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The Optimization View of 
Graphical Models
 The connection between optimization and graphical models has led to many 

amazing discoveries
 EM
 Variational Inference
 Max Margin/Max Entropy Learning
 Bridge to Statistical Physics, Numerical Methods Communities

 Optimization has many advantages:
 It is easy to formulate
 Can derive principled approximations via convex relaxations
 Can use existing optimization methods.  

 But it has many challenges too:
 Non-Gaussian continuous variables
 Nonconvexity (local minima)

©Eric Xing @ CMU, 2012-2014 2



The Linear Algebra View of 
Graphical Models
 We are going to discuss a different (still not fully understood) point of view 

of graphical models that revolves around linear algebra.

 Compared to the optimization perspective, the linear algebra view often less 
intuitive to formulate.

 However, it lets us solve problems that are intractable from the optimization 
perspective
 Graphical Models with Non-Gaussian Continuous Variables.
 Local Minima Free Learning in Latent Variable Models

 Moreover it offers a different theoretical perspective and bridges the 
graphical models, kernels and tensor algebra communities.
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Non-Gaussian Continuous 
Variables
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Non-Gaussian Continuous 
Variables

Demographics: Model relationships among 
different demographic variables 
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Graphical Models - What we have 
learned so far…
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 If variables are observed, just count from dataset
 In case of hidden variables, can use Expectation Maximization…..

Parameter Learning - What we 
have learned so far…

Samples
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 Can do exact inference with Variable Elimination, Belief 
Propagation.

 Can do approximate inference with Loopy  BP, Mean Field, MCMC

Inference - What we have learned 
so far…
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Non-Parametric Continuous Case 
is Much Harder…

How do we make a 
conditional probability 
table out of this?

 How to learn parameters? (What are the parameters?)
 How to perform inference?
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Could Discretize the 
Distribution….

0 1 2 3
 Loses information that 0 and 1 are closer than 0 and 3
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Hilbert Space Embeddings of 
Distributions
 General formulation for probabilistic modeling with 

continuous variables.

Le SongAlex Smola

Bernhard SchölkopfArthur GrettonKenji Fukumizu
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Why do Gaussians Work?

(1) Because we have 
parameters (sufficient 
statistics) !!!!

(2) It is easy to 
marginalize/condition etc.

Bijection between (mean,variance) pair and distribution
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 I want to represent this distribution with a small vector ࢄ.

Key Idea – Create Sufficient 
Statistic for Arbitrary Distribution
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Idea 1: Take some Moments

Problem:  Lots of Distributions have the same mean!

Better, but lots of distributions still have the same mean and variance! 

Even better, but lots of distributions still have the same first three moments! 
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 But the vector is infinite……..how do we compute things with 
it?????

Better Idea: Create Infinite 
Dimensional Statistic

(not exactly, but right idea…)
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Remember the Kernel Trick!!!
Primal 
Formulation:

Infinite, cannot be directly 
computed

Dual Formulation:

But the dot product is 
easy to compute 
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Overview of Hilbert Space 
Embedding

 Create an infinite dimensional statistic for a distribution.

 Two Requirements:
 Map from distributions to statistics is one-to-one
 Although statistic is infinite, it is cleverly constructed such that the kernel 

trick can be applied.

 Perform Belief Propagation as if these statistics are the 
conditional probability tables.

 We will now make this construction more formal by 
introducing the concept of Hilbert Spaces
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Vector Space

 A set of objects closed under linear combinations:

 Normally, you think of these “objects” as finite dimensional 
vectors. However, in general the objects can be functions.

 Nonrigorous Intuition: A function is like an infinite 
dimensional vector.
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 A Hilbert Space is a complete vector space equipped with an 
inner product.

 The inner product																			has the following properties:
 Symmetry 
 Linearity
 Nonnegativity
 Zero

 Basically a “nice” infinite dimensional vector space, where lots 
of things behave like the finite case (e.g. using inner product 
we can define “norm” or “orthogonality”)

Hilbert Space
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 Example of an inner product (just an example, inner product 
not required to be an integral)

 Non-rigorous Intuition: Like the traditional finite  vector 
space inner product

Hilbert Space Inner Product

Inner product of two functions is a number

scalar
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 An operator maps a function f in one Hilbert Space to 
another function g in the same or another Hilbert Space.

 Linear Operator:

 Non-rigorous Intuition: Operators are sort of like matrices.

