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Recap of Monte Carlo
 Monte Carlo methods are algorithms that:

 Generate samples from a given probability distribution 
 Estimate expectations of functions            under a distribution

 Why is this useful?
 Can use samples of        to approximate        itself

 Allows us to do graphical model inference when we can’t compute
 Expectations             reveal interesting properties about

 e.g. means and variances of
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Limitations of Monte Carlo
 Direct sampling

 Hard to get rare events in high-dimensional spaces
 Infeasible for MRFs, unless we know the normalizer Z

 Rejection sampling, Importance sampling
 Do not work well if the proposal Q(x) is very different from P(x)
 Yet constructing a Q(x) similar to P(x) can be difficult

 Making a good proposal usually requires knowledge of the analytic form 
of P(x) – but if we had that, we wouldn’t even need to sample!

 Intuition: instead of a fixed proposal Q(x), what if we could use 
an adaptive proposal?
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Markov Chain Monte Carlo
 MCMC algorithms feature adaptive proposals

 Instead of Q(x’), they use Q(x’|x) where x’ is the new state being 
sampled, and x is the previous sample

 As x changes, Q(x’|x) can also change (as a function of x’)
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Metropolis-Hastings
 Let’s see how MCMC works in practice

 Later, we’ll look at the theoretical aspects

 Metropolis-Hastings algorithm
 Draws a sample x’ from Q(x’|x), where x is the previous sample
 The new sample x’ is accepted or rejected with some probability A(x’|x)

 This acceptance probability is

 A(x’|x) is like a ratio of importance sampling weights
 P(x’)/Q(x’|x) is the importance weight for x’, P(x)/Q(x|x’) is the importance weight for x
 We divide the importance weight for x’ by that of x
 Notice that we only need to compute P(x’)/P(x) rather than P(x’) or P(x) separately

 A(x’|x) ensures that, after sufficiently many draws, our samples will come 
from the true distribution P(x) – we shall learn why later in this lecture
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The MH Algorithm
1. Initialize starting state x(0), set t =0
2. Burn-in: while samples have “not converged”

 x=x(t)

 t =t +1,
 sample x* ~ Q(x*|x)  // draw from proposal
 sample u ~ Uniform(0,1) // draw acceptance threshold


- if

 x(t) = x*  // transition
- else

 x(t) = x // stay in current state 

 Take samples from P(x) =             : Reset t=0, for t =1:N
 x(t+1)  Draw sample (x(t))
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The MH Algorithm
 Example:

 Let Q(x’|x) be a Gaussian centered on x
 We’re trying to sample from a bimodal distribution P(x)
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The MH Algorithm
 Example:

 Let Q(x’|x) be a Gaussian centered on x
 We’re trying to sample from a bimodal distribution P(x)

8

P(x)











)|'()(
)'|()'(,1min)|'(

xxQxP
xxQxPxxA

Initialize x(0)

Draw, accept x1

x0

Q(x1|x0)

x1

© Eric Xing @ CMU, 2005-2014



The MH Algorithm
 Example:

 Let Q(x’|x) be a Gaussian centered on x
 We’re trying to sample from a bimodal distribution P(x)
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The MH Algorithm
 Example:

 Let Q(x’|x) be a Gaussian centered on x
 We’re trying to sample from a bimodal distribution P(x)
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The MH Algorithm
 Example:

 Let Q(x’|x) be a Gaussian centered on x
 We’re trying to sample from a bimodal distribution P(x)
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Draw, accept x1

Draw, accept x2

Draw but reject; set x3=x2

x0

Q(x3|x2)

x1 x2 x’ (rejected)
x3

We reject because P(x’)/Q(x’|x2) < 1 and
P(x2)/Q(x2|x’) > 1, hence A(x’|x2) is close to zero!
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The MH Algorithm
 Example:

 Let Q(x’|x) be a Gaussian centered on x
 We’re trying to sample from a bimodal distribution P(x)

12

P(x)











)|'()(
)'|()'(,1min)|'(

xxQxP
xxQxPxxA

Initialize x(0)

Draw, accept x1

Draw, accept x2

Draw but reject; set x3=x2

Draw, accept x4

x0

Q(x3|x2)

x1 x2

x3
x4

© Eric Xing @ CMU, 2005-2014



The MH Algorithm
 Example:

 Let Q(x’|x) be a Gaussian centered on x
 We’re trying to sample from a bimodal distribution P(x)
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The MH Algorithm
 Example:

 Let Q(x’|x) be a Gaussian centered on x
 We’re trying to sample from a bimodal distribution P(x)
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The adaptive proposal Q(x’|x) allows 
us to sample both modes of P(x)!
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Theoretical aspects of MCMC
 The MH algorithm has a “burn-in” period

 Why do we throw away samples from burn-in?

 Why are the MH samples guaranteed to be from P(x)?
 The proposal Q(x’|x) keeps changing with the value of x; how do we 

know the samples will eventually come from P(x)?

