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Latent Variable Models ot
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Learning Parameters (EM) o°

latent variables

4&— (unobserved in

training data)

—

Observed variable

5

P[X1,..., X5, Hi, ..., Hs] = P[H1] | | P[Hi|Hiza] | [ PXG|H]

=2 =1

Ut

Since latent variables are not observed in the data, we have to
use Expectation Maximization (EM) to learn parameters

* Slow

e Local Minima
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Spectral Learning -

e Different paradigm of learning in latent variable models based on
linear algebra

e Theoretically,

Provably consistent
Can offer deeper insight into the identifiability

e Practically,

Local minima free
As if now, performs comparably to EM with 10-100x speed-up

Can also model non-Gaussian continuous data using kernels (usually
performs much better than EM in this case)
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Related References .

e Relevant works

Hsu et al. 2009 — Spectral HMMs (also Bailly 2009)
Siddiqgi et al. 2009 — Features in Spectral Learning

Parikh et al. 2011/2012 —Tensors to Generalize to Trees/Low Treewidth
Graphs

Cohen et al. 2012 / 2013 — Spectral Learning of latent PCFGs

e Will present it from “matrix factorization” view:

Balle et al. 2012 — Connection between Spectral Learning / Hankel Matrix
Factorization

Song et al. 2013 — Spectral Learning as Hierarchical Tensor Decomposition
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Focusing on Prediction -

e |n many applications that use latent variable models, the end task is
not to recover the latent states, but rather to use the model for
prediction among observed variables.

e Dynamical Systems — Predict future given past

QO OO0
Q0 00 O,
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000
0000
T
Focusing on Prediction -
e We will only be concerned with quantities related to the observeE
variables:
P[Xla XZ) X37 X47 X5]

e \We do not care about the latent variables explicitly.

e Do we still need EM to learn the parameters?
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But if we don’t care about the T
latent variables.... ot

e Why don’t we just integrate them out?

e Because integrating them out results in a clique ®
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Marginal Does Not Factorize +
P[X1, X5, X3, X0, Xs] = ), P[H:]P[H] H]P’ 1 H ] T PLX| ]
Hi,....Hs i=1

Does not factorize due to the outer sum (Can somewhat distribute
the sum, but doesn’t solve problem)
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But isn’t an HMM different from a | 232¢
clique? oo

e It depends on the number of latent states.

e Consider the following model.

H
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If H has only one state.....

e Then the observed variables are independent!

H o
660 0%

X1 X3
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What if H has many states? 4

e Let us say the observed variables each have m states.

e Then if H has m3 states then the latent model can be exactly
equivalent to a clique (depending on how parameters are set).

H X2
X4 X5 X3 Xl X3

e But what about all the other cases?
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The Question .

e Under existing methods, latent models all require EM to learn
regardless of the number of hidden states.

e However, Is there a formulation of latent variable models
where the difficulty of learning is a function of the number of
latent states?

e This is the question that the will answer.
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Sum Rule (Matrix Form) o

e Sum Rule

P[X] = ) P[X|Y]P[Y]
Y
e Equivalent view using Matrix Algebra

PIX] = PXIY] x P[Y]

D ™
ha=ac
e
ol
Wi T
N

P[X =0]Y =0] P[X =0]Y =1 P[Y = 0]
o (P{X—lY—O% P%X—liY—l%) X (]P’



Important Notation '+

e Calligraphic P to denotes that the probability is being treated
as a matrix/vector/tensor

e Probabilities
P[X,Y] = P[X|V]|P[Y]

e Probability Vectors/Matrices/Tensors

PIX|=PIX)Y|P[Y]

©Eric Xing @ CMU, 2012-2014

16



Chain Rule (Matrix Form) o°

e Chain Rule
P[X,Y]| = P[X|Y]P[Y] = P[Y|X]|P[Y]

Means on diagonal

e Equivalent view using Matrix Algebra \

PIX.Y]= P[X[Y] x PloY]

J]P’[Xz().Y=lJ) _
0] PIX =L1Y =1] —

(six
P|X =0]Y =0] P[X =0]Y =1] P[Y = 0] 0
(P[leY:O] PLX = 1]y = 1] ) X( 0 P =1] )
e Note how diagonal is used to keep Y from being marginalized
Oult.

