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The Optimization View of i
Graphical Models oo

e The connection between optimization and graphical models has led to many
amazing discoveries

e EM

e Variational Inference

e Max Margin/Max Entropy Learning

e Bridge to Statistical Physics, Numerical Methods Communities

e Optimization has many advantages:
e Itis easy to formulate
e Can derive principled approximations via convex relaxations
e Can use existing optimization methods.

e But it has many challenges too:
e Non-Gaussian continuous variables
e Nonconvexity (local minima)
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The Linear Algebra View of cece
Graphical Models oo

e We are going to discuss a different (still not fully understood) point of view
of graphical models that revolves around linear algebra.

e Compared to the optimization perspective, the linear algebra view often less
Intuitive to formulate.

e However, it lets us solve problems that are intractable from the optimization
perspective

e Graphical Models with Non-Gaussian Continuous Variables.
e Local Minima Free Learning in Latent Variable Models

e Moreover it offers a different theoretical perspective and bridges the
graphical models, kernels and tensor algebra communities.
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Non-Gaussian Continuous T
Variables oo
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Non-Gaussian Continuous

Variables

Demographics: Model relationships among

different demographic variables
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Population Distribution for Afghanistan in Year 2005 [Base Case]

100+
95- 99+
90- 94+
85- 89+
80- 84+
75- 79
70- 744
65- 69+
60- 64
55- 59
50- 54+
45- 49+
40- 44
35- 39
30- 34+
25- 29
20- 24
15- 19
10- 14+

5- 9

Males Females

0- 4-

—
Population in Millions




Graphical Models - What we have
learned so far...

P[C = 0]A = 0] | P[C = 0]A = 1]
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Parameter Learning - What we
have learned so far...

Samples

e |If variables are observed, just count from dataset

e |n case of hidden variables, can use Expectation Maximization.....
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Inference - What we have learned
so far...

e Can do exact inference with Variable Elimination, Belief
Propagation.

e Can do approximate inference with Loopy BP, Mean Field, MCMC
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Non-Parametric Continuous Case
IS Much Harder...

A

How do we make a
conditional probability
table out of this?

Estimated Probability Density Function

5
-0 .0

¥y

e How to learn parameters? (What are the parameters?)
e How to perform inference?
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Could Discretize the

Distribution....

A | | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |

I | |
| |
| |

|

0,1.,2 ., 3,

e Loses information that O and 1 are closer than 0 and 3
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Hilbert Space Embeddings of cece
Distributions oo

e General formulation for probabilistic modeling with

continuous variables.
Kenji Fukumizu Arthur Gretton Bernhard Scholkopf

e —— |

Alex Smola
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Why do Gaussians Work?

(1) Because we have
parameters (sufficient
statistics) !!!!

(2) Itis easyto
marginalize/condition etc.

Bijection between (mean,variance) pair and distribution

(p41,01) < > N(p1,07)
(2, 02) & > N(uz,02)
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Key Idea — Create Sufficient
Statistic for Arbitrary Distribution

e | want to represent this distribution with a small vector Uy .

A
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Idea 1. Take some Moments
AL ux = (BIX])

Problem: Lots of Distributions have the same mean!

/\/\ . ( Bl )

Better, but lots of distributions still have the same mean and variance!

A

X ~D E|X]
px = | E[X?]
> E[X?]

Even better, but lots of distributions still have the same first three moments!
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Better Idea: Create Infinite T
Dimensional Statistic o
“ [ ELX] )

E[X*?]
/\/\ px = | E[X7]

> (not exactly, but right idea...)
e But the vector is infinite........ how do we compute things with
it?2?27?7?7?
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Remember the Kernel Trick!!! e

Ilz(r)irmnwatjllation mm w Tw + OZ&
>0 Vv

Infinite, cannot be directly But the dot product is
computed easy to compute ©

Dual Formulation: 1
- max E o — = E ;Y Y
a & D =
1 Z,j

Zaiyi =0
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Overview of Hilbert Space
Embedding oo

e Create an infinite dimensional statistic for a distribution.

e Two Requirements:
e Map from distributions to statistics is one-to-one

e Although statistic is infinite, it is cleverly constructed such that the kernel
trick can be applied.

e Perform Belief Propagation as if these statistics are the
conditional probability tables.

e We will now make this construction more formal by
Introducing the concept of Hilbert Spaces
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Vector Space

e A set of objects closed under linear combinations:

vweY — av+ fweV

e Normally, you think of these “objects” as finite dimensional
vectors. However, in general the objects can be functions.

