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Recap of Monte Carlo

e Monte Carlo methods are algorithms that:
e Generate samples from a given probability distribution p(x)
e Estimate expectations of functions E[f(x)] under a distribution p(x)

e Why is this useful?
e Can use samples of P(X) to approximate p(x) itself
Allows us to do graphical model inference when we can’t compute p(x)
e Expectations E[f(X)] reveal interesting properties about P(x)
e.g. means and variances of P(X)
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Limitations of Monte Carlo

e Direct sampling
e Hard to get rare events in high-dimensional spaces
e Infeasible for MRFs, unless we know the normalizer Z

e Rejection sampling, Importance sampling
e Do not work well if the proposal Q(x) is very different from P(x)

e Yet constructing a Q(x) similar to P(x) can be difficult

Making a good proposal usually requires knowledge of the analytic form
of P(x) — but if we had that, we wouldn’t even need to sample!

e Intuition: instead of a fixed proposal Q(x), what if we could use
an adaptive proposal?
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Markov Chain Monte Carlo

e MCMC algorithms feature adaptive proposals

e Instead of Q(x’), they use Q(x’|x) where x’ is the new state being
sampled, and x is the previous sample

e As x changes, Q(x'|x) can also change (as a function of x’)

Importance sampling with MCMC with adaptive
a (bad) proposal Q(x) proposal Q(x’|x)
P(x)
Q(x)
e o0
x3 x1 x2
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Metropolis-Hastings

o Let's see how MCMC works in practice
e Later, we'll look at the theoretical aspects

e Metropolis-Hastings algorithm
e Draws a sample x’ from Q(x’|x), where x is the previous sample
e The new sample X’ is accepted or rejected with some probability A(x’|x)
A(X'|X) = min(l, PEOQX X ))
P(x)Q(X'| x)

A(X'|x) is like a ratio of importance sampling weights
P(x’)/Q(x’|x) is the importance weight for x’, P(x)/Q(x|x’) is the importance weight for x

This acceptance probability is

We divide the importance weight for x’ by that of x
Notice that we only need to compute P(x’)/P(x) rather than P(x’) or P(x) separately

A(X’'|x) ensures that, after sufficiently many draws, our samples will come
from the true distribution P(x) — we shall learn why later in this lecture
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The MH Algorithm

1. Initialize starting state x(0), set t =0

2. Burn-in: while samples have “not converged”
o x=xt 3\
o t=t+1,
e sample x* ~ Q(x*|x) // draw from proposal

e sample u~ Uniform(0,1) // draw acceptance threshold _
. P(X*)Q(X | X*) > Function
P(X)Q(X*| X) Draw sample (x(t))

x) = x* // transition

-if U< A(X*|x)= min(l,

- else

x = x // stay in current state )

e Take samples from P(x) = : Reset t=0, for t =1:N
e Xx(t+1) € Draw sample (x(t))
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A(X'| X) = min( ,
P(x)Q(X| x)

o

. P(x')o_(x|x')] eceo
o
[ ]

The MH Algorithm

e Example:
e Let Q(X'|x) be a Gaussian centered on x
e We're trying to sample from a bimodal distribution P(x)

Initialize x©
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A(X'| X) = min( ,
P(x)Q(X| x)

o

. P(x')o_(x|x')] eceo
o
[ ]

The MH Algorithm

e Example:
e Let Q(X'|x) be a Gaussian centered on x
e We're trying to sample from a bimodal distribution P(x)

Initialize x(©)
Draw, accept x'
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A(X'| X) = min( ,
P(x)Q(X| x)

o

. P(x')o_(x|x')] eceo
o
[ ]

The MH Algorithm

e Example:
e Let Q(X'|x) be a Gaussian centered on x
e We're trying to sample from a bimodal distribution P(x)

Initialize x(©)
Draw, accept x'
Draw, accept x2
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A(X'| X) = min( ,
P(x)Q(X| x)

o

. P(x')o_(x|x')j eceo
o
[ ]

The MH Algorithm

e Example:
e Let Q(X'|x) be a Gaussian centered on x
e We're trying to sample from a bimodal distribution P(x)

Initialize x(©)

Draw, accept x'

Draw, accept x2 P(X)
Draw but reject; set x3=x?

e o o

x! x0 x2 x (rejected)
X3
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P(x)Q(x]x)

A(X'| X) = min(

o

. P(x')o_(x|x')j eceo
o
[ ]

The MH Algorithm

e Example:
e Let Q(X'|x) be a Gaussian centered on x
e We're trying to sample from a bimodal distribution P(x)

o We reject because P(x’)/Q(x’|x?) < 1 and
Initialize x© 1 P(x2)/Q(x?|x’) > 1, hence A(X|x2) is close to zero!
Draw, accept x

