2005-2014



Regularized Bayesian Inference

where, e.x.,

and

Solving such constrained optimization problem needs convex 
duality theory

So, where does the constraints come from? 
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Recall our evolution of the Max-
Margin Learning Paradigms

?                       

SVM                      SVM                      
b r a c e

M3N                      

MED                      MED                      

M3N                      

MED-MN
= SMED + “Bayesian” M3N
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 Structured MaxEnt Discrimination (SMED):

 Feasible subspace of weight distribution:

 Average from distribution of M3Ns

Maximum Entropy Discrimination 
Markov Networks

p
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Can we use this scheme to learn 
models other than MN?
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Recall the 3 advantages of MEDN
 An averaging Model: PAC-Bayesian prediction error guarantee 

(Theorem 3)

 Entropy regularization: Introducing useful biases
 Standard Normal prior => reduction to standard M3N (we’ve seen it)

 Laplace prior => Posterior 
shrinkage effects (sparse M3N)

 Integrating Generative and Discriminative principles (next 
class)
 Incorporate latent variables and structures (PoMEN)
 Semisupervised learning (with partially labeled data)
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Latent Hierarchical MaxEnDNet
 Web data extraction

 Goal: Name, Image, Price, 
Description, etc.

 Hierarchical 
labeling

 Advantages:
o Computational efficiency
o Long-range dependency
o Joint extraction {image} {name, price}

{name} {price} {name} {price}

{image} {name, price}

{desc}

{Head} {Tail}{Info Block}

{Repeat block}{Note} {Note}
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Partially Observed MaxEnDNet 
(PoMEN)

 Now we are given partially labeled data:

 PoMEN: learning

 Prediction:

(Zhu et al, NIPS 2008)
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Alternating Minimization Alg.
 Factorization assumption:

 Alternating minimization:
 Step 1: keep        fixed, optimize over  

 Step 2: keep         fixed, optimize over 

o Normal prior
• M3N problem (QP)

o Laplace prior
• Laplace M3N problem (VB)

Equivalently reduced to an LP with 
a polynomial number of constraints
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Experimental Results
 Web data extraction:

 Name, Image, Price, Description

 Methods:
 Hierarchical CRFs, Hierarchical 

M^3N
 PoMEN, Partially observed HCRFs

 Pages from 37 templates
o Training: 185 (5/per template) 

pages, or 1585 data records
o Testing: 370 (10/per template) 

pages, or 3391 data records

 Record-level Evaluation
o Leaf nodes are labeled

 Page-level Evaluation
o Supervision Level 1:

 Leaf nodes and data record nodes 
are labeled

o Supervision Level 2:
 Level 1 + the nodes above data 

record nodes
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Record-Level Evaluations
 Overall performance:

 Avg F1: 
o avg F1 over all attributes

 Block instance accuracy:
o % of records whose Name, 

Image, and Price are correct

 Attribute performance:
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Page-Level Evaluations
 Supervision Level 1:

 Leaf nodes and data record 
nodes are labeled

 Supervision Level 2:
 Level 1 + the nodes above 

data record nodes

4/29/2014
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 Structured MaxEnt Discrimination (SMED):

 Feasible subspace of weight distribution:

 Average from distribution of PoMENs

 We can use this for any p and p0 !

Key message from PoMEN

p
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Max-margin learning

An all inclusive paradigm for 
learning general GM --- RegBayes
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Predictive Latent Subspace Learning
via a large-margin approach

… where M is any subspace model and p is a 
parametric Bayesian prior 
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 Finding latent subspace representations (an old topic)
 Mapping a high-dimensional representation into a latent low-dimensional representation, 

where each dimension can have some interpretable meaning, e.g., a semantic topic

 Examples:
 Topic models (aka LDA) [Blei et al 2003]

 Total scene latent space models [Li et al 2009]

 Multi-view latent Markov models [Xing et al 2005]

 PCA, CCA, …







Athlete
Horse
Grass
Trees
Sky
Saddle

Unsupervised Latent Subspace 
Discovery
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 Unsupervised latent subspace representations are generic but can be sub-
optimal for predictions

 Many datasets are available with supervised side information

 Can be noisy, but not random noise (Ames & Naaman, 2007)
 labels & rating scores are usually assigned based on some intrinsic property of the data
 helpful to suppress noise and capture the most useful aspects of the data

 Goals:
 Discover latent subspace representations that are both predictive and interpretable by 

exploring weak supervision information

 Tripadvisor Hotel Review 
(http://www.tripadvisor.com)

 LabelMe
http://labelme.csail.mit.edu/

 Many others

Flickr (http://www.flickr.com/)

