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Latent Variable Models

Ho. et al. 2012

Sequence models

Parsing
Mixed membership models
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Latent Variable PCFG [Matsuzaki et al., 2005, 
Petrov et al. 2006]

PCFG Latent Variable PCFG

©Eric Xing @ CMU, 2012-2014 3



Learning Parameters (EM)

Since latent variables are not observed in the data, we have to 
use Expectation Maximization (EM) to learn parameters

• Slow
• Local Minima

latent variables 
(unobserved in 
training data)

Observed variable
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Spectral Learning
 Different paradigm of learning in latent variable models based on 

linear algebra

 Theoretically,
 Provably consistent
 Can offer deeper insight into the identifiability

 Practically, 
 Local minima free
 As if now, performs comparably to EM with 10-100x speed-up
 Can also model non-Gaussian continuous data using kernels (usually 

performs much better than EM in this case)
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Related References
 Relevant works

 Hsu et al. 2009 – Spectral HMMs (also Bailly 2009)
 Siddiqi et al. 2009 – Features in Spectral Learning
 Parikh et al. 2011/2012 –Tensors to Generalize to Trees/Low Treewidth

Graphs
 Cohen et al. 2012 / 2013 – Spectral Learning of latent PCFGs

 Will present it from “matrix factorization” view:
 Balle et al. 2012 – Connection between Spectral Learning / Hankel Matrix 

Factorization
 Song et al. 2013 – Spectral Learning as Hierarchical Tensor Decomposition
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Focusing on Prediction
 In many applications that use latent variable models, the end task is 

not to recover the latent states, but rather to use the model for 
prediction among observed variables.

 Dynamical Systems – Predict future given past

future
past
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 We will only be concerned with quantities related to the observed 
variables:

 We do not care about the latent variables explicitly.

 Do we still need EM to learn the parameters?

Focusing on Prediction
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But if we don’t care about the 
latent variables....
 Why don’t we just integrate them out?

 Because integrating them out results in a clique 
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Marginal Does Not Factorize

Does not factorize due to the outer sum (Can somewhat distribute 
the sum, but doesn’t solve problem)
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But isn’t an HMM different from a 
clique?
 It depends on the number of latent states.

 Consider the following model.
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If H has only one state.....
 Then the observed variables are independent!
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What if H has many states?
 Let us say the observed variables each have m states.

 Then if H has m3 states then the latent model can be exactly 
equivalent to a clique (depending on how parameters are set).

 But what about all the other cases?
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The Question
 Under existing methods, latent models all require EM to learn 

regardless of the number of hidden states.

 However, is there a formulation of latent variable models 
where the difficulty of learning is a function of the number of 
latent states?

 This is the question that the spectral view will answer.
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 Sum Rule

 Equivalent view using Matrix Algebra

Sum Rule (Matrix Form)
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Important Notation
 Calligraphic P to denotes that the probability is being treated 

as a matrix/vector/tensor

 Probabilities

 Probability Vectors/Matrices/Tensors
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 Chain Rule

 Equivalent view using Matrix Algebra

 Note how diagonal is used to keep Y from being marginalized 
out.

Chain Rule (Matrix Form)

Means on diagonal
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Graphical Models: The Linear 
Algebra View

 In general, nothing we can say about the nature of this matrix.

A and B have m 
states each.
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 What if we know A and B are independent?

 Joint probability matrix is rank one, since all rows are multiples of 
one another!!

Independence: The Linear 
Algebra View
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Independence and Rank

 What about rank in between 1 and m?

has rank m (at most)

has rank 1
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Low Rank Structure
 A and B are not marginally independent (They are only 

conditionally independent given X).

 Assume X has k states (while A and B have m states).

 Then,             

 Why?
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Low Rank Structure
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The Spectral View

 Latent variable models encode low rank dependencies among 
variables (both marginal and conditional)

 Use tools from linear algebra to exploit this structure.
 Rank
 Eigenvalues
 SVD
 Tensors
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A More Interesting Example

k states

m states

has rank k
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Low Rank Matrices “Factorize”

m by n

We already know one factorization!!!

m by k k by n

If M has rank k

Factor of 4 variables Factor of 3 variables

Factor of 1 variable

Factor of 3 variables
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Alternate Factorizations
 The key insight is that this factorization is not unique.

 Consider Matrix Factorization. Can add any invertible 
transformation:

 The magic of spectral learning is that there exists an 
alternative factorization that only depends on observed 
variables!
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An  Alternate Factorization
 Let us say we only want to factorize this matrix of 4 variables 

such that it is product of matrices that contain at most three 
observed variables e.g. 
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An  Alternate Factorization
 Note that

 Product of green terms (in some order) is

 Product of red terms (in some order) is 
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An Alternate Factorization

factor of 4 variables factor of 3 variables factor of 3 variables

Caveat: some factors are no longer probability tables (do not have 
to be non-negative)

Advantage: Factors are only functions of observed variables! Can 
be directly computed from data without EM!!!!

We will call this factorization the observable factorization.
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Graphical Relationship
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Another Factorization

 Seems we would do better empirically if you could “combine” 
both factorizations. Will come back to this later.
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Relationship to Original 
Factorization
 What is the relationship between the original factorization and 

the new factorization?

