School of Computer Science
Carnegie Mellon

Probabilistic Graphical Models

Structured Sparse Additive Models

Acknowledgement: based on slides drafted by Junming Yin

| 1 |
[=2] & n (=] n Rl 2] o]
. i .
.

Reading: See class website

© Eric Xing @ CMU, 2005-2014 1

|
o@

0.2 0.4 0.6 0.8 1



Outline

e Nonparametric regression and kernel smoothing
e Additive models
e Sparse additive models (SpAM)

e Structured sparse additive models (GroupSpAM)
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Nonparametric Regression
and Kernel Smoothing
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Non-linear functions:
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LR with non-linear basis T
functions oo

e LR does not mean we can only deal with linear relationships

e We are free to design (non-linear) features under LR
Y=g+ 0;(x)=0"$(x)

where the ¢(x) are fixed basis functions (and we define gy(x) = 1).

e Example: polynomial regression:

p(x) =1, x, X2, x|

e We will be concerned with estimating (distributions over) the
weights 6 and choosing the model order M.
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Basis functions

e There are many basis functions, e.g.:

e Polynomial ¢j (X) = x 171

e Radial basis functions ¢j (X) = expL—

@-ﬁ}

2s°

« Sigmoidal g (x) = G[ X _Sﬂj j

e Splines, Fourier, Wavelets, etc
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1D and 2D RBFs

e 1D RBF
Y ./:\ /.\
« & ;
yest = B ¢y (x) + + B3 ¢3(x)
o After fit:

yest = _"9;‘;1( X) + + 0--{5153( X)
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Good and Bad RBFs °e

e Agood 2D RBF coordinates of

Sphere of
significant
influence of

e Two bad 2D RBFs center
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Overfitting and underfitting o°

y =6, + 0,X Y =6, +0,X+0,X° y = Z Hx‘

j=0 "}

© Eric Xing @ CMU, 2005-2014 9



Bias and variance

e We define the bias of a model to be the expected
generalization error even if we were to fit it to a very (say,
Infinitely) large training set.

e By fitting "spurious" patterns in the training set, we might
again obtain a model with large generalization error. In this
case, we say the model has large variance.
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Locally weighted linear
regression oo

e The algorithm:
o 1
Instead of minimizing J(O) == T9—vy)?
() ZE(X. i)

now we fit 6 to minimize J(0) = %Z w, (x,'0-y,)°
i=1

2
Where do wi's come from? . = eXpE_ (Xi2—2<) ]
T

+

where X is the query point for which we'd like to know its corresponding y

- Essentially we put higher weights on (errors on) training
examples that are close to the query point (than those that are
further away from the query)
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Parametric vs. non-parametric .

e Locally weighted linear regression is another example we are
running into of a non-parametric algorithm. (what are the
others?)

e The (unweighted) linear regression algorithm that we saw
earlier is known as a parametric learning algorithm

e because it has a fixed, finite number of parameters (the 6), which are fit to the
data;

e Once we've fit the 6 and stored them away, we no longer need to keep the
training data around to make future predictions.

e In contrast, to make predictions using locally weighted linear regression, we need
to keep the entire training set around.

e The term "non-parametric" (roughly) refers to the fact that the
amount of stuff we need to keep in order to represent the
hypothesis grows linearly with the size of the training set.
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Parametric vs. non-parametric .

e Parametric model:
e Assumes all data can be represented using a fixed, finite number of parameters.
e Examples: polynomial regression

e Nonparametric model:
e Number of parameters can grow with sample size.
e Examples: nonparametric regression
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Regression — probabilistic T
Interpretation oo

e What regular regression does:

Assume y, was originally generated using the following recipe:

Yy, =0'X, +WN(0,0°)

Computational task is to find the Maximum Likelihood
estimation of 6
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Nonparametric Regression: T
Formal Definition -

e Nonparametric regression is concerned with estimating the
regression function

m(x) =E(Y | X = x)

from a training set {(x¥, ) : xW e RP y@ e R, i =1,...,n}

e The “parameter” to be estimated is the whole function m(x)

e NoO parametric assumption such as linearity is made about the
regression function m(x)
e More flexible than parametric model
e However, usually require keeping the entire training set (memory-based)
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Kernel Smoother oo

e The simplest nonparametric regression estimator
e Local weighted (smooth) average of y(z)
e The weight depends on the distance to x (%)

e Nadaraya-Watson kernel estimator

n ) x—x )
S y@ (=l
n x —x (1)
S, k(I

e K is the smoothing kernel function K(x)>=0 and h is the
bandwidth

m(x) =
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Kernel Function -

e [t satisfies
/K(az) dr =1, /:UK(x)d:I: =0 and 0% = /:L'2K(:1:)da: > 0.

e Different types

Epanechnikov
Tri-cube
Gaussian

0.8

0.4

0.0
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Bandwidth :

e The choice of bandwidth h is much more important than
the type of kernel K

e Small h ->rough estimates
e Large h ->smoother estimates
e |In practice: cross-validation or plug-in methods

