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Limitations of a simple mixture model | ¢

e The Dirichlet distribution and the Dirichlet process are great if
we want to cluster data into non-overlapping clusters.

e However, DP/Dirichlet mixture models cannot share features
between clusters.

e In many applications, data points exhibit properties of multiple
latent features

e Images contain multiple objects.
e Actors in social networks belong to multiple social groups.
e Movies contain aspects of multiple genres.
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Latent variable models °

e Latent variable models allow each data point to exhibit
multiple features, to varying degrees.

e Example: Factor analysis
X=WAT +¢

e Rows of A = latent features

e Rows of W = datapoint-specific weights for these features
e ¢ = Gaussian noise.

e Example: Text Documents

e Each document represented by a mixture of features.
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Infinite latent feature models 5

e Problem: How to choose the number of features?
e Example: Factor analysis
X=WAT+¢
e Each column of W (and row of A) corresponds to a feature.

e Question: Can we make the number of features unbounded a
posteriori, as we did with the DP?

e Solution: allow infinitely many features a priori — ie let W (or
A) have infinitely many columns (rows).

e Problem: We can’t represent infinitely many features!

e Solution: make our infinitely large matrix sparse, and keep
only the selected features

Griffiths and Ghaharamani, 2006
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The CRP: A distribution over 34
iIndicator matrices ot

e Recall that the CRP gives us a distribution over partitions of our
data.

e Which means that the CRP allows every

data point to use one feature (table)

e \We can use a similar scheme to represent a distribution over binary
matrices recording “feature usage” across data, where each row
corresponds to a data point, and each column to a feature

e And we want to encourage every data point to use a small subset of features —
sparsity
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The Indian Buffet Process (IBP) o

e Another culinary experience: we describe a new unbounded multi-
feature model in terms of the following restaurant analogy.
e The first customer enters a restaurant with an infinitely large buffet
e He helps himself to Poisson(a) dishes.
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The Indian Buffet Process (IBP)

e Another culinary experience: we describe a new unbounded multi-

feature model in terms of the following restaurant analogy.
The first customer enters a restaurant with an infinitely large buffet

He helps himself to Poisson(a) dishes.
The nth customer enters the restaurant

He helps himself to each dish with probability m,/n, where m, is the number of
times dish k was chosen

He then tries Poisson(a/n) new dishes
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The Indian Buffet Process (IBP) -

e Another culinary experience: we describe a new unbounded multi-
feature model in terms of the following restaurant analogy.
e The first customer enters a restaurant with an infinitely large buffet
e He helps himself to Poisson(a) dishes.
e The n" customer enters the restaurant

e He helps himself to each dish with probability m,/n, where m, is the number of
times dish k was chosen

e He then tries Poisson(a/n) new dishes

f——
s & P 6
@ -EE-- @ @ “:-

v v
AR

©Eric Xing @ CMU, 2012-2014




L]
O. A.
o ¢
3 .
" ‘e .
'
' ’ . y !
MM ' '
f '
| ' L | ¢ '
"% . - X1
'
. e
ot ' . 'R .
.
" " . "
. L] . . . ] .' LI L]
.. L N L] L] \ Ll LB R - + L .0.. L]
ﬁ " . ol . [ . 2 '
' . ' ' Ve
\..... P e . LT LR T WU L LY
’ vl . " e s ! ‘ Wt N
i
' v NY ' . ’ ol . ' ’
TR .. ’ . .. ..... L I .\ ’ ..\.l.
o, ' ) UL
) ..A .. 4\.... .\ N .Sfo.
0 LY L] * ] L] L)
v W .. .S. T S A A K T
' - O.Q 0- QO .\ - ..O... L] 00,.‘ . ’
| ag remey \.l \ ot .....". e e .J . \t bw v s

..0.&\ ‘ 1\ J\o .ooo. .\‘. .oa\ 4‘."\00%“.
dp's ._K.C.ro\.{ .r,.vx..,?b..yk.,: b il il s

©Eric Xing @ CMU, 2012-2014



Data likelihood

e E.0.:

X=WAT +¢

e Rows of A = latent features (Gaussian)
e Rows of W = datapoint-specific weights for these features (Gaussian)
e ¢ = Gaussian noise.

