

Probabilistic Graphical Models

Infinite Feature Models: The Indian Buffet Process

Eric Xing Lecture 21, April 2, 2014

Acknowledgement: slides first drafted by Sinead Williamson

©Eric Xing @ CMU, 2012-2014

Limitations of a simple mixture model

- The Dirichlet distribution and the Dirichlet process are great if we want to cluster data into non-overlapping clusters.
- However, DP/Dirichlet mixture models cannot share features between clusters.
- In many applications, data points exhibit properties of multiple latent features
 - Images contain multiple objects.
 - Actors in social networks belong to multiple social groups.
 - Movies contain aspects of multiple genres.

Latent variable models

- Latent variable models allow each data point to exhibit *multiple* features, to *varying degrees*.
- Example: Factor analysis

 $\mathbf{X} = \mathbf{W}\mathbf{A}^{\mathsf{T}} + \varepsilon$

- Rows of **A** = latent features
- Rows of **W** = datapoint-specific weights for these features
- ε = Gaussian noise.
- Example: Text Documents
 - Each document represented by a *mixture* of features.

Infinite latent feature models

- Problem: How to choose the number of features?
- Example: Factor analysis

 $\mathbf{X} = \mathbf{W}\mathbf{A}^{\mathsf{T}} + \boldsymbol{\varepsilon}$

- Each column of **W** (and row of **A**) corresponds to a feature.
- Question: Can we make the number of features *unbounded* a posteriori, as we did with the DP?
- Solution: allow *infinitely many* features a priori ie let W (or A) have infinitely many columns (rows).
- Problem: We can't represent infinitely many features!
- Solution: make our infinitely large matrix *sparse*, and keep only the selected features

Griffiths and Ghaharamani, 2006

The CRP: A distribution over indicator matrices

- Recall that the CRP gives us a distribution over *partitions* of our data.
 - Which means that the CRP allows every data point to use one feature (table)

- We can use a similar scheme to represent a distribution over *binary matrices* recording "feature usage" across data, where each row corresponds to a data point, and each column to a feature
 - And we want to encourage every data point to use a small subset of features sparsity

The Indian Buffet Process (IBP)

- Another culinary experience: we describe a new unbounded multifeature model in terms of the following restaurant analogy.
 - The first customer enters a restaurant with an infinitely large buffet
 - He helps himself to $Poisson(\alpha)$ dishes.

The Indian Buffet Process (IBP)

- Another culinary experience: we describe a new unbounded multifeature model in terms of the following restaurant analogy.
 - The first customer enters a restaurant with an infinitely large buffet
 - He helps himself to $Poisson(\alpha)$ dishes.
 - The *n*th customer enters the restaurant
 - He helps himself to each dish with probability m_k/n , where m_k is the number of times dish *k* was chosen
 - He then tries $Poisson(\alpha/n)$ new dishes

The Indian Buffet Process (IBP)

- Another culinary experience: we describe a new unbounded multifeature model in terms of the following restaurant analogy.
 - The first customer enters a restaurant with an infinitely large buffet
 - He helps himself to $Poisson(\alpha)$ dishes.
 - The *n*th customer enters the restaurant
 - He helps himself to each dish with probability m_k/n , where m_k is the number of times dish k was chosen
 - He then tries $Poisson(\alpha/n)$ new dishes

Example

Data likelihood

• E.g.:

$\mathbf{X} = \mathbf{W}\mathbf{A}^{\mathsf{T}} + \varepsilon$

- Rows of **A** = latent features (Gaussian)
- Rows of **W** = datapoint-specific weights for these features (Gaussian)
- ε = Gaussian noise.

 $\mathbf{W} = \mathbf{Z} \odot \mathbf{V}$

- Write
 - $\mathbf{Z} \sim IBP(\alpha)$
 - $\mathbf{V} \sim \mathcal{N}(0, \sigma_v^2)$
 - $\mathbf{A} \sim \mathcal{N}(\mathbf{0}, \sigma_{\mathbf{A}}^2)$

This is equivalent to ...

• The infinite limit of a sparse, finite latent variable model:

$$\mathbf{X} = \mathbf{W}\mathbf{A}^T + \epsilon$$
$$\mathbf{W} = \mathbf{Z} \odot \mathbf{V}$$

for some sparse matrix **Z**.