e Nonrigorous Intuition: A function is like an infinite
dimensional vector.
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Hilbert Space os

e A Hilbert Space is a complete vector space equipped with an
Inner product.

e The inner product <f,g> has the following properties:
o symmetry {f,g9)=4g,f)
e Linearity <af1 + 5f2,9> = 04<f139> + 5<f279>
e Nonnegativity (f f>>0

o zew0 (f,fy=0 = =0

e Basically a “nice” infinite dimensional vector space, where lots
of things behave like the finite case (e.g. using inner product
we can define “norm” or “orthogonality”)
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Hilbert Space Inner Product -

e Example of an inner product (just an example, inner product
not required to be an integral)

(f.g) = f f(@)g(x) da

Inner product of two functions is a number

e Non-rigorous Intuition: Like the traditional finite vector
space inner product

V,Ww =’UT’UJ
;

] — scalar
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Linear Operators

e An operator € maps a function f in one Hilbert Space to
another function g in the same or another Hilbert Space.

e Linear Operator: 9= C'f
Claf + 8g) =aCf +pCg

e Non-rigorous Intuition: Operators are sort of like matrices.
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Adjoints (Transposes)

e The adjoint C' : G — F of an operator C : F — G is
defined such that

(9.Cfy={C'g,f) VfeF.geg

e Like transpose / conjugate transpose for real / complex
matrices:

w' Mv = (MT'w)T'v
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Hilbert Space Outer Product 4+

f & g isimplicitly defined such that

f®glh)=<{g,h)f

Outer Product of two functions is an operator

e Non-rigorous Intuition: Like Vector Space Outer Product

v@w:'v'w
I —
vw' (2) = (w, 2)v I
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Reproducing Kernel Hilbert T
Space oo

e Basically, a “really nice” infinite dimensional vector space where
even more things behave like the finite case

e We are going to “construct” our Reproducing Kernel Hilbert Space
with a Mercer Kernel. A Mercer Kernel K(x, y) is a function of two

variables, such that:
JJK(I, ) I (@) f(y)dedy >0 Vf

e The is a generalization of a positive definite matrix:

oAz >0 Yo _.I - 0
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Gaussian Kernel -

e The most common kernel that we will use Is the Gaussian
RBF Kernel:

|z — yl|3
0-2

K(z,y) = exp
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The Feature Function ot

e Consider holding one element of the kernel fixed. We get a
function of one variable which we call the feature function.
The collection of feature functions is called the feature map.

wa L= K(:E, )

e For a Gaussian Kernel the feature functions are unnormalized
Gaussians:

é1(y) = exp (Hl —y)

o)

Mﬁ—y@)

o2

I
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Defining the Inner Product .

e Define the Inner Product as:

(P Py) = (K (2,-), K(y,-)) := K(7,y)

_I — scalar

e Note that:

¢ (y) = ¢y(v) = K(z,y)



Reproducing Kernel Hilbert T
Space oo

e Consider the set of functions that can be formed with linear
combinations of these feature functions:

k
Fo = {f(z) ; Z aj¢r, (%), Vke N and z; € X}
j=1

e We define the Reproducing Kernel Hilbert Space F to the
completion of Fo (like Fo with the “holes” filled In)

e Intuitively, the feature functions are like an over-complete basis for
the RKHS

f(2) = a101(2) + aada(z) - _ _ _ _
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Reproducing Property .

e It can now be derived that the inner product of a function f
with ¢, evaluates a function at point x:

(frda) = <Zaja>xﬁ¢x>
= Z Oéj<¢xj 5 ¢$> Linearity of inner product

j
= Z ozjK(xj, ) Definition of kernel
J

= € \
f( ) Remember that

K(xjv :E) = quj (33)

] = scalar
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SVM Kernel Intuition

min — w w—l—CZf

w.b

(qub(acj) = b)yj = 1 — fj i & =0 V)

Maps data points to RKHS Feature Functions!
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How To Embed Distributions
(Mean Map) [Smola et al. 2007] :.

The Hilbert Space Embedding of X

i

px () =Ex.plox]| = JPD(X)CbX(')dX
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Mean Map cont.

e Mean Map

px = Ex|px]

e If the kernel is universal, then the map from distributions to
embeddings is one-to-one. Examples of universal kernels:

e Gaussian RBF Kernel.
e Laplace Kernel

e “Empirical Estimate” (not actually computable from data if
feature map is infinite....but we will solve this problem in the

next lecture) | N
Hx = N WZ_:l Pz,
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Example (Discrete) 4+

e Consider a random variable X that takes the values 1, 2, 3, 4.
We want to embed it into an RKHS. Which RKHS?

e The RKHS of 4 dimensional vectors in R*. The feature functions in this
RKHS are:

1 0 0 0\
0 1 0 0
dr=1 g |P=| | = | =]
0 0 0 1)
px = Ex|ox] = PlX =1]¢1 + P[X = 2][d2 + P[X = 3|3 + P|X = 4]y

PIX =1 _ :
P[X = 2 Embedding equal to marginal

KX = | pIx =3 probability vector in the discrete
PIY — 4 case
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Mean Map cont. .