W=20CV

o Write
e Z~IBP(a)
e V~N(002)
e A~N(0,0,7)

©Eric Xing @ CMU, 2012-2014

10



00
0000
| X XX
.- om . °s?
This Is equivalent to ... .
e The infinite limit of a sparse, finite latent variable model:
X = WAL 1+ ¢
W=Z06V

for some sparse matrix Z.

e Place a beta-Bernoulli prior on Z:

wkNBeta<%,1),k:1,...,K

Znk ~ Bernoulli(mg),n=1,..., N.
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Properties of the IBP -

e “Rich get richer” property — “popular’ dishes become more
popular.

e The number of nonzero entries for each row is distributed
according to Poisson(a) — due to exchangeability.

e Recall that if x,~Poisson(a,) and x,~Poisson(a,), then
(x,+x,)~Poisson(a,+a,)
e The number of nonzero entries for the whole matrix is distributed according to
Poisson(Na).
e The number of non-empty columns is distributed according to Poisson(aH,),
where Hy =SV 1

n=1n

©Eric Xing @ CMU, 2012-2014
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A two-parameter extension .

e Inthe IBP, the parameter a governs both the number of
nonempty columns and the number of features per data point.

e \We might want to decouple these properties of our model.

e Reminder: We constructed the IBP as the limit of a finite beta-
Bernoulli model where

Mg ~ Beta(%, 1)
Znk ~ Bernoulli(7y)
e \We can modify this to incorporate an extra parameter:

) ~ Beta(%, /3)

Znk ~ Bernoulli(my) Sollich, 2005
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A two-parameter extension

e Our restaurant scheme is now as follows:

A customer enters a restaurant with an infinitely large buffet
He helps himself to Poisson(a) dishes.

The nt" customer enters the restaurant

He helps himself to each dish with probability m,/(8+n-1)
He then tries Poisson(aB/(B+n-1)) new dishes

e Note

The number of features per data point is still marginally Poisson(a).
The number of non-empty columns is now

Poisson (a >, # )

We recover the IBP when 8 = 1.

©Eric Xing @ CMU, 2012-2014
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Beta processes and the IBP .

e Recall the relationship between the Dirichlet process and the
Chinese restaurant process:

e The Dirichlet process is a prior on probability measures (distributions)

e We can use this probability measure as cluster weights in a clustering model —
cluster allocations are i.i.d. given this distribution.

e If we integrate out the weights, we get an exchangeable distribution over
partitions of the data — the Chinese restaurant process.

e De Finetti’s theorem tells us that, if a distribution X, X, ... is
exchangeable, there must exist a measure conditioned on
which X, X,,... are 1.i.d.

©Eric Xing @ CMU, 2012-2014
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Beta processes and the IBP -

e Recall the finite beta-Bernoulli model:

Mg ~ Beta(%, 1)

Znk ° Bernoulli(ﬂk)

e The z,, are i.i.d. given the m,, but are exchangeable if we
integrate out the m,.

e The corresponding distribution for the IBP is the infinite limit of
the beta random variables, as K tends to infinity.

e This distribution over discrete measures is called the beta
process.

e Samples from the beta process have infinitely many atoms

with masses between 0 and 1.
Thibaux and Jordan, 2007
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Posterior distribution of the beta | 222
process :

e Question: Can we obtain the posterior distribution of the
column probabilities in closed form?

e Answer: Yes!

e Recall that each atom of the beta process is the infinitesimal limit of a Beta(a/K, 1)
random variable.

e Our observation m, for that atom are a Binomial(r,,N) random variable.

e We know the beta distribution is conjugate to the Binomial, so the posterior is the
infinitesimal limit of a Beta(a/K+m,,N+17-m,) random variable.