• Place a *beta-Bernoulli prior* on **Z**:

$$\pi_k \sim \text{Beta}\left(\frac{\alpha}{K}, 1\right), k = 1, \dots, K$$

 $z_{nk} \sim \text{Bernoulli}(\pi_k), n = 1, \dots, N.$

Properties of the IBP

- "Rich get richer" property "popular" dishes become more popular.
- The number of nonzero entries for each row is distributed according to $Poisson(\alpha)$ due to exchangeability.
- Recall that if $x_1 \sim \text{Poisson}(\alpha_1)$ and $x_2 \sim \text{Poisson}(\alpha_2)$, then $(x_1 + x_2) \sim \text{Poisson}(\alpha_1 + \alpha_2)$
 - The number of nonzero entries for the whole matrix is distributed according to Poisson(*Nα*).
 - The number of non-empty columns is distributed according to Poisson(αH_N), where $H_N = \sum_{n=1}^N \frac{1}{n}$

A two-parameter extension

- In the IBP, the parameter α governs both the number of nonempty columns and the number of features per data point.
- We might want to decouple these properties of our model.
- Reminder: We constructed the IBP as the limit of a finite beta-Bernoulli model where

$$\pi_k \sim \operatorname{Beta}\left(\frac{\alpha}{K}, 1\right)$$
 $z_{nk} \sim \operatorname{Bernoulli}(\pi_k)$

• We can modify this to incorporate an extra parameter:

$$\pi_k \sim \operatorname{Beta}\left(\frac{\alpha\beta}{K},\beta\right)$$

 $z_{nk} \sim \operatorname{Bernoulli}(\pi_k)$

Sollich, 2005

A two-parameter extension

- Our restaurant scheme is now as follows:
 - A customer enters a restaurant with an infinitely large buffet
 - He helps himself to $Poisson(\alpha)$ dishes.
 - The *n*th customer enters the restaurant
 - He helps himself to each dish with probability $m_k/(\beta+n-1)$
 - He then tries Poisson($\alpha\beta/(\beta+n-1)$) new dishes
- Note
 - The number of features per data point is still marginally $Poisson(\alpha)$.
 - The number of non-empty columns is now

Poisson
$$\left(\alpha \sum_{n=1}^{N} \frac{\beta}{\beta + n - 1}\right)$$

• We recover the IBP when $\beta = 1$.

Two parameter IBP: examples

Image from Griffiths and Ghahramani, 2011

Beta processes and the IBP

- Recall the relationship between the Dirichlet process and the Chinese restaurant process:
 - The Dirichlet process is a prior on probability measures (distributions)
 - We can use this probability measure as cluster weights in a clustering model cluster allocations are i.i.d. given this distribution.
 - If we integrate out the weights, we get an *exchangeable* distribution over partitions of the data the **Chinese restaurant process**.
- De Finetti's theorem tells us that, if a distribution X₁, X₂,... is exchangeable, there must exist a measure conditioned on which X₁, X₂,... are i.i.d.

Beta processes and the IBP

• Recall the finite beta-Bernoulli model:

 $\pi_k \sim \operatorname{Beta}\left(\frac{\alpha}{K}, 1\right)$ $z_{nk} \sim \operatorname{Bernoulli}(\pi_k)$

- The z_{nk} are i.i.d. given the π_k , but are exchangeable if we integrate out the π_k .
- The corresponding distribution for the IBP is the *infinite limit* of the beta random variables, as *K* tends to infinity.
- This distribution over discrete measures is called the **beta process**.
- Samples from the beta process have infinitely many atoms with masses between 0 and 1.

Thibaux and Jordan, 2007

Posterior distribution of the beta process

- Question: Can we obtain the posterior distribution of the column probabilities in closed form?
- Answer: Yes!
 - Recall that each atom of the beta process is the infinitesimal limit of a Beta(α/K , 1) random variable.
 - Our observation m_k for that atom are a Binomial (π_k, N) random variable.
 - We know the beta distribution is conjugate to the Binomial, so the posterior is the infinitesimal limit of a Beta($\alpha/K+m_k, N+1-m_k$) random variable.

A stick-breaking construction for the beta process

- We can construct the beta process using the following stickbreaking construction:
- Begin with a stick of unit length.
- For k=1,2,...
 - Sample a beta(α ,1) random variable μ_k .
 - Break off a fraction μ_k of the stick. This is the k^{th} atom size.
 - Throw away what's left of the stick.
 - Recurse on the part of the stick that you broke off

$$\pi_k = \prod_{j=1}^k \mu_j \qquad \mu_j \sim \text{Beta}(\alpha, 1)$$

 Note that, unlike the DP stick breaking construction, the atoms will not sum to one.