 What is the connection between Markov Chains and MCMC?
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Markov Chains
 A Markov Chain is a sequence of random variables 

x(1),x(2),…,x(n) with the Markov Property

 is known as the transition kernel
 The next state depends only on the preceding state – recall HMMs!
 Note: the r.v.s x(i) can be vectors

 We define x(t) to be the t-th sample of all variables in a graphical model
 X(t) represents the entire state of the graphical model at time t

 We study homogeneous Markov Chains, in which the 
transition kernel                            is fixed with time
 To emphasize this, we will call the kernel               , where x is the 

previous state and x’ is the next state
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MC Concepts
 To understand MCs, we need to define a few concepts:

 Probability distributions over states:              is a distribution over the 
state of the system x, at time t
 When dealing with MCs, we don’t think of the system as being in one 

state, but as having a distribution over states
 For graphical models, remember that x represents all variables

 Transitions: recall that states transition from x(t) to x(t+1) according to the 
transition kernel             . We can also transition entire distributions:

 At time t, state x has probability mass π(t)(x). The transition probability 
redistributes this mass to other states x’.

 Stationary distributions:           is stationary if it does not change under 
the transition kernel:
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MC Concepts
 Stationary distributions are of great importance in MCMC. To 

understand them, we need to define some notions:
 Irreducible: an MC is irreducible if you can get from any state x to any 

other state x’ with probability > 0 in a finite number of steps
 i.e. there are no unreachable parts of the state space

 Aperiodic: an MC is aperiodic if you can return to any state x at any time
 Periodic MCs have states that need ≥2 time steps to return to (cycles)

 Ergodic (or regular): an MC is ergodic if it is irreducible and aperiodic

 Ergodicity is important: it implies you can reach the stationary 
distribution          , no matter the initial distribution
 All good MCMC algorithms must satisfy ergodicity, so that you can’t 

initialize in a way that will never converge
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MC Concepts
 Reversible (detailed balance): an MC is reversible if there 

exists a distribution           such that the detailed balance 
condition is satisfied:

 Probability of x’→x and x→x’ can be different, but the joint of x amd x’ 
remain the same, no matter which direction to go

 Reversible MCs always have a stationary distribution! Proof:

 The last line is the definition of a stationary distribution!
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Why does Metropolis-Hastings 
work?
 Recall that we draw a sample x’ according to Q(x’|x), and then 

accept/reject according to A(x’|x).
 In other words, the transition kernel is

 We can prove that MH satisfies detailed balance
 Recall that

 Notice this implies the following:
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Why does Metropolis-Hastings 
work?

 Now suppose A(x’|x) < 1 and A(x|x’) = 1. We have

 The last line is exactly the detailed balance condition
 In other words, the MH algorithm leads to a stationary distribution P(x)
 Recall we defined P(x) to be the true distribution of x
 Thus, the MH algorithm eventually converges to the true distribution!
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Caveats
 Although MH eventually converges to the true distribution 

P(x), we have no guarantees as to when this will occur

 The burn-in period represents the un-converged part of the Markov 
Chain – that’s why we throw those samples away!

 Knowing when to halt burn-in is an art. We will look at some techniques 
later in this lecture.
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Gibbs Sampling
 Gibbs Sampling is an MCMC algorithm that samples each 

random variable of a graphical model, one at a time
 GS is a special case of the MH algorithm

 GS algorithms…
 Are fairly easy to derive for many graphical models (e.g. mixture models, 

Latent Dirichlet allocation)
 Have reasonable computation and memory requirements, because they 

sample one r.v. at a time
 Can be Rao-Blackwellized (integrate out some r.v.s) to decrease the 

sampling variance
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Gibbs Sampling
 The GS algorithm:

1. Suppose the graphical model contains variables x1,…,xn

2. Initialize starting values for x1,…,xn

3. Do until convergence:
1. Pick an ordering of the n variables (can be fixed or random)
2. For each variable xi in order:

1. Sample x from P(xi | x1, …, xi-1, xi+1, …, xn), i.e. the conditional distribution of xi given 
the current values of all other variables

2. Update xi ← x

 When we update xi, we immediately use its new value for 
sampling other variables xj
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Markov Blankets
 The conditional P(xi | x1, …, xi-1, xi+1, …, xn) looks intimidating, 

but recall Markov Blankets:
 Let MB(xi) be the Markov Blanket of xi, then

 For a BN, the Markov Blanket of x is the set              
containing its parents, children, and co-parents

 For an MRF, the Markov Blanket of x is its immediate 
neighbors

25

))(|(),,,,,|( 111 iiniii xMBxPxxxxxP  

© Eric Xing @ CMU, 2005-2014



Gibbs Sampling: An Example

 Consider the alarm network
 Assume we sample variables in the order B,E,A,J,M
 Initialize all variables at t = 0 to False
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Gibbs Sampling: An Example

 Sampling P(B|A,E) at t = 1: Using Bayes Rule,

 (A,E) = (F,F), so we compute the following, and sample B = F
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Gibbs Sampling: An Example

 Sampling P(E|A,B): Using Bayes Rule,

 (A,B) = (F,F), so we compute the following, and sample E = T
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Gibbs Sampling: An Example

 Sampling P(A|B,E,J,M): Using Bayes Rule,

 (B,E,J,M) = (F,T,F,F), so we compute the following, and sample A = F
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Gibbs Sampling: An Example

 Sampling P(J|A): No need to apply Bayes Rule

 A = F, so we compute the following, and sample J = T
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Gibbs Sampling: An Example

 Sampling P(M|A): No need to apply Bayes Rule

 A = F, so we compute the following, and sample M = F
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Gibbs Sampling: An Example

 Now t = 2, and we repeat the procedure to sample new values of 
B,E,A,J,M …
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Gibbs Sampling: An Example

 Now t = 2, and we repeat the procedure to sample new values of 
B,E,A,J,M …

 And similarly for t = 3, 4, etc.