)
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Graphical Models: The Linear i
Algebra View oo

A and B have m
states each

T
e i

i

i

L

i
i
i -

e In general, nothing we can say about the nature of this matrix.
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1, B =m]

The Linear

G 3=xmx.zmmwg

S m

i
G

S T——

A
-

Hﬁﬁ%:%

.- @ @ @@
- . .. -

ﬁiﬁQ

e What if we know A and B are independent?

-
==

Independence
Algebra View

k one, since all rows are multiples of

IX IS ran

e Joint probability matr

one another!!

19
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Independence and Rank .o

A B

o o P[A7 B] has rank m (at most)
A B

o o ’P[A, B] has rank 1

e What about rank in between 1 and m?

©Eric Xing @ CMU, 2012-2014 20



Low Rank Structure

e A and B are not marginally independent (They are only
conditionally independent given X).

A X B

OO0

e Assume X has k states (while A and B have m states).

o Then, Tank(P|A,B|) <k

o Why?

©Eric Xing @ CMU, 2012-2014
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Low Rank Structure

A B

I

e

.

e

s

L

i

rank < k

rank < k rank < k
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The Spectral View -

e Latent variable models encode low rank dependencies among
variables (both marginal and conditional)

e Use tools from linear algebra to exploit this structure.
e Rank
e Eigenvalues
e SVD
e Tensors
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A More Interesting Example

k states

m states

has rank k

i

-
.

24
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Low Rank Matrices “Factorize”

M:LR If M has rank k

m by n m by k kbyn

We already know one factorization!!!

Pl X2 Xyl = Pl X2 Ho| PIOHLP[ X34 Ho] '

Factor of 4 variables Factor of 3 variables T Factor of 3 variables

Factor of 1 variable
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Alternate Factorizations o2

e The key insight is that this factorization is not unique.

e Consider Matrix Factorization. Can add any invertible
transformation:

M = LR
M =LSS 'R

e The magic of spectral learning is that there exists an
alternative factorization that only depends on observed
variables!
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An Alternate Factorization o2

e Let us say we only want to factorize this matrix of 4 variables

Pl X12), X(3,45]

such that it is product of matrices that contain at most three
variables e.qg.

Pl X2y, X35
,P :X27 X{3,4}:
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An Alternate Factorization o2

e Note that

P X2y, Xs] = P[X(1.2)| Ho] PlOH2 P X3|Hp] '
P Xo|Ho | P|@H P X 3,4 Ho]'

e Product of green terms (in some order) Is

Pl X121, Xi3.41]

e Product of red terms (in some order) is P [XQ XS]
7
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An Alternate Factorization

Pl X2y, X3.43] = Pl X(125, X3]P[Xo, X3]7 ' P[Xo. Xz

factor of 4 variables factor of 3 variables factor of 3 variables

Advantage: Factors are only functions of observed variables! Can
be directly computed from data without EM!!!!

Caveat: some factors are no longer probability tables (do not have
to be non-negative)

We will call this factorization the observable factorization.
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Graphical Relationship

Pl X192y, Xi3ay] = PlX(1.2), X3|P[Xo, X3] ' P[Xa, X(3.4]
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Another Factorization ot

Pl X2 Xsay] = PlXq12, Xa]P[X1, Xu] "PX1, Xi3.45]

e Seems we would do better empirically if you could “combine”
both factorizations. Will come back to this later.
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Relationship to Original T
Factorization oo

e What is the relationship between the original factorization and
the new factorization?

Pl X2 Xzay] = Pl X2 Ho| PIOH P [ X34 Ho

M L R

M =LR
M =LSS'R

Can | choose S to get the observable factorization?
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Relationship to Original T
Factorization oo
o et

S = ’P[Xg‘HQ]

Pl X2, Xi3ay] = P[ X1y, X3]P[Xo, X3]'P[Xo, X3.4]

— LS - S 'R
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Our Alternate Factorization ot

Pl X9y, Xzay] = Pl X2y, X3]P[Xo, X3] P Xo, X3.4]

factor of 4 variables factor of 3 variables factor of 3 variables

e It may not seem very amazing at the moment (we have only
reduced the size of the factor by 1)

e What is cool is that every latent tree of V variables has such a
factorization where:

e All factors are of size 3
e All factors are only functions of observed variables
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Training / Testing with Spectral
Learning 4+

e \We have that

P[X{I,Q}aX{13.4}] = P[X{lg} Xg],P[XQ, )(3]_11)[)(27 X{34}]

e In training, we compute estimates:
Purel X Xs] Pure[Xe X3 Pure[Xo, X34

e In test time, we can compute probability estimates (let
lowercase letters denote fixed evidence values):