Teh et al, 2007

Building latent feature models using the IBP

- We can use the IBP to build latent feature models with an unbounded number of features.
- Let each column of the IBP correspond to one of an *infinite* number of features.
- Each row of the IBP selects a *finite subset* of these features.
- The **rich-get-richer** property of the IBP ensures features are shared between data points.
- We must pick a *likelihood model* that determines what the features look like and how they are combined.

Infinite factor analysis Knowles and Ghahramani, 2007

- Problem with linear Gaussian model: Features are "all or nothing"
- Factor analysis: **X** = **WA**^T + ε
 - Rows of **A** = latent features (Gaussian)
 - Rows of **W** = datapoint-specific weights for these features (Gaussian)
 - ε = Gaussian noise.
- Write $\mathbf{W} = \mathbf{Z} \odot \mathbf{V}$
 - Z ~ IBP(α)
 - $\mathbf{V} \sim \mathcal{N}(0, \sigma_v^2)$
 - $\mathbf{A} \sim \mathcal{N}(\mathbf{0}, \sigma_{\mathbf{A}}^2)$

A binary model for latent networks

- Motivation: Discovering latent causes for observed binary data
- Example:
 - Data points = patients
 - Observed features = presence/absence of symptoms
 - Goal: Identify biologically plausible "latent causes" eg illnesses.
- Idea:
 - Each latent feature is associated with a set of symptoms
 - The more features a patient has that are associated with a given symptom, the more likely that patient is to exhibit the symptom.

Wood et al, 2006

A binary model for latent networks

• We can represent this in terms of a *Noisy-OR* model:

 $\mathbf{Z} \sim \text{IBP}(\alpha)$ $y_{dk} \sim \text{Bernoulli}(p)$ $p(x_{nd} = 1 | \mathbf{Z}, \mathbf{Y}) = 1 - (1 - \lambda)^{\mathbf{z}_n \mathbf{y}_d^T} (1 - \epsilon)$

- Intuition:
 - Each patient has a set of latent causes.
 - For each sympton, we toss a coin with probability λ for each latent cause that is "on" for that patient and associated with that feature, plus an extra coin with probability ϵ .
 - If any of the coins land heads, we exhibit that feature.

Inference in the IBP

- Recall inference methods for the DP:
 - Gibbs sampler based on the exchangeable model.
 - Gibbs sampler based on the underlying Dirichlet distribution
 - Variational inference
 - Particle filter.
- We can construct analogous samplers for the IBP

Inference in the restaurant scheme

- Recall the exchangeability of the IBP means we can treat any data point as if it's our last.
- Let *K*₊ be the total number of used features, excluding the current data point.
- Let Θ be the set of parameters associated with the likelihood
 eg the Gaussian matrix A in the linear Gaussian model
- The prior probability of choosing one of these features is m_k/N
- The posterior probability is proportional to

 $p(z_{nk} = 1 | \mathbf{x}_n, \mathbf{Z}_{-nk}, \Theta) \propto m_k f(\mathbf{x}_n | z_{nk} = 1, \mathbf{Z}_{-nk}, \Theta)$ $p(z_{nk} = 0 | \mathbf{x}_n, \mathbf{Z}_{-nk}, \Theta) \propto (N - m_k) f(\mathbf{x}_n | z_{nk} = 0, \mathbf{Z}_{-nk}, \Theta)$

• In some cases we can integrate out Θ, otherwise we must sample this.

©Eric Xing @ CMU, 2012-2014 Griffiths and Gharamani, 20065

Inference in the restaurant scheme

- In addition, we must propose adding new features.
- Metropolis Hastings method:
 - Let K^*_{old} be the number of features appearing only in the current data point.
 - Propose $K^*_{new} \sim \text{Poisson}(\alpha/N)$, and let \mathbf{Z}^* be the matrix with K^*_{new} features appearing only in the current data point.
 - With probability

$$\min\left(1, \frac{f(\mathbf{x}_n | \mathbf{Z}^*, \Theta)}{f(\mathbf{x}_n | \mathbf{Z}, \Theta)}\right)$$

accept the proposed matrix.

Inference in the stick-breaking construction

- We can also perform inference using the stick-breaking representation
 - Sample Z|π,Θ
 - Sample **π|Z**
- The posterior for atoms for which $m_k > 0$ is beta distributed.
- The atoms for which $m_k=0$ can be sampled using the stickbreaking proceedure.
- We can use a *slice sampler* to avoid representing all of the atoms, or using a fixed truncation level.