Predictive Subspace Learning 
with Supervision
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I. LDA: Latent Dirichlet Allocation

 Joint Distribution:

 Variational Inference with             :

 Minimize the variational bound to estimate parameters and infer the posterior distribution

 Generative Procedure:
 For each document d:

 Sample a topic proportion
 For each word:
– Sample a topic
– Sample a word

(Blei et al., 2003)

exact inference intractable!
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 Bayesian sLDA:

 MED Estimation:
 MedLDA Regression Model

 MedLDA Classification Model
predictive accuracy

model fitting

(Zhu et al, ICML 2009)

Maximum Entropy Discrimination 
LDA (MedLDA)
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Document Modeling
 Data Set: 20 Newsgroups
 110 topics + 2D embedding with t-SNE (var der Maaten & Hinton, 2008)

MedLDA LDA
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Classification
 Data Set: 20Newsgroups

– Binary classification:  “alt.atheism” and “talk.religion.misc” (Simon et al., 2008)
– Multiclass Classification: all the 20 categories

 Models:  DiscLDA, sLDA (Binary ONLY! Classification sLDA (Wang et al., 2009)),
LDA+SVM (baseline), MedLDA, MedLDA+SVM

 Measure: Relative Improvement Ratio
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Regression
 Data Set: Movie Review (Blei & McAuliffe, 2007)
 Models: MedLDA(partial), MedLDA(full), sLDA, LDA+SVR
 Measure: predictive R2  and per-word log-likelihood
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Time Efficiency
 Binary Classification

 Multiclass:
— MedLDA is comparable with LDA+SVM

 Regression:
— MedLDA is comparable with sLDA
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 The “Total Scene Understanding” Model (Li et al, CVPR 2009)

 Using MLE to estimate model parameters

Athlete
Horse
Grass
Trees
Sky
Saddle

class: Polo

II. Upstream Scene 
Understanding Models
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Scene Classification
 8-category sports data set (Li & Fei-Fei, 2007):

 Fei-Fei’s theme model: 0.65 
(different image representation)

 SVM: 0.673

•1574 images (50/50 split)
•Pre-segment each image into 
regions
•Region features:

•color, texture, and location
•patches with SIFT features 

•Global features: 
•Gist (Oliva & Torralba, 2001)
•Sparse SIFT codes (Yang et al, 2009)
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 Classification results:

$ROI+Gist(annotation) used human annotated interest regions.

• 67-category MIT indoor scene (Quattoni & Torralba, 
2009):
• ~80 per-category for training; ~20 per-category for testing
• Same feature representation as above
• Gist global features

MIT Indoor Scene
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III. Supervised Multi-view RBMs
 A probabilistic method with an additional view of response variables 

Y

 Parameters can be learned with maximum likelihood estimation, 
e.g., special supervised Harmonium (Yang et al., 2007)
 contrastive divergence is the commonly used approximation method in 

learning undirected latent variable models (Welling et al., 2004; 
Salakhutdinov & Murray, 2008).

Y 1 YL

normalization factor
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 t-SNE (van der Maaten & Hinton, 2008) 2D embedding of the discovered 
latent space representation on the TRECVID 2003 data

 Avg-KL: average pair-wise divergence
MMH TWH

Predictive Latent Representation
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Predictive Latent Representation
 Example latent topics discovered by a 60-topic MMH on Flickr Animal Data
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 Data Sets:
– (Left) TRECVID 2003: (text + image features)
– (Right) Flickr 13 Animal: (sift + image features)

 Models:  
 baseline(SVM),DWH+SVM, GM-Mixture+SVM, GM-LDA+SVM, TWH, 

MedLDA(sift only), MMH

TRECVID Flickr

Classification Results
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 Data Set:  TRECVID 2003
– Each test sample is treated as a query, training samples are ranked based on the 

cosine similarity between a training sample and the given query
– Similarity is computed based on the discovered latent topic representations

 Models:  DWH, GM-Mixture, GM-LDA, TWH,  MMH
 Measure: (Left) average precision on different topics and (Right) precision-

recall curve

Retrieval Results
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Infinite SVM and infinite latent SVM: 

-- where SVMs meet NB for classification and feature 
selection

… where M is any combinations of classifiers and p is 
a nonparametric Bayesian prior 
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Mixture of SVMs
 Dirichlet process mixture of large-margin kernel machines
 Learn flexible non-linear local classifiers; potentially lead to a better 

control on model complexity, e.g., few unnecessary components

 The first attempt to integrate Bayesian nonparametrics, large-margin 
learning, and kernel methods

