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Outline
 Nonparametric regression and kernel smoothing

 Additive models

 Sparse additive models (SpAM)

 Structured sparse additive models (GroupSpAM)
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Nonparametric Regression 
and Kernel Smoothing
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Non-linear functions:

4© Eric Xing @ CMU, 2005-2014



LR with non-linear basis 
functions
 LR does not mean we can only deal with linear relationships

 We are free to design (non-linear) features under LR

where the j(x) are fixed basis functions (and we define 0(x) = 1).

 Example: polynomial regression:

 We will be concerned with estimating (distributions over) the 
weights θ and choosing the model order M.
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Basis functions
 There are many basis functions, e.g.:

 Polynomial

 Radial basis functions

 Sigmoidal

 Splines, Fourier, Wavelets, etc

1 j
j xx)(

 









 
 2

2

2s
x

x j
j


 exp)(








 


s
x

x j
j


 )(

6© Eric Xing @ CMU, 2005-2014



1D and 2D RBFs
 1D RBF

 After fit:
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Good and Bad RBFs
 A good 2D RBF

 Two bad 2D RBFs
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Overfitting and underfitting
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Bias and variance
 We define the bias of a model to be the expected 

generalization error even if we were to fit it to a very (say, 
infinitely) large training set.

 By fitting "spurious" patterns in the training set, we might 
again obtain a model with large generalization error. In this 
case, we say the model has large variance.
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Locally weighted linear 
regression

 The algorithm:
Instead of minimizing

now we fit θ to minimize

Where do wi's come from?                                              

 where x is the query point for which we'd like to know its corresponding y

 Essentially we put higher weights on (errors on) training 
examples that are close to the query point (than those that are 
further away from the query)
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Parametric vs. non-parametric
 Locally weighted linear regression is another example we are 

running into of a non-parametric algorithm. (what are the 
others?)

 The (unweighted) linear regression algorithm that we saw 
earlier is known as a parametric learning algorithm 
 because it has a fixed, finite number of parameters (the θ), which are fit to the 

data;
 Once we've fit the θ and stored them away, we no longer need to keep the 

training data around to make future predictions.
 In contrast, to make predictions using locally weighted linear regression, we need 

to keep the entire training set around. 

 The term "non-parametric" (roughly) refers to the fact that the 
amount of stuff we need to keep in order to represent the 
hypothesis grows linearly with the size of the training set.
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 Parametric model:
 Assumes all data can be represented using a fixed, finite number of parameters.
 Examples: polynomial regression

 Nonparametric model:
 Number of parameters can grow with sample size.
 Examples: nonparametric regression

Parametric vs. non-parametric
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Regression — probabilistic 
interpretation
 What regular regression does:

Assume yk was originally generated using the following recipe:

Computational task is to find the Maximum Likelihood 
estimation of θ
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 Nonparametric regression is concerned with estimating the 
regression function 

from a training set

 The “parameter” to be estimated is the whole function m(x)

 No parametric assumption such as linearity is made about the 
regression function m(x)
 More flexible than parametric model
 However, usually require keeping the entire training set (memory-based)

Nonparametric Regression: 
Formal Definition
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Kernel Smoother

 The simplest nonparametric regression estimator
 Local weighted (smooth) average of
 The weight depends on the distance to 

 Nadaraya-Watson kernel estimator

 K is the smoothing kernel function K(x)>=0 and h is the 
bandwidth
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 It satisfies

 Different types

Kernel Function

17© Eric Xing @ CMU, 2005-2014



Bandwidth
 The choice of bandwidth h is much more important than 

the type of kernel K
 Small h -> rough estimates
 Large h -> smoother estimates
 In practice: cross-validation or plug-in methods
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Linear Smoothers
 Kernel smoothers are examples of linear smoothers

 For each x, the estimator is a linear combination of 

 Other examples: smoothing splines, locally weighted polynomial, etc
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Linear Smoothers (con’t)
 Define be the fitted values 

of the training examples, then

 The n x n matrix S is called the smoother matrix with

 The fitted values are the smoother version of original values 

 Recall the regression function can be 
viewed as

 P is the conditional expectation operator  that projects a 
random variable (it is Y here) onto the linear space of X