©Eric Xing @ CMU, 2012-2014 18



A stick-breaking construction for
the beta process

e \We can construct the beta process using the following stick-

breaking construction:

e Begin with a stick of unit length.
o Fork=1,2,...

Sample a beta(a,1) random variable y,.

Break off a fraction y, of the stick. This is the k" atom size.
Throw away what’s left of the stick.

Recurse on the part of the stick that you broke off

Tk = H?:l Hj fg ~ Beta(aa 1)

e Note that, unlike the DP stick breaking construction, the
atoms will not sum to one.

Teh et al, 2007

©Eric Xing @ CMU, 2012-2014
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Building latent feature models i
using the IBP oo

e \We can use the IBP to build latent feature models with an
unbounded number of features.

e Let each column of the IBP correspond to one of an infinite
number of features.

e Each row of the IBP selects a finite subset of these features.

e The rich-get-richer property of the IBP ensures features are
shared between data points.

e \We must pick a likelihood model that determines what the
features look like and how they are combined.

©Eric Xing @ CMU, 2012-2014
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I nfi n ite fa Cto r a n a Iys is Knowles and Ghahramani, 2007

e Problem with linear Gaussian model: Features are “all or
nothing”

e Factor analysis: X = WAT + ¢
e Rows of A = latent features (Gaussian)
e Rows of W = datapoint-specific weights for these features (Gaussian)

*x @ A N/

o Wrte W=Z0V
A H N

e V~N(0,02)

e A~N(0,0,7) ﬂ
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A binary model for latent i
networks :

e Motivation: Discovering latent causes for observed binary
data

e Example:

e Data points = patients
e Observed features = presence/absence of symptoms
e Goal: Identify biologically plausible “latent causes” — eg illnesses.

e l|dea:
e Each latent feature is associated with a set of symptoms

e The more features a patient has that are associated with a given symptom, the
more likely that patient is to exhibit the symptom.

Wood et al, 2006
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A binary model for latent T
networks -

e \We can represent this in terms of a Noisy-OR model:

Z ~ IBP(«)
Yar ~ Bernoulli(p)

p(ng = 112, Y) =1 — (1 = X)"¥i (1 —¢)

e |[ntuition:
e Each patient has a set of latent causes.

e For each sympton, we toss a coin with probability A for each latent cause that is
“on” for that patient and associated with that feature, plus an extra coin with
probability €.

e If any of the coins land heads, we exhibit that feature.

©Eric Xing @ CMU, 2012-2014 23



Inference in the IBP

e Recall inference methods for the DP:
e Gibbs sampler based on the exchangeable model.
e Gibbs sampler based on the underlying Dirichlet distribution
e Variational inference
e Particle filter.

e \We can construct analogous samplers for the IBP

©Eric Xing @ CMU, 2012-2014
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Inference in the restaurant T
scheme -

e Recall the exchangeability of the IBP means we can treat any
data point as if it's our last.

e Let K, be the total number of used features, excluding the
current data point.

e Let O be the set of parameters associated with the likelihood
— eg the Gaussian matrix A in the linear Gaussian model

e The prior probability of choosing one of these features is m,/N

e The posterior probability is proportional to
p(znk = 1xp, Z_pg, ©) < mpf(Xp|2ne = 1, Z_p1, O)
P(zZnk = 0|Xn, Z_ 1k, ©) < (N —myp) f(Xpn|2nk = 0,Z_ 1, O)
e |n some cases we can integrate out O, otherwise we must
sample this.

©Eric Xing @ CMU, 2012-2014 Griffiths and Gharamani, 2006s



Inference in the restaurant T
scheme -

e In addition, we must propose adding new features.

e Metropolis Hastings method:
e Let K*,, be the number of features appearing only in the current data point.

e Propose K*._, ~ Poisson(a/N), and let Z* be the matrix with K*,_,, features
appearing only in the current data point.

e With probability

min (1 f(xn\Z*,@))
" f(x4|Z,0)

accept the proposed matrix.