Linear Operators
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Adjoints (Transposes)
 The adjoint of an operator                        is 

defined such that 

 Like transpose / conjugate transpose for real / complex 
matrices:
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 Non-rigorous Intuition: Like Vector Space Outer Product

Hilbert Space Outer Product

Outer Product of two functions is an operator

is implicitly defined such that
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Reproducing Kernel Hilbert 
Space
 Basically, a  “really nice” infinite dimensional vector space where 

even more things behave like the finite case

 We are going to “construct” our Reproducing Kernel Hilbert Space 
with a Mercer Kernel. A Mercer Kernel ࡷ ,࢞ ࢟ is a function of two 
variables, such that:

 The is a generalization of a positive definite matrix:
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Gaussian Kernel

 The most common kernel that we will use is the Gaussian 
RBF Kernel:
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The Feature Function
 Consider holding one element of the kernel fixed. We get a 

function of one variable which we call the feature function. 
The collection of feature functions is called the feature map.

 For a Gaussian Kernel the feature functions are unnormalized
Gaussians:
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Defining the Inner Product
 Define the Inner Product as:

 Note that:

scalar
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Reproducing Kernel Hilbert 
Space
 Consider the set of functions that can be formed with linear 

combinations of  these feature functions:

 We define the Reproducing Kernel Hilbert Space       to the 
completion of          (like        with the “holes” filled in)

 Intuitively, the feature functions are like an over-complete basis for 
the RKHS
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Reproducing Property
 It can now be derived that the inner product of a function f

with ᆞ௑, evaluates a function at point x:

scalar

Linearity of inner product

Definition of kernel

Remember that
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SVM Kernel Intuition

Maps data points to RKHS Feature Functions!
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How To Embed Distributions 
(Mean Map) [Smola et al. 2007]

densityThe Hilbert Space Embedding of X
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 Mean Map

 If the kernel is universal, then the map from distributions to 
embeddings is one-to-one. Examples of universal kernels:
 Gaussian RBF Kernel.
 Laplace Kernel

 “Empirical Estimate” (not actually computable from data if 
feature map is infinite….but we will solve this problem in the 
next lecture)

Mean Map cont.

Data point
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Example (Discrete)
 Consider a random variable X	that takes the values ૚, ૛, ૜, ૝.

We want to embed it into an RKHS. Which RKHS?

 The RKHS of 4 dimensional vectors in ࡾ૝. The feature functions in this 
RKHS are:

Embedding equal to marginal 
probability vector in the discrete 
case
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 Why?

Mean Map cont.

If f is in the RKHS
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Embedding Joint Distribution of 2 
Variables [Smola et al. 2007]

 Define the uncentered cross-covariance operator  
implicitly such that	ࢄࢅ

 Note now ࢌ is in one Hilbert Space, while ࢍ is in another.

 	ࢄࢅ࡯ will be our embedding of the joint distribution of X and Y.

 Note now ࢄࢅ࡯	 is an operator, just like ࡼ ,ࢄ ࢅ is a matrix.
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Cross Covariance Operator cont.

 Let                  and                    (the feature functions of these 
two RKHSs)

 Then explicit form of cross-covariance operator is:

 Looks like the Uncentered Covariance of two variables X and 
Y:

©Eric Xing @ CMU, 2012-2014 36



Embedding Joint Distribution of 
Two Variables [Smola et al. 2007]

Embed in the Tensor 
Product of two RKHS’s
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 Consider two finite sets:

 If “outer product” is defined as:

 Then tensor product is:

 (Don’t take the example too literally since this is not a vector 
space)

“Tensor Product” Intuition
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Tensor Product of Two Vector 
Spaces
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Cross Covariance Operator cont.

 Proof:

Move expectation outside

Definition of outer product

Rearrange

Reproducing Property
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Auto Covariance Operator

 The uncentered auto-covariance operator is:

 Looks like the uncentered variance of X

 Intuition: Analogous to 
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Conditional Embedding Operator
 Conditional Embedding Operator:

 Intuition:

©Eric Xing @ CMU, 2012-2014 42



Conditional Embedding Cont.
 Conditional Embedding Operator:

 Has Following Property:

 Analogous to “Slicing” a Conditional Probability Table in the 
Discrete Case:
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Why We Care
 So we have some statistics for marginal, joint, and conditional 

distributions….
 How does this help us define Belief Propagation?
 There are many parametric distributions where it is hard to 

define message passing

 Think Back: What makes Gaussians different?
 Easy to marginalize, perform Chain Rule with Gaussians!
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Why we Like Hilbert Space 
Embeddings

We will prove these in the 
next lecture

We can marginalize and use chain rule in Hilbert Space too!!!

Sum Rule:

Chain Rule:

Sum Rule in RKHS:

Chain Rule in RKHS:
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Summary
 Hilbert Space Embedding provides a way to create a 

“sufficient statistic” for an arbitrary distribution.

 Can embed marginal, joint, and conditional distributions into 
the RKHS

 Next time:
 Prove sum rule and chain rule for RKHS embedding
 Performing Belief Propagation with the Embedding Operators 
 Why the messages are easily computed from data (and not infinite)
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