 It plays the role of smoother in the population setting
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Additive Models
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Additive Models
 Due to curse of dimensionality, smoothers break down in high 

dimensional setting (where the definition of “neighborhood” is 
tricky)

 Hastie & Tibshirani (1990) proposed the additive model

 Each      is a smooth one-dimensional component function

 However, the model is not identifiable
 Can add a constant to one component function and subtract the same constant 

from another component

 Can be easily fixed by assuming
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Backfitting
 The optimization problem in the population setting is

 It can be shown that the optimum is achieved at 

 is the conditional expectation operator onto jth input space

 is the partial residual
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Backfitting (con’t)
 Replace conditional operator       by smoother matrix

results in the backfitting algorithm

 Initialize:

 Cycle: for  

 Centering: 

 This is the current fitted values of the jth component on the n training 
examples

 This is a coordinate descent algorithm
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Example
 48 rock samples from a petroleum reservoir

 The response: permeability

 The covariates: the area of pores, perimeter in pixels and 
shape (perimeter/sqrt(area))
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Sparse Additive Models (SpAM)
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SpAM
 A sparse version of additive models (Ravikumar et. al 2009)
 Can perform component/variable selection for additive models 

even when n << p
 The optimization problem in the population setting is

 behaves like an l1 ball across different components 

to encourage functional sparsity

 If each component function is constrained to have the linear 
form, the formulation reduces to standard lasso (Tibshirani 1996) 
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SpAM Backfitting
 The optimum is achieved by soft-thresholding step

 is the partial residual;        is the positive part
 (thresholding condition)

 As in standard additive models, replace      by 

 is the empirical estimate of 
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Example
 n =150, p = 200 (only 4 component functions are non-zeros)
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Structured Sparse Additive Models 
(GroupSpAM)
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GroupSpAM
 Exploit structured sparsity in the nonparametric setting
 The simplest structure is a non-overlapping group (or a 

partition of the original p variables) 

 The optimization problem in the population setting is

 Challenges:
 New difficulty to characterize the thresholding condition at group level
 No closed-form solution to the stationary condition, in the form of soft-

thresholding step
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Thresholding Conditions

 Theorem: the whole group g of functions if 
and only if 

 is the partial residual after removing 

all functions from group g

 Necessity: straightforward to prove
 Sufficiency: more involved (see Yin et. al, 2012)
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GroupSpAM Backfitting

33© Eric Xing @ CMU, 2005-2014



Experiments
 Sample size n=150 and dimension p = 200, 1000

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Experiments (p = 200)
 Performance based on 100 independent simulations (t = 0)

 Performance based on 100 independent simulations (t = 2)
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Experiments (p = 1000)
 Performance based on 100 independent simulations (t = 0)

 Performance based on 100 independent simulations (t = 2)
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Estimated Component Functions
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GroupSpAM with Overlap
 Allow overlap between the different groups (Jacob et al., 

2009)
 Idea: decompose each original component function to be a 

sum of a set of latent functions and then apply the functional 
group penalty to the decomposed 

 The resulting support is a union of pre-defined groups
 Can be reduced to the GroupSpAM with disjoint groups and solved by the same 

backfitting algorithm
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Breast Cancer Data
 Sample size n = 295 tumors (metastatic vs non-metastatic) 

and dimension p = 3,510 genes.
 Goal: identify few genes that can predict the types of tumors.
 Group structure: each group consists of the set of genes in a 

pathway and groups are overlapping.
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Summary
 Novel statistical method for structured functional sparsity in 

nonparametric additive models
 Functional sparsity at the group level in additive models.

 Can easily incorporate prior knowledge of the structures among the 
covariates.

 Highly flexible: no assumptions are made on the design matrices or on 
the correlation of component functions in each group.

 Benefit of group sparsity: better performance in terms of support 
recovery and prediction accuracy in additive models.
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