Exp|f(X)] = {f, px) iffisinthe RKHS

o Why?

(Frpx) (f.Ex-plox])

= Exp|f(X)]




Embedding Joint Distribution of 2 | $322
Varlables [Smola et al. 2007] :.

e Define the uncentered cross-covariance operator
Cy x implicitly such that

@,Cyxf)=Eyx|f(X)g(Y)| VfeF Vgeg
e Note now f is in one Hilbert Space, while g is in another.
e Cyy will be our embedding of the joint distribution of X and Y.

e Note now Cyy is an operator, just like P[X,Y] is a matrix.
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Cross Covariance Operator cont. | =

e Let ox € F and Yy € G (the feature functions of these
two RKHSS)

e Then explicit form of cross-covariance operator Is:
Cyx = Eyvx|vYy ® ¢x]|

e Looks like the Uncentered Covariance of two variables X and
Y:

COV(X, Y) —— *‘:;yx[YX]

©Eric Xing @ CMU, 2012-2014
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Embedding Joint Distribution of
Two Variables (smotaet al. 2007)

Embed in the Tensor
Product of two RKHS's
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“Tensor Product” Intuition oo

e Consider two finite sets:
S = {1,3,4} T = {2,6}

e If “outer product” is defined as:
a® b= (Cl, b)

e Then tensor product Is:

S®T ={(1,2).(1,6),(3,2),(3,6), (4,3),(4,6);

e (Don’t take the example too literally since this is not a vector
space)
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Tensor Product of Two Vector
Spaces

H=F®G F

H=1{h:3fe F,geGst. h=fR®g}
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Cross Covariance Operator cont. | =

e Proof:

<97CYXf>

= (9, Eyx|vy ® dx]|f)

Ev x :<g, [’l,by X ¢X]f>] Move expectation outside

Eyvx [{g.{¢x, F)vpy)]
Eyx [Kg, ¥y XF, dx)]
Eyx [g(Y)f(X)]
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Auto Covariance Operator

e The uncentered auto-covariance operator Is:

Cxx = Ex[¢x ® ¢x|

e Looks like the uncentered variance of X

Uncentered-Var(X) = E[X?]

e Intuition: Analogous to

Diag(P[X])

©Eric Xing @ CMU, 2012-2014
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Conditional Embedding Operator

e Conditional Embedding Operator:

Cyix = CyxCy'y

e Intuition:

P[Y|X] = P[Y, X] x Diag(P[X])""




Conditional Embedding Cont. -

e Conditional Embedding Operator:

Cyx = CyxCxx

e Has Following Property:.
43Y|:::[¢Y|519] = Cy|x Py

e Analogous to “Slicing” a Conditional Probability Table in the
Discrete Case:

P[Y|X = 1] = P[Y|X]9,

©Eric Xing @ CMU, 2012-2014
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Why We Care .o

e S0 we have some statistics for marginal, joint, and conditional
distributions....

e How does this help us define Belief Propagation?

e There are many parametric distributions where it is hard to
define message passing

e Think Back: What makes Gaussians different?
e Easy to marginalize, perform Chain Rule with Gaussians!

©Eric Xing @ CMU, 2012-2014 44



. . 000
Why we Like Hilbert Space T
Embeddings 4+
We can marginalize and use chain rule in Hilbert Space too!!!
Sum Rule: Sum Rule in RKHS:
PIX] = LIP’[X,Y] _ LIP’[XY]IP’[Y] ix = Cxythy
Chain Rule: Chain Rule in RKHS:

PIX, Y] =PIXYIPY] =P[YIXIP[Y] | Cyx = CyxCxx = CxyCyy

We will prove these in the
next lecture
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Summary 4

e Hilbert Space Embedding provides a way to create a
“sufficient statistic” for an arbitrary distribution.

e Can embed marginal, joint, and conditional distributions into
the RKHS

e Next time:
e Prove sum rule and chain rule for RKHS embedding
e Performing Belief Propagation with the Embedding Operators
e Why the messages are easily computed from data (and not infinite)
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