©Eric Xing @ CMU, 2012-2014 26



Inference in the stick-breaking T
construction .o

e \We can also perform inference using the stick-breaking
representation
e Sample Z|r,0
e Sample m|Z

e The posterior for atoms for which m, >0 is beta distributed.

e The atoms for which m,=0 can be sampled using the stick-
breaking proceedure.

e \We can use a slice sampler to avoid representing all of the
atoms, or using a fixed truncation level.

Teh et al, 2007
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Other distributions over infinite, 4
exchangeable matrices :

e Recall the beta-Bernoulli process construction of the IBP.

e \We start with a beta process — an infinite sequence of values
between 0 and 1 that are distributed as the infinitesimal limit
of the beta distribution.

e \We combine this with a Bernoulli process, to get a binary
matrix.

e If we integrate out the beta process, we get an exchangeable
distribution over binary matrices.

e Integration is straightforward due to the beta-Bernoulli
conjugacy.

e Question: Can we construct other infinite matrices in this
way?

©Eric Xing @ CMU, 2012-2014
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The infinite gamma-Poisson
process

e The gamma process can be thought of as the infinitesimal
limit of a sequence of gamma random variables.

e Alternatively,

if D ~ DP(a, H)
and v ~ Gamma(a, 1)
then G = vD ~ GaP(aH)

e The gamma distribution is conjugate to the Poisson
distribution.

©Eric Xing @ CMU, 2012-2014
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The infinite gamma-Poisson
process

e \We can associate each atom v, of the gamma process with a
column of a matrix (just like we did with the atoms of a beta
process)

e \We can generate entries for the matrix as z,,~Poisson(v,)

L K40 RSN [N RN 9]
E-N ASNIN RO U B NORN I I EN
[NOR NN Nl HOVI ROSIY B O]
N |~ DD
NSl L ROV Hawl Rawl o
DI [~ DO
ol el el el Rl B

=l K= R==l B \S I L Rew]
(el Kol Fanll Henll Ranll Ran)

(=l Nl Farll Henll Raw)
()

IBP infinite gamma-Poisson
©Eric Xing @ CMU, 2012-2014 Titsias, 2008 30



The infinite gamma-Poisson
process

e Predictive distribution for the nt" row:

e For each existing feature, sample a count z,,~NegBinom(m,, n/(n+1))

412|4(7(0(0|0|0]|O
51012(9({4|1[0[0]0
3(2(1(6{2|1]0]0]0
71113|6|3|0|]0]|0]0
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The infinite gamma-Poisson
process

e Predictive distribution for the nt" row:

e For each existing feature, sample a count z,,~NegBinom(m,, n/(n+1))

412|4(7(0(0|0|0]|O
51012(9({4|1[0[0]0
3(2(1(6{2|1]0]0]0
71113|6|3|0|]0]|0]0
5
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The infinite gamma-Poisson
process

e Predictive distribution for the nt" row:

e For each existing feature, sample a count z,,~NegBinom(m,, n/(n+1))

412|4(7(0(0|0|0]|O
51012(9({4|1[0[0]0
3(2(1(6{2|1]0]0]0
71113|6|3|0|]0]|0]0
5|0
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The infinite gamma-Poisson
process

e Predictive distribution for the nt" row:

e For each existing feature, sample a count z,,~NegBinom(m,, n/(n+1))

412|4(7(0(0|0|0]|O
51012(9({4|1[0[0]0
3(2(1(6{2|1]0]0]0
71113|6|3|0|]0]|0]0
5{0(4|5|2)|0
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The infinite gamma-Poisson T
process o

e Predictive distribution for the n® row:
e For each existing feature, sample a count z,,~NegBinom(m,, n/(n+1))
e Sample K*,~NegBinom(a, n/(n+1))

4(2|4|7|0]0]0|0]0
5/10(2(9]4|1|0o]0]0
3|21 |6]2]|1|ofo0]o0 4
7|1 |3]6]3]|0|l0|0]0
5/04[5]2]|0
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The infinite gamma-Poisson
process o

e Predictive distribution for the n® row:
e For each existing feature, sample a count z,,~NegBinom(m,, n/(n+1)).
e Sample K*,~NegBinom(a, n/(n+1)).

e Partition K*, according to the CRP, and assign the resulting counts to new
columns.