Draw, accept x2 P(X)
Draw but reject; set x3=x?

e o
x! x0 x2 x (rejected)
X3
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The MH Algorithm

e Example:

A(X'| X) = min(

| POOQ(XX)
“P(X)Q(XX)

|

e Let Q(X'|x) be a Gaussian centered on x

e We're trying to sample from a bimodal distribution P(x)

Initialize x(©)

Draw, accept x'
Draw, accept x2
Draw but reject; set x3=x?
Draw, accept x*
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The MH Algorithm

e Example:

A(X'| X) = min(

| POOQ(XX)

P(x)Q(x]x)

|

e Let Q(X'|x) be a Gaussian centered on x

e We're trying to sample from a bimodal distribution P(x)

Initialize x(©)

Draw, accept x'
Draw, accept x2
Draw but reject; set x3=x?
Draw, accept x*
Draw, accept x°
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The MH Algorithm

e Example:

A(X'| X) = min(

| POOQ(XX)

P(x)Q(x]x)

|

e Let Q(X'|x) be a Gaussian centered on x

e We're trying to sample from a bimodal distribution P(x)

Initialize x(©)

Draw, accept x'

Draw, accept x2

Draw but reject; set x3=x?
Draw, accept x*

Draw, accept x°

The adaptive proposal Q(x’|x) allows
us to sample both modes of P(x)!

o
X2
X3
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Theoretical aspects of MCMC

e The MH algorithm has a “burn-in” period
e \Why do we throw away samples from burn-in?

e Why are the MH samples guaranteed to be from P(x)?

e The proposal Q(x’|x) keeps changing with the value of x; how do we
know the samples will eventually come from P(x)?

e \What is the connection between Markov Chains and MCMC?
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Markov Chains

e A Markov Chain is a sequence of random variables
x(1 x@), .. x(" with the Markov Property

P(x™ =x|xP,.... x"N) =pP(x"™ = x| x"™)

o P(x™ =x|x"") is known as the transition kernel

e The next state depends only on the preceding state — recall HMMs!

e Note: the r.v.s x() can be vectors
We define x to be the t-th sample of all variables in a graphical model
X represents the entire state of the graphical model at time t

e We study homogeneous Markov Chains, in which the
transition kernel P(x" = x| x"™") is fixed with time

e To emphasize this, we will call the kernel T (X'| X) , where x is the

previous state and x’ is the next state
© Eric Xing @ CMU, 2005-2014 16



MC Concepts

e To understand MCs, we need to define a few concepts:

e Probability distributions over states: 7z (X) is a distribution over the
state of the system x, at time t

When dealing with MCs, we don’t think of the system as being in one
state, but as having a distribution over states

For graphical models, remember that x represents all variables

e Transitions: recall that states transition from x to x(*") according to the
transition kernel T(X'| X) . We can also transition entire distributions:

()=, 20T (X[ x)
At time t, state x has probability mass m{t)(x). The transition probability
redistributes this mass to other states x'.

o Stationary distributions: 7(X) is stationary if it does not change under
the transition kernel:

a(X)=) ()T (x'[x) forallx

© Eric Xing @ CMU, 2005-2014

17




MC Concepts

e Stationary distributions are of great importance in MCMC. To
understand them, we need to define some notions:

e Irreducible: an MC is irreducible if you can get from any state x to any
other state x’ with probability > 0 in a finite number of steps

i.e. there are no unreachable parts of the state space

e Aperiodic: an MC is aperiodic if you can return to any state x at any time
Periodic MCs have states that need =2 time steps to return to (cycles)

e Ergodic (or regular): an MC is ergodic if it is irreducible and aperiodic

e Ergodicity is important: it implies you can reach the stationary
distribution 7 (X), no matter the initial distribution 7 (x)

e All good MCMC algorithms must satisfy ergodicity, so that you can’t
initialize in a way that will never converge
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MC Concepts

e Reversible (detailed balance): an MC is reversible if there
exists a distribution 7(X) such that the detailed balance
condition is satisfied:

2(X)T (x| X) =72 (X)T (x| x)

e Probability of X’ —x and x—x’' can be different, but the joint of x amd x’
remain the same, no matter which direction to go

e Reversible MCs always have a stationary distribution! Proof:
7(X)T (X[ x)=z2(X)T(X"| x)
D T (x]x) =D 7()T (x| x)
(X)), T(x|x)=> 7()T (x| x)

z(x) =) ()T (X'|x)
e The last line is the definition of a stationary distribution!