Teh et al, 2007

Other distributions over infinite, exchangeable matrices

- Recall the beta-Bernoulli process construction of the IBP.
- We start with a beta process an infinite sequence of values between 0 and 1 that are distributed as the infinitesimal limit of the beta distribution.
- We combine this with a Bernoulli process, to get a binary matrix.
- If we integrate out the beta process, we get an exchangeable distribution over binary matrices.
- Integration is straightforward due to the beta-Bernoulli conjugacy.
- Question: Can we construct other infinite matrices in this way?

- The *gamma process* can be thought of as the infinitesimal limit of a sequence of gamma random variables.
- Alternatively,

if $D \sim DP(\alpha, H)$ and $\gamma \sim Gamma(\alpha, 1)$ then $G = \gamma D \sim GaP(\alpha H)$

• The gamma distribution is conjugate to the Poisson distribution.

- We can associate each atom v_k of the gamma process with a column of a matrix (just like we did with the atoms of a beta process)
- We can generate entries for the matrix as z_{nk} ~Poisson(v_k)

infinite gamma-Poisson

©Eric Xing @ CMU, 2012-2014

- Predictive distribution for the *n*th row:
 - For each existing feature, sample a count z_{nk} ~NegBinom $(m_{k'}, n/(n+1))$

4	2	4	7	0	0	0	0	0
5	0	2	9	4	Ι	0	0	0
3	2	I	6	2	I	0	0	0
7	I	3	6	3	0	0	0	0

- Predictive distribution for the *n*th row:
 - For each existing feature, sample a count z_{nk} ~NegBinom $(m_{k'}, n/(n+1))$

4	2	4	7	0	0	0	0	0
5	0	2	9	4	I	0	0	0
3	2	I	6	2	I	0	0	0
7	I	3	6	3	0	0	0	0
5								

- Predictive distribution for the *n*th row:
 - For each existing feature, sample a count z_{nk} ~NegBinom $(m_{k'}, n/(n+1))$

4	2	4	7	0	0	0	0	0
5	0	2	9	4	Ι	0	0	0
3	2	I	6	2	I	0	0	0
7	I	3	6	3	0	0	0	0
5	0							

- Predictive distribution for the *n*th row:
 - For each existing feature, sample a count z_{nk} ~NegBinom $(m_{k'}, n/(n+1))$

4	2	4	7	0	0	0	0	0
5	0	2	9	4	I	0	0	0
3	2	I	6	2	I	0	0	0
7	I	3	6	3	0	0	0	0
5	0	4	5	2	0			

- Predictive distribution for the *n*th row:
 - For each existing feature, sample a count z_{nk} ~NegBinom(m_k , n/(n+1))
 - Sample K^{*}_n~NegBinom(α, n/(n+1))

4	2	4	7	0	0	0	0	0
5	0	2	9	4	Ι	0	0	0
3	2	I	6	2	I	0	0	0
7	I	3	6	3	0	0	0	0
5	0	4	5	2	0			

4

- Predictive distribution for the *n*th row:
 - For each existing feature, sample a count z_{nk} ~NegBinom(m_k , n/(n+1)).
 - Sample $K_n^* \sim \text{NegBinom}(\alpha, n/(n+1))$.
 - Partition K_n^* according to the CRP, and assign the resulting counts to new columns.

4	2	4	7	0	0	0	0	0
5	0	2	9	4	Ι	0	0	0
3	2	I	6	2	I	0	0	0
7	I	3	6	3	0	0	0	0
5	0	4	5	2	0	3		0

Summary

• Infinite latent feature selection models

- IBP: generating random binary matrix
- Equivalence to beta-Bernoulli process
- Inference via MCMC
- Infinite latent feature weighting models
 - The gamma-Poisson process

Supplementary

• Proof of equivalence of IBP to the infinite limit of the beta-Bernoulli process

A sparse, finite latent variable model

• If we integrate out the π_k , the marginal probability of a matrix **Z** is: $K \in \mathcal{L}^N$

$$p(\mathbf{Z}) = \prod_{k=1}^{K} \int \left(\prod_{n=1}^{N} p(z_{nk}|\pi_k)\right) p(\pi_k) d\pi_k$$
$$= \prod_{k=1}^{K} \frac{B(m_k + \alpha/K, N - m_k + 1)}{B(\alpha/K, 1)}$$
$$= \prod_{k=1}^{K} \frac{\alpha}{K} \frac{\Gamma(m_k + \alpha/K)\Gamma(N - m_k + 1)}{\Gamma(N + 1 + \alpha/K)}$$

where $m_k = \sum_{n=1}^N z_{nk}$

• This is *exchangeable* (doesn't depend on the order of the rows or columns

An equivalence class of matrices

- We can naively take the infinite limit by taking *K* to infinity
- Because all the columns are equal in expectation, as *K* grows we are going to have more and more empty columns.
- We do not want to have to represent infinitely many empty columns!
- Define an *equivalence class* [**Z**] of matrices where the nonzero columns are all to the left of the empty columns.
- Let *lof(.)* be a function that maps binary matrices to *left-ordered* binary matrices matrices ordered by the binary number made by their rows.