30
\

20

10

-50 0 50 100
© Eric Xing @ CMU, 2005-2014

18



Linear Smoothers ot

e Kernel smoothers are examples of linear smoothers

m(x) = Z@(X)y@ = ((x)Ty,

x—x 1)
K( I > I )

— n x —x (1)
S k(e

e For each x, the estimator is a linear combination of y(z)

@z (X)

e Other examples: smoothing splines, locally weighted polynomial, etc

0" =(XTX) Xy
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Linear Smoothers (con’t) o°

o Definey = (m(x1),..., M (x™))be the fitted values
of the training examples, then

= Sy,
e Thenxn matrix Sis called the smoother matrix with S;; = ¢, (x(i))

e The fitted values are the smoother version of original values

e Recall the regression function m(X) =E(Y | X) can be
viewed as

m(X) = PY

e Pis the conditional expectation operator IE( | X) that projects a
random variable (it is Y here) onto the linear space of X

e It plays the role of smoother in the population setting
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Additive Models
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Additive Models ot

e Due to curse of dimensionality, smoothers break down in high
dimensional setting (where the definition of “neighborhood” is
tricky)

e Hastie & Tibshirani (1990) proposed the additive model
m(Xl,... —Oé—|—2fj

e Each fj IS a smooth one-dimensional component function

e However, the model is not identifiable

e Can add a constant to one component function and subtract the same constant
from another component

e Can be easily fixed by assuming

E[f;(X;)] = 0 for each j
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Backfitting

e The optimization problem in the population setting is

%E[(Y —a- jf;fﬂXj))Q]

e It can be shown that the optimum is achieved at

a=E(Y), f; = E[(Y —a— ;fk) | Xj] .= P;R;

° Pj = E[ | Xj] Is the conditional expectation operator onto jth input space

o Rj YV o — Z i is the partial residual
k#j
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Backfitting (con’t) -

e Replace conditional operator P; by smoother matrix Sj
results in the backfitting algorithm

mn
e Initialize: & = Zy@)/n,fj =0,7=1,...,p
1=1
e Cycle:for y=1,...,p,1,...,p,...
f; <—Sj(y—oz— E fk)
 k#
_ - ~ 1 A :
Cent : ; § g = (%)
LT TS R S AT
=1
> This is the current fitted values of the jth component on the n training

examples

» This is a coordinate descent algorithm
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log permeability

Example -

e 48 rock samples from a petroleum reservoir
e The response: permeability

e The covariates: the area of pores, perimeter in pixels and
shape (perimeter/sqgrt(area))

permeability = f;(area) + fo(perimeter) + f3(shape) + €

S 3
£ £
© 'g)_ ® Q ®
3 3
~ ~ ™~
T T T T T T T T T ' ' T ' T !
1000 2000 3000 4000 5000 0.1 0.2 0.3 0.4 0 200 400 600 800 1000
area perimeter shape
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Sparse Additive Models (SpAM)



SpAM 4

e A sparse version of additive models (Ravikumar et. al 2009)

e Can perform component/variable selection for additive models
even whenn<<p

e The optimization problem in the population setting is
1 p ) p
SE| (V= 30 500)°| +3% /Bl 00
j=1 j=1

%
o Z \/E[fj (X;)?] behaves like an |, ball across different components
j=1

to encourage functional sparsity

e If each component function f;(X;) is constrained to have the linear
form, the formulation reduces to standard lasso (Tibshirani 1996)
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SpAM Backfitting os

e The optimum is achieved by soft-thresholding step

A
VE[(PR;)?]] |

o Rj=Y —> . fx is the partial residual; -] 4 is the positive part
e f; =0 if and only if \/]E[(PjRj)2] < A (thresholding condition)

PjRj,jZl,...,p

fj[l

e As in standard additive models, replace P; by S;

. A 2\
f; « [1—A] Sj<y—ka),]:1,...,p
Sj +

k)

o 55 = \/mean(sj (y - Z fe)) is the empirical estimate of \/E[(PjRj)Q]
ki
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Example

e N =150, p =200 (only 4 component functions are non-zeros)
Yi = filxi1) + o(xi2) + f3(xi3) + fa(xia) + €
filx) = =2sin(2x), LX) =x"—h, frlx)=x—W, fa(x) =+ 1

~1 <4 ~1 o o o
o <+ o
ald o~ d ald
Ql 9
— (q\] ™ J <
€ - € 1 e €
C\Il.
N R
I A
<J 1
< hE I
19 (Cl)' T.
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Structured Sparse Additive Models
(GroupSpAM)



GroupSpAM .

e EXploit structured sparsity in the nonparametric setting

e The simplest structure is a non-overlapping group (or a
partition of the original p variables)

Ug={L....ptand g[g' =10

geg

e The optimization problem in the population setting is

%E [(Y - ij(Xj)f] +2) Vlal D E[f;(X;)

geg JEQg

e Challenges:
e New difficulty to characterize the thresholding condition at group level

e No closed-form solution to the stationary condition, in the form of soft-
thresholding step
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Thresholding Conditions -

e Theorem: the whole group g of functions f; =0Vj € g if
and only if

> E[(P;R)? < \/lg
JEY
° Rg =Y — Z Z fj,(Xj,) IS the partial residual after removing
g’ 7#g9j'€g’
all functions from group g

e Necessity: straightforward to prove
e Sufficiency: more involved (see Yin et. al, 2012)
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GroupSpAM Backfitting
S ——

Input: Data X € R"*P, y € R"”, partition G, and parameter \.