Pspec [51717 L2, X3, 5134] = PriLE [13{1.2}- XS]?MLE[X% Xr%]_lfpf\fLE [X2= '-73{3-4}]7
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Generalizing To More Variables 4

e Consider HMM with 5 observations. Using similar arguments
as before we will get that:

P[X{12}7 X{3*45}] — P[X{1,2}7 XB]p[X27 X3:|_1P[X2, X{3‘45}]

/

reshape and decompose
recursively

P(X sz, Xz = PlX 2, Xa]P[Xs, Xu] " P[X3, Xius)]
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Consistency 4+

e A trivial consistent estimator is to simply attempt to estimate
the “big” probability table from the data without making any
conditional independence assumptions

'PMLE[X1’X2;X37X4] s P[X1,X2;X3,X4] as number of samples

increases

e While this is consistent, it is not very statistically efficient
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Consistency 4+

e A better estimate is to get compute likelihood estimates of the
factorization:

Prre|Xaan Ho|Prure|OH Prre[Xsa |Hy]'
— P[X1, Xo; X3, X4]

e But this requires running EM, which will get stuck in local
optima and is not guaranteed to obtain the MLE of the
factorized model
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Consistency oo

e In spectral learning, we estimate the alternate factorization
from the data

PrrelXaoy, XalPure[Xe, Xa] " Pure[Xe, Xi3.4]
— P[Xla X?a X37 X4]

e This is consistent and computationally tractable (at some loss
of statistical efficiency due to the dependence on the inverse)

©Eric Xing @ CMU, 2012-2014 39



Where's the Catch? ot

e Before we said that if the number of latent states was very
large then the model was equivalent to a clique.

e \Where does that scenario enter in our factorization?

PlX12), Xi3a] = Pl X129y, X3

o

When does this inverse exist?

XQa X{34}]

©FEric Xing @ CMU, 2012-2014 40



When Does the Inverse Exist o2

S ——
PlXs, X3| = P[Xo|Hy |P{QH, P X5 Hy | '

e All the matrices on the right hand side must have full
rank. (This is in general a requirement of spectral
learning, although it can be somewhat relaxed)
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When m > k ot

e The inverse cannot exist, but this situation is easily fixable (project
onto lower dimensional space)

Pl Xqo, Xisal| =
P[X {19y, X3]V (U 'P[ X, X3] V)‘lUTfP[XQ, X3.41]

e Where U, V are the top left/right k singular vectors of P| X5, X3]
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When k > m ot

e The inverse does exist. But it no longer satisfies the following
property, which we used to derive the factorization

PX2, X3] 7 = (P[Xa|Ho]T) ™ P@H,] ' P[Xo|Ha] ™!

e This is much more difficult to fix, and intuitively corresponds to
how the problem becomes intractable if k >> m.

©Eric Xing @ CMU, 2012-2014 43



What does k>m mean? .

e Intuitively, large k, small m means long range dependencies

e Consider following generative process:
(1) With probability 0.5, let S= X, and with probability 0.5 let S=Y.
(2) Print A n times.
(3) Print S
(4) Go back to step (2)

With n=1 we either generate:
AXAXAXA...... or AYAYAYA.....

With n=2 we either generate:
AAXAAXAA..... or AAYAAYAA.......

©Eric Xing @ CMU, 2012-2014
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How many hidden states does i
HMM need? oo

e HMM needs 2n states.

e Needs to remember count as well as whether we picked S=X
or S=Y

e However, number of observed states m does not change, so
our previous spectral algorithm will break for n > 2.

e How to deal with this in spectral framework?
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Making Spectral Learning Work cecs
In Practice oo

e \We are only using marginals of pairs/triples of variables to
construct the full marginal among the observed variables.

e Only works when k < m.

e However, in real problems we need to capture longer range
dependencies.
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Recall our factorization

Pl X192y, Xi3ay] = PlX(1.2), X3|P[Xo, X3] ' P[Xa, X(3.4]
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Key ldea: Use Long-Range
Features

" !