© Eric Xing @ CMU, 2005-2014
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Why does Metropolis-Hastings
work?

e Recall that we draw a sample x’ according to Q(x’|x), and then
accept/reject according to A(x’|x).

e In other words, the transition kernel is
T (X" x) =Q(X'] X) A(X'| x)

e We can prove that MH satisfies detailed balance

e Recall that
. P(X’)Q(XIX’)]
P(x)Q(x'] x)

e Notice this implies the following:

A(X'| x) = min(

if A(X'|X)<1 then P)IQ(X[X) >1 andthus A(x|Xx')=1
P(x)Q(x|X’)
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Why does Metropolis-Hastings

work?

it A(X'|X)<1 then P)IQ(X[X) >1 andthus A(x|x')=1
P(X)Q(x[x’)

e Now suppose A(X'|x) <1 and A(x|x’) = 1. We have

A x) - PR X)
P()Q(X'[X)
PO)Q(X'[X)A(X]X) = P(X)Q(X| X)
PO)Q(X'[X)A(X]X) = P(X)Q(X| X) A(X| X)
POOT (X | ) = POXT (x| X)

e The last line is exactly the detailed balance condition
e In other words, the MH algorithm leads to a stationary distribution P(x)
e Recall we defined P(x) to be the true distribution of x
e Thus, the MH algorithm eventually converges to the true distribution!

© Eric Xing @ CMU, 2005-2014
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Caveats

e Although MH eventually converges to the true distribution
P(x), we have no guarantees as to when this will occur

e The burn-in period represents the un-converged part of the Markov
Chain — that’s why we throw those samples away!

e Knowing when to halt burn-in is an art. We will look at some techniques
later in this lecture.

© Eric Xing @ CMU, 2005-2014
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Gibbs Sampling

e Gibbs Sampling is an MCMC algorithm that samples each
random variable of a graphical model, one at a time

e GS is a special case of the MH algorithm

e GS algorithms...

e Are fairly easy to derive for many graphical models (e.g. mixture models,
Latent Dirichlet allocation)

e Have reasonable computation and memory requirements, because they
sample one r.v. at a time

e Can be Rao-Blackwellized (integrate out some r.v.s) to decrease the
sampling variance
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Gibbs Sampling

e The GS algorithm:

1. Suppose the graphical model contains variables x.,...,X,
2. Initialize starting values for x.,...,x,
3. Do until convergence:
Pick an ordering of the n variables (can be fixed or random)

For each variable x; in order:

1. Sample x from P(x; | X4, ..., Xi4, X4q, ..., Xp), i.€. the conditional distribution of x; given
the current values of all other variables

2. Update x; < x

e \When we update x;, we immediately use its new value for
sampling other variables x;

© Eric Xing @ CMU, 2005-2014

24



000
00
[ X X
4
Markov Blankets o
e The conditional P(x; | X4, ..., X1, Xizq, ---, X,) l0OKS intimidating,
but recall Markov Blankets:
e Let MB(x;) be the Markov Blanket of x;, then
P(Xi | Xpyeoor Xig, Xi+1""’Xn) — P(Xi | MB(Xi))
O e O
e For a BN, the Markov Blanket of x is the set ‘: \
containing its parents, children, and co-parents /\\ ;\-
e For an MRF, the Markov Blanket of x is its immediate

neighbors
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Gibbs Sampling: An Example

P(E)

o F F F F F

el Re sl ] e
*=
=

A W N -

=

A P(J) Ky i‘,t M)
{ 90
I : -()5 @ ' :(7-’[1)

e Consider the alarm network
e Assume we sample variables in the order B,E,A,J,M
e Initialize all variables att = 0 to False
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Gibbs Sampling: An Example

P(E)

o F F F F F

F

el Re sl ] e
*=
=

1
2
3
4

™=

Al PO A P(M)
T .90

. 70
l : -05 @ ' .nl

e Sampling P(B|A,E) att = 1: Using Bayes Rule,
P(B|AE)x P(A|B,E)P(B)
e (AE)=(F,F), so we compute the following, and sample B =F
P(B=T|A=F,E=F)«(0.06)(0.01) =0.0006
PB=F|A=F,E=F)«(0.999)(0.999) = 0.9980

© Eric Xing @ CMU, 2005-2014
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Gibbs Sampling: An Example

P(E)

o F F F F F

F T

el Re sl ] e
*=
=

1
2
3
4

A P(J) Ky l-’( M)
T 90
l : -()5 @ ' :(7-’[1)

e Sampling P(E|A,B): Using Bayes Rule,
P(E|A,B)x P(A|B,E)P(E)
e (AB)=(F,F), so we compute the following, and sample E=T
P(E=T|A=F,B=F)«(0.71)(0.02) =0.0142
P(E=F|A=F,B=F)«(0.999)(0.998) = 0.9970
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Gibbs Sampling: An Example