Initialize fj = 0 Vy; pre-compute smoother matrices S; V.

Cycle through group g € G until convergence:

Compute the residual: ﬁg =Y — D gitg dijicy fj/.

Estimate the group norm: w, = \/% Dicq Hij{gHQ.

If Wy < A/lgl,

Set f'j =0, Vjeg.
Else,
Estimate f'g by fixed point iteration,

—1
e+ — <3+ 2/lg] 1> aR,.
[ e VRvAD
Output: Fitted functions f = {fj ceR":j5=1,...,p}.
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Experiments

e Sample size n=150 and dimension p = 200, 1000

e True model: Y = Z§:1 fi(X;) + €, where X; ~ Uni(—2.5,2.5),
corr(X;, X) = t2/(1 +t*),e ~ N(0,02) with 0 = 2.02 (SNR =

3.0).
Component Functions Variance

filz) = —2sin(2x) 2.10

fa(z) = 2 3.47

fa(z) = s 0.98

fa(z) = exp(—x) 8.98

fs(z) = 23+ 1.5(x—1)2 14.57

fe(x) = x 2.08

fr(x) = 3sin(exp(—0.5x) 0.80

fs(x) = —5¢(x,0.5,0.8%) 3.76
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Experiments (p = 200) -

e Performance based on 100 independent simulations (t = 0)

method  precision recall # f1 #fo #f3 #f1 #f5 #fo #fr #fs MSE

GroupSpAM 1.00 1.00 100 100 100 100 100 100 100 100 7.22
SpAM 0.85 0.82 83 100 56 100 100 94 27 100 9.61
COSSO 066 042 6 1 27 100 50 61 3 88 28.29

GroupLasso  0.95 0.99 100 100 100 100 99 99 99 99 28.34

e Performance based on 100 independent simulations (t = 2)

method  precision recall # f1 #fao # f3 #f1 #f5 #fo #fr #fs MSE

GroupSpAM  0.89  0.99 100 100 100 100 98 98 98 98 7.26
SpAM 071 046 88 75 0 &8 100 0 4 15 8.48
COSSO 0.23 041 11 61 22 90 76 10 10 47 13.72

Grouplasso 0.13 0.12 14 14 14 14 11 11 11 11 26.19
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Experiments (p = 1000) o

e Performance based on 100 independent simulations (t = 0)

method  precision recall #f1 #fa # f3 #fa #fs #f6 #f7 #fs MSE
GroupSpAM  1.00 1.00 100 100 100 100 100 100 100 100 7.21
SpAM 0.86 0.68 49 91 25 100 100 71 7 97 11.66
COSSO 0.01 0.97 93 100 97 100 100 100 &4 100 36.59
GroupLasso  0.93 0.97 98 98 98 98 97 97 97 97 29.49

e Performance based on 100 independent simulations (t = 2)

method  precision recall # f1 # fo #fs #f4 #f5 #f6 #f7 #fs MSE

GroupSpAM  0.75 097 95 95 95 95 100 100 100 100 8.10
SpAM 069 034 59 43 O 65 100 0 1 3 9.69
COSSO 000 00O O O O 0O O 0 0 0 26.30

GroupLasso 0.02 003 4 4 4 4 2 2 2 2 2586
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Estimated Component Functions
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GroupSpAM with Overlap o°

e Allow overlap between the different groups (Jacob et al.,
2009)

e |dea: decompose each original component function to be a
sum of a set of latent functions and then apply the functional
group penalty to the decomposed

minimize %E {(Y — Z fj(Xj))2] + A Z \/HthH
j=1

geg

subject to Z h=fi,ji=1....p
g:j€9g

e The resulting support is a union of pre-defined groups

e Can be reduced to the GroupSpAM with disjoint groups and solved by the same
backfitting algorithm
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Breast Cancer Data °

e Sample size n = 295 tumors (metastatic vs hon-metastatic)
and dimension p = 3,510 genes.

e Goal: identify few genes that can predict the types of tumors.

e Group structure: each group consists of the set of genes in a
pathway and groups are overlapping.

fold method BER #genes #pathways
GroupSpAM 0.353 55 196

1 SpAM 0.362 91 266
GroupLasso 0.384 44 238
GroupSpAM 0.358 44 243

2  SpAM 0.349 109 302
GroupLasso 0.365 56 248
GroupSpAM 0.326 74 149

3 SpAM 0.333 101 209

GroupLasso 0.346 76 138
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Summary

e Novel statistical method for structured functional sparsity in
nonparametric additive models

e Functional sparsity at the group level in additive models.

e Can easily incorporate prior knowledge of the structures among the
covariates.

e Highly flexible: no assumptions are made on the design matrices or on
the correlation of component functions in each group.

e Benefit of group sparsity: better performance in terms of support
recovery and prediction accuracy in additive models.
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