Construct feature Construct feature
vector of left side vector of right side

¢L ¢R




Spectral Learning With Features | s¢

P[X27 X?)] —

Use more complex feature instead:

i|dr @ DR

~1:[(‘52 @ (53] :

1

Pl X123, Xi3.41] = E[d102, 0304]
— E[b102. o]V (U E[¢, @ ¢pr]V) U ' Pléy. Xz

©Eric Xing @ CMU, 2012-2014
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Experimentally, -

e Has been shown by many authors that (with some work)
spectral methods achieve comparable results to EM but are
10-50x faster
e Parikhetal. 2011/2012
e Balleetal 2012
e Cohenetal. 2012/2013

e The following are some synthetic and real data results
demonstrating the comparison between EM and spectral
methods.

©Eric Xing @ CMU, 2012-2014
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Synthetic Data (parikn et al. 2012]

Runtime(s)

e Synthetic 3" order HMM Example (Spectral/EM/Online EM):

Runtime vs. Sample Size

10000f e
?JE’?
. 0!"’.@
Online EM v,
1000} L
! '.". ,:l'
-‘o “‘ . s 00\
[ e ® N % EM
h'
100¢ Spectral
010205 1 2 5 10 20 50 75 100

Training Samples

Error

0.5¢
0.4r

0.3r
0.2r

010205 1

Error vs. Sample Size

Spectral -
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Empirical Results for Latent i
PCFGS [cohen et al. 2013] oo
section 22 section 23
EM  spectral EM  spectral

m =8 86.87  85.60 — —

m =16 || 88.32  &87.77 — —

m =24 || 88.35  88.53 — —

m=32 || 88.56 88.82 87.76  88.05
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Timing Results on Latent
o000
XX
PCFG s
S[Cohen et al. 2013] o
single EM spectral algorithm
EM iter. | best model | total feature transfer + scaling SVD a —be¢ a—=x
m=38 6m 3h 3h32m ’ ‘ 36m 1h34m 10m
m = 16 52m 26h6m 5h19m 9m 13 34m 3h13m 19m
m = 24 3h7m 93h36m 7h15m ~ ‘ ’ 36m 4h54m 28m
m =32 || 9h2Im 187h12m | 9h52m 35m 7hlém  4Im
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Dealing with Nonparametric, sett
Continuous Variables os

e It is difficult to run EM if the conditional/marginal distributions
are continuous and do not easily fit into a parametric family.
A

A

o 2 @ o o @
we 28 8 B & B

e However, we will see that Hilbert Space Embeddings can
easily be combined with spectral methods for learning
nonparametric latent models.
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Connection to Hilbert Space T
Embeddings oo

e Recall that we could substitute features for variables

P[XQ,Xg] — ‘43[62 ®63] L= “3[(525;—]

f

Use more complex feature instead:

b ® dr]
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Can Also Use Infinite T
Dimensional Features o2
e Replace

P[XQ,X?)] = 43[62@53] e “:[525;—]

e With

C[X2, X3] = E[ox, ® dx,| e

e (and similarly for other quantities)
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Connection to Hilbert Space
Embeddings oo

Discrete case:
Pl X0, Xizsn] =
- |
,P[X{l,g}ﬁ XS]V(UT’P[XQa XS]V) UTP[X‘Zt X{3.4}]

Continuous case:

C[X{LQ}; X{3,4}] —
—1
C[ X121 Xs]V (U 'C[ Xy, X3]V) U 'C[Xy; Xy34]
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(Y X
o000
Y XX
1
Summary - EM & Spectral (Partl) |2
Spectral
EM
« Aims to Find MLE so more  Does not aim to find MLE so less
“statistically” efficient statistically efficient.
e Can get stuck in local-optima  Local-optima-free
 Lack of theoretical guarantees  Provably consistent
 Slow * Very fast

 Easy to derive for new models Challenging to derive for new
models (Unknown whether it can
generalize to arbitrary loopy

models)
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Summary - EM & Spectral (Part Il) | <2

EM Spectral

No issues with negative numbers e Problems with negative numbers.
Requires explicit normalization to
compute likelihood.

Allows for easy modelling with « Allows for easy modelling with
conditional distributions marginal distributions

Difficult to incorporate long-range

Easy to incorporate long-range

features (since it increases features.
treewidth).

 Easy to generalize to non-
Generalizes poorly to non- Gaussian continuous variables
Gaussian continuous variables. via Hilbert Space Embeddings
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