33

t B E A J M
0 F F F F F
1 F T F T F
2 F T T T T
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 Collapsed Gibbs sampling
 Popular inference algorithm for topic models
 Integrate out topic vectors π and topics B
 Only need to sample word-topic assignments z

Algorithm:
For all variables z = z1, z2, …, zn

Draw zi
(t+1) from P(zi|z-i, w)

where z-i = z1
(t+1), z2

(t+1),…, zi-1
(t+1), zi+1

(t), …, zn
(t)

Topic Models: Collapsed Gibbs 
(Tom Griffiths & Mark Steyvers)
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Collapsed Gibbs sampling
 What is P(zi|z-i, w)?

 It is a product of two Dirichlet-Multinomial conditional distributions:
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Collapsed Gibbs sampling
 What is P(zi|z-i, w)?

 It is a product of two Dirichlet-Multinomial conditional distributions:
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Collapsed Gibbs illustration
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Collapsed Gibbs illustration
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Collapsed Gibbs illustration
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Collapsed Gibbs illustration
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Collapsed Gibbs illustration
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Collapsed Gibbs illustration
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Collapsed Gibbs illustration
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Collapsed Gibbs illustration
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Collapsed Gibbs illustration
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Gibbs Sampling is a special case 
of MH
 The GS proposal distribution is

 Where x-i denotes all variables except xi

 Applying MH to this proposal, we find that samples are always 
accepted (which is exactly what GS does):

 GS is simply MH with a proposal that is always accepted!
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Practical Aspects of MCMC
 How do we know if our proposal Q(x’|x) is any good?

 Monitor the acceptance rate
 Plot the autocorrelation function

 How do we know when to stop burn-in?
 Plot the sample values vs time
 Plot the log-likelihood vs time
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Acceptance Rate

 Choosing the proposal Q(x’|x) is a tradeoff:
 “Narrow”, low-variance proposals have high acceptance, but take many 

iterations to explore P(x) fully because the proposed x are too close
 “Wide”, high-variance proposals have the potential to explore much of 

P(x), but many proposals are rejected which slows down the sampler

 A good Q(x’|x) proposes distant samples x’ with a sufficiently 
high acceptance rate
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Acceptance Rate

 Acceptance rate is the fraction of samples that MH accepts.
 General guideline: proposals should have ~0.5 acceptance rate [1]

 Gaussian special case:
 If both P(x) and Q(x’|x) are Gaussian, the optimal acceptance rate is 

~0.45 for D=1 dimension and approaches ~0.23 as D tends to infinity [2]
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[1] Muller, P. (1993). “A Generic Approach to Posterior Integration and Gibbs Sampling”
[2] Roberts, G.O., Gelman, A., and Gilks, W.R. (1994). “Weak Convergence and Optimal Scaling of Random Walk Metropolis Algorithms”
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Autocorrelation function

 MCMC chains always show autocorrelation (AC)
 AC means that adjacent samples in time are highly correlated

 We quantify AC with the autocorrelation function of an r.v. x:
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Autocorrelation function

 The first-order AC Rx(1) can be used to estimate the Sample 
Size Inflation Factor (SSIF):

 If we took n samples with SSIF sx, then the effective sample size is n/sx

 High autocorrelation leads to smaller effective sample size!
 We want proposals Q(x’|x) with low autocorrelation
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Sample Values vs Time

 Monitor convergence by plotting samples (of r.v.s) from 
multiple MH runs (chains)
 If the chains are well-mixed (left), they are probably converged
 If the chains are poorly-mixed (right), we should continue burn-in
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Log-likelihood vs Time

 Many graphical models are high-dimensional
 Hard to visualize all r.v. chains at once

 Instead, plot the complete log-likelihood vs. time
 The complete log-likelihood is an r.v. that depends on all model r.v.s
 Generally, the log-likelihood will climb, then eventually plateau
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Summary
 Markov Chain Monte Carlo methods use adaptive proposals 

Q(x’|x) to sample from the true distribution P(x)

 Metropolis-Hastings allows you to specify any proposal Q(x’|x)
 But choosing a good Q(x’|x) requires care

 Gibbs sampling sets the proposal Q(x’|x) to the conditional 
distribution P(x’|x)
 Acceptance rate always 1!
 But remember that high acceptance usually entails slow exploration
 In fact, there are better MCMC algorithms for certain models

 Knowing when to halt burn-in is an art
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