Can I choose S to get the observable factorization?
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Relationship to Original 
Factorization
 Let 
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 It may not seem very amazing at the moment (we have only  
reduced the size of the factor by 1)

 What is cool is that every latent tree of V variables has such a 
factorization where:
 All factors are of size 3
 All factors are only functions of observed variables

Our Alternate Factorization

factor of 4 variables factor of 3 variables factor of 3 variables
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Training / Testing with Spectral 
Learning
 We have that

 In training, we compute estimates:

 In test time, we can compute probability estimates (let 
lowercase letters denote fixed evidence values): 
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Generalizing To More Variables
 Consider HMM with 5 observations. Using similar arguments 

as before we will get that:
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Consistency
 A trivial consistent estimator is to simply attempt to estimate 

the “big” probability table from the data without making any 
conditional independence assumptions

 While this is consistent, it is not very statistically efficient

as number of samples 
increases
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Consistency
 A better estimate is to get compute likelihood estimates of the 

factorization:

 But this requires running EM, which will get stuck in local 
optima and is not guaranteed to obtain the MLE of the 
factorized model
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Consistency
 In spectral learning, we estimate the alternate factorization 

from the data

 This is consistent and computationally tractable (at some loss 
of statistical efficiency due to the dependence on the inverse)
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Where’s the Catch?
 Before we said that if the number of latent states was very 

large then the model was equivalent to a clique.

 Where does that scenario enter in our factorization?

When does this inverse exist?
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When Does the Inverse Exist

 All the matrices on the right hand side must have full 
rank. (This is in general a requirement of spectral 
learning, although it can be somewhat relaxed)
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When m > k
 The inverse cannot exist, but this situation is easily fixable (project 

onto lower dimensional space)

 Where U, V are the top left/right k singular vectors of 
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When k > m
 The inverse does exist. But it no longer satisfies the following 

property, which we used to derive the factorization

 This is much more difficult to fix, and intuitively corresponds to 
how the problem becomes intractable if k >> m.
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What does k>m mean?
 Intuitively, large k, small m means long range dependencies

 Consider following generative process:
(1) With probability 0.5, let S= X, and with probability 0.5 let S=Y.
(2) Print A n times.
(3) Print S
(4) Go back to step (2)

With n=1 we either generate:
AXAXAXA…… or AYAYAYA…..

With n=2 we either generate:
AAXAAXAA….. or AAYAAYAA…….
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How many hidden states does 
HMM need?
 HMM needs 2n states.

 Needs to remember count as well as whether we picked S=X
or S=Y

 However, number of observed states m does not change, so 
our previous spectral algorithm will break for n > 2.

 How to deal with this in spectral framework?
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Making Spectral Learning Work 
In Practice
 We are only using marginals of pairs/triples of variables to 

construct the full marginal among the observed variables.

 Only works when k < m. 

 However, in real problems we need to capture longer range 
dependencies.
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Recall our factorization
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Key Idea: Use Long-Range 
Features

Construct feature 
vector of left side

Construct feature 
vector of right side
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Spectral Learning With Features

Use more complex feature instead:
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Experimentally,
 Has been shown by many authors that (with some work) 

spectral methods achieve comparable results to EM but are 
10-50x faster
 Parikh et al. 2011 / 2012
 Balle et al. 2012 
 Cohen et al. 2012 / 2013

 The following are some synthetic and real data results 
demonstrating the comparison between EM and spectral 
methods.
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Synthetic Data [Parikh et al. 2012]

 Synthetic 3rd order HMM Example (Spectral/EM/Online EM):

Training Samples

Runtime vs. Sample Size

R
un

tim
e(

s)

Online EM

EM

Spectral

Training Samples

Error vs. Sample Size

Er
ro

r
Spectral

Online EM
EM
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Empirical Results for Latent 
PCFGs [Cohen et al. 2013]
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Timing Results on Latent 
PCFGs[Cohen et al. 2013]
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 It is difficult to run EM if the conditional/marginal distributions 
are continuous and do not easily fit into a parametric family.

 However, we will see that Hilbert Space Embeddings can 
easily be combined with spectral methods for learning 
nonparametric latent models.

Dealing with Nonparametric, 
Continuous Variables
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Connection to Hilbert Space 
Embeddings
 Recall that we could substitute features for variables

Use more complex feature instead:
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Can Also Use Infinite 
Dimensional Features
 Replace

 with

 (and similarly for other quantities)

covariance 
operator
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Connection to Hilbert Space 
Embeddings

Discrete case:

Continuous case:
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Summary - EM & Spectral (Part I)

EM
Spectral

• Aims to Find MLE so more 
“statistically” efficient

• Can get stuck in local-optima

• Lack of theoretical guarantees

• Slow

• Easy to derive for new models

• Does not aim to find MLE so less 
statistically efficient.

• Local-optima-free

• Provably consistent

• Very fast

• Challenging to derive for new 
models (Unknown whether it can 
generalize to arbitrary loopy 
models)
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Summary - EM & Spectral (Part II)

EM Spectral
• No issues with negative numbers

• Allows for easy modelling with 
conditional distributions

• Difficult to incorporate long-range 
features (since it increases 
treewidth).

• Generalizes poorly to non-
Gaussian continuous variables.

• Problems with negative numbers. 
Requires explicit normalization to 
compute likelihood.

• Allows for easy modelling with 
marginal distributions

• Easy to incorporate long-range 
features.

• Easy to generalize to non-
Gaussian continuous variables 
via Hilbert Space Embeddings
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