SVM using RBF kernel Mixture of 2 linear SVM Mixture of 2 RBF-SVM
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Infinite SVM
 RegBayes framework:

 Model – latent class model
 Prior – Dirichlet process
 Likelihood – Gaussian likelihood
 Posterior constraints – max-margin constraints

direct and rich constraints on posterior distribution

convex function
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Infinite SVM
 DP mixture of large-margin classifiers

 Given a component classifier: 

 Overall discriminant function:

 Prediction rule:

 Learning problem:

Graphical model with stick-breaking
construction of DP

process of determining which classifier to use:
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Infinite SVM
 Assumption and relaxation

 Truncated variational distribution

 Upper bound the KL-regularizer

 Opt. with coordinate descent
 For         , we solve an SVM learning problem 
 For        , we get the closed update rule

 The last term regularizes the mixing proportions to favor prediction

 For                 , the same update rules as in (Blei & Jordan, 2006)

Graphical model with stick-breaking
construction of DP
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Experiments on high-dim real 
data
 Classification results and test time:

 Clusters:
 simiar backgroud images group
 a cluster has fewer categories

For training, linear-iSVM is very efficient (~200s); 
RBF-iSVM is much slower, but can be significantly
improved using efficient kernel methods (Rahimi
& Recht, 2007; Fine & Scheinberg, 2001)
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Learning Latent Features
 Infinite SVM is a Bayesian nonparametric latent class model

 discover clustering structures
 each data point is assigned to a single cluster/class

 Infinite Latent SVM is a Bayesian nonparametric latent 
feature/factor model
 discover latent factors
 each data point is mapped to a set (can be infinite) of latent factors

 Latent factor analysis is a key technique in many fields; Popular models are FA, 
PCA, ICA, NMF, LSI, etc.
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Infinite Latent SVM
 RegBayes framework:

 Model – latent feature model
 Prior – Indian Buffet process
 Likelihood – Gaussian likelihood
 Posterior constraints – max-margin constraints

direct and rich constraints on posterior distribution

convex function
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Beta-Bernoulli Latent Feature 
Model
 A random finite binary latent feature models

 is the relative probability of each feature being on, e.g.,

 are binary vectors, giving the latent structure that’s used to generate 
the data, e.g., 
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Indian Buffet Process
 A stochastic process on infinite binary feature matrices
 Generative procedure:

 Customer 1 chooses the first        dishes: 
 Customer i chooses:

 Each of the existing dishes with probability 

 additional dishes, where 
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Posterior Constraints –
classification 
 Suppose latent features z are given, we define latent 

discriminant function:

 Define effective discriminant function (reduce 
uncertainty):

 Posterior constraints with max-margin principle
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Experimental Results
 Classification

 Accuracy and F1 scores on TRECVID2003 and Flickr image datasets
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Large-margin learning

Large-margin kernel machines

Bayesian kernel machines; Infinite GPs

Summary
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Large-margin learning

Linear Expectation Operator
(resolve uncertainty)

Summary
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Summary
• A general framework of MaxEnDNet for learning structured input/output models

– Subsumes the standard M3Ns 
– Model averaging: PAC-Bayes theoretical error bound
– Entropic regularization: sparse M3Ns 
– Generative + discriminative: latent variables, semi-supervised learning on partially 

labeled data, fast inference

• PoMEN
– Provides an elegant approach to incorporate latent variables and structures under max-

margin framework
– Enable Learning arbitrary graphical models discriminatively

• Predictive Latent Subspace Learning
– MedLDA for text topic learning
– Med total scene model for image understanding
– Med latent MNs for multi-view inference   

• Bayesian nonparametrics meets max-margin learning

• Experimental results show the advantages of max-margin learning over 
likelihood methods in EVERY case. 
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Remember: Elements of Learning
 Here are some important elements to consider before you start:

 Task:
 Embedding? Classification? Clustering? Topic extraction? …

 Data and other info:
 Input and output (e.g., continuous, binary, counts, …) 
 Supervised or unsupervised, of a blend of everything?
 Prior knowledge? Bias? 

 Models and paradigms:
 BN? MRF? Regression? SVM?
 Bayesian/Frequents ?  Parametric/Nonparametric?

 Objective/Loss function:
 MLE? MCLE? Max margin?
 Log loss, hinge loss, square loss? …

 Tractability and exactness trade off:
 Exact inference? MCMC? Variational? Gradient? Greedy search?  
 Online? Batch? Distributed? 

 Evaluation:
 Visualization? Human interpretability? Perperlexity? Predictive accuracy? 

 It is better to consider one element at a time!
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