412|4(7(0(0|0|0]|O0
51012(9({4|1[0(0]O0
3112|1621 ]0|0]|O0
71113|6|3|0]0]|0]0
5{0{4|5|2|0|3]|1]0
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Summary

e Infinite latent feature selection models

e |BP: generating random binary matrix
e Equivalence to beta-Bernoulli process
e Inference via MCMC

e Infinite latent feature weighting models

e The gamma-Poisson process

©Eric Xing @ CMU, 2012-2014
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Supplementary

e Proof of equivalence of IBP to the infinite limit of the beta-
Bernoulli process

©Eric Xing @ CMU, 2012-2014
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A sparse, finite latent variable T
model .o

e If we integrate out the m,, the marginal probability of a matrix

28 T ﬁ / <ﬁp(znk\wk)>p(ﬂk)dﬂk

B " B(mk—l—a/K,N—mk+1)
B H B(a/K,1)

B 5 a L'(mk + a/K)T'(N —mg + 1)
_HK I'(N+1+a/K)

N
where my = > | zZnk

e This is exchangeable (doesn’'t depend on the order of the
rows or columns

©Eric Xing @ CMU, 2012-2014
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An equivalence class of matrices | :°

e \We can naively take the infinite limit by taking K to infinity

e Because all the columns are equal in expectation, as K grows
we are going to have more and more empty columns.

e \We do not want to have to represent infinitely many empty
columns!

e Define an equivalence class [Z] of matrices where the non-
zero columns are all to the left of the empty columns.

e Let /of(.) be a function that maps binary matrices to /eft-
ordered binary matrices — matrices ordered by the binary
number made by their rows.

©Eric Xing @ CMU, 2012-2014 40



How big is the equivalence set? -

e All matrices in the equivalence set [Z] are equiprobable (by
exchangeability of the columns), so if we know the size of the
equivalence set, we know its probability.

e Call the vector (z,,z,,,...,24,.1,) the history of feature k at data
point n (a number represented in binary form).

e Let K, be the number of features possessing history h, and let
K, be the total number of features with non-zero history.

e The total number of lof-equivalent matrices in [Z] is

( K )_ K!
Ko Kon_4 —HiialKn!

©Eric Xing @ CMU, 2012-2014 41



Probability of an equivalence
class of finite binary matrices. o

e |f we know the size of the equivalence class [Z], we can
evaluate its probability:
= > p(z
Zc|Z]

K! ﬁ a D(mi + o/ K)D(N — my, + 1)

H2N TR, o K (N +1+a/K)

o+ K| ( NI )K
IR K B KR T+ o/
SN —m) T+ o/ K)

11 N!

k=1
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Taking the infinite limit -

e \We are now ready to take the limit of this finite model as K
tends to infinity:

oKt K! ( N! )KK+ (N —m ) TG+
2N 1 | KK N - « '
[ —; K, Kol K™ i+ % k=1 N
I K =0
K
ot 1 exp{—aHny} [ &Y= ma)tlm — 1)
2N _1 ' N H N'
1L Ki! k=1

©Eric Xing @ CMU, 2012-2014
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Proof that the IBP is lof-equivalentto | se¢s
the infinite beta-Bernoulli model oo

e \What is the probability of a matrix Z?
o Let K1(”) be the number of new features in the n row.

H p Zn’Z1 (n 1)
N n—1 Zn n—1 ]_—zn
H Poisson K( ) H D1 Fik\ (M Dy Zik g
n - n n

n=1 k=1
(r) K n— Zn n— —2Zn
— ﬁ (Q)Kl ! oo/ ﬁ (Zi_ll sz> * (n — 21:11 Zik>1 '
1L\ n Kf’””)! e n n
o+ TN - m ) (my — 1)!
— C —aH
o e M

e If we include the cardinality of [Z], this is the same as before
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