How big is the equivalence set?

- All matrices in the equivalence set [**Z**] are equiprobable (by exchangeability of the columns), so if we know the size of the equivalence set, we know its probability.
- Call the vector (*z*_{1k}, *z*_{2,k}, ..., *z*_{(n-1)k}) the *history* of feature *k* at data point *n* (a number represented in binary form).
- Let K_h be the number of features possessing history h, and let K_+ be the total number of features with non-zero history.
- The total number of lof-equivalent matrices in [Z] is

$$\binom{K}{K_0 \cdots K_{2^N - 1}} = \frac{K!}{\prod_{n=0}^{2^N - 1} K_n!}$$

Probability of an equivalence class of finite binary matrices.

- If we know the size of the equivalence class [**Z**], we can evaluate its probability:

$$p([\mathbf{Z}]) = \sum_{\mathbf{Z} \in [\mathbf{Z}]} p(\mathbf{Z})$$

= $\frac{K!}{\prod_{n=0}^{2^{N-1}} K_n!} \prod_{k=1}^{K} \frac{\alpha}{K} \frac{\Gamma(m_k + \alpha/K)\Gamma(N - m_k + 1)}{\Gamma(N + 1 + \alpha/K)}$
= $\frac{\alpha^{K_+}}{\prod_{n=1}^{2^{N-1}} K_n!} \frac{K!}{K_0!K^{K_+}} \left(\frac{N!}{\prod_{j=1}^{N} j + \alpha/K}\right)^K$
 $\cdot \prod_{k=1}^{K_+} \frac{(N - m_k)! \prod_{j=1}^{m_k - 1} (j + \alpha/K)}{N!}$

Taking the infinite limit

• We are now ready to take the limit of this finite model as *K* tends to infinity:

$$\frac{\alpha^{K_{+}}}{\prod_{n=1}^{2^{N}-1} K_{n}!} \frac{K!}{K_{0}!K^{K_{+}}} \left(\frac{N!}{\prod_{j=1}^{N} j + \frac{\alpha}{K}}\right)^{K} \prod_{k=1}^{K_{+}} \frac{(N-m_{k})! \prod_{j=1}^{m_{k}-1} (j + \frac{\alpha}{K})}{N!}$$
$$\downarrow K \to \infty$$
$$\frac{\alpha^{K_{+}}}{\prod_{n=1}^{2^{N}-1} K_{n}!} \qquad 1 \qquad \exp\{-\alpha H_{N}\} \qquad \prod_{k=1}^{K_{+}} \frac{(N-m_{k})! (m_{k}-1)!}{N!}$$

***** *

Proof that the IBP is lof-equivalent to the infinite beta-Bernoulli model

• Let $K_1^{(n)}$ be the number of new features in the n^{th} row.

$$p(\mathbf{Z}) = \prod_{n=1}^{N} p(\mathbf{z}_n | \mathbf{z}_{1:(n-1)})$$

$$= \prod_{n=1}^{N} \text{Poisson}\left(K_1^{(n)} \middle| \frac{\alpha}{n}\right) \prod_{k=1}^{K_+} \left(\frac{\sum_{i=1}^{n-1} z_{ik}}{n}\right)^{z_{nk}} \left(\frac{n - \sum_{i=1}^{n-1} z_{ik}}{n}\right)^{1-z_{nk}}$$

$$= \prod_{n=1}^{N} \left(\frac{\alpha}{n}\right)^{K_1^{(n)}} \frac{1}{K_1^{(n)}!} e^{-\alpha/n} \prod_{k=1}^{K_+} \left(\frac{\sum_{i=1}^{n-1} z_{ik}}{n}\right)^{z_{nk}} \left(\frac{n - \sum_{i=1}^{n-1} z_{ik}}{n}\right)^{1-z_{nk}}$$

$$= \frac{\alpha^{K_+}}{\prod_{n=1}^{N} K_1^{(n)}!} \exp\{-\alpha H_N\} \prod_{k=1}^{K_+} \frac{N - m_k)!(m_k - 1)!}{N!}$$

• If we include the cardinality of [Z], this is the same as before