P(E)

o F F F F F

F T F

el Re sl ] e
*=
=

1
2
3
4

™=

Al PO A P(M)
T .90

. 70
l : -05 @ ' .nl

e Sampling P(A|B,E,J,M): Using Bayes Rule,
P(A|B,E,J,M)xc PJ|APM|AP(A|B,E)
e (B,E,JM)=(F,T,F,F), sowe compute the following, and sample A=F
P(A=T|B=F,E=T,J=F,M =F)« (0.1)(0.3)(0.29) = 0.0087
P(A=F|B=F,E=T,J=F,M =F) « (0.95)(0.99)(0.71) = 0.6678

© Eric Xing @ CMU, 2005-2014
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Gibbs Sampling: An Example

P(E)

o F F F F F

i IR N )

el Re sl ] e
*=
=

1
2
3
4

=

e Sampling P(J|A): No need to apply Bayes Rule

e A=F, sowe compute the following, and sample J =T
P(J=T|A=F)x«0.05
P(J=F|A=F)x0.95
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Gibbs Sampling: An Example

P(E)

o F F F F F

F T F T F

el Re sl ] e
*=
=

1
2
3
4

™=

e Sampling P(M|A): No need to apply Bayes Rule

e A =F, sowe compute the following, and sample M = F
PIM=T|A=F)«0.01
PIM=F|A=F)«0.99
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Gibbs Sampling: An Example

P(E)
F F F F F
F T F T F
F T T T T

el Re sl ] e
*=
=

A~ W N -~ O

A P(J) A PV
T 90
F | os @ 1

e Nowt =2, and we repeat the procedure to sample new values of
B,E,A,JM ...

™
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Gibbs Sampling: An Example

95
94

P(E)

e e B

001

A P A P(M)
{ 90

e Nowt =2, and we repeat the procedure to sample new values of
B,E,A,JM ...

~ o N -~ O
- 4 m m
m M 4 <
4 4 4 m
m m 4 -

m -4 o T

™=

e And similarly fort = 3, 4, efc.
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Topic Models: Collapsed Gibbs

(Tom Griffiths & Mark Steyvers)

e Collapsed Gibbs sampling

e Popular inference algorithm for topic models

a
e Integrate out topic vectors m and topics B 8
e Only need to sample word-topic assignments z @

Algorithm:

For all variablesz = z,, z,, ..., z,

Draw z{*") from P(z}|z, w)

where z; = z, () z,&1) |z @)z, @O .., z 0 N
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Collapsed Gibbs sampling

o Whatis P(z|z,; w)?

e Itis a product of two Dirichlet-Multinomial conditional distributions:

(w‘)-l—,@ n{di) 4 o

P(Zi p— j|z_?’, ( )_11.? _33
n i+ W3 fn 1) L To
“word-topic” term “doc-topic” term
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Collapsed Gibbs sampling -
e Whatis P(z|z, w)?
e Itis a product of two Dirichlet-Multinomial conditional distributions:
# word positions a # word positions a in the current
(excluding w)) such that: document d, (excluding w;) such that:
Wa = Wi Za =j
z,=j /
\ (w;) (d;)
. ?'l_i j ‘|‘ (6 n_i j -+ o
P(sz :]|Z_5,W) X () , (d.)’u
(L + W n g’ + T'or
# word positions a # word positions a in the current
(excluding w)) such that: document d; (excluding w))
Z,=]
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Collapsed Gibbs illustration
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Collapsed Gibbs illustration
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Collapsed Gibbs illustration
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Collapsed Gibbs illustration
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Collapsed Gibbs illustration
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Collapsed Gibbs illustration
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Collapsed Gibbs illustration
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Collapsed Gibbs illustration
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Collapsed Gibbs illustration
o0
o
iteration
1 2 1000
[ Wi di Z; Z; Zi
1 MATHEMATICS 1 2 2 2
2 KNOWLEDGE 1 2 1 2
3 RESEARCH 1 1 1 2
4 WORK 1 2 2 1
5 MATHEMATICS 1 1 2 2
6 RESEARCH 1 2 2 2
7 WORK 1 2 2 2
8 SCIENTIFIC 1 1 1 1
9 MATHEMATICS 1 2 2 2
10 WORK 1 1 2 2
11 SCIENTIFIC 2 1 1 2
12 KNOWLEDGE 2 1 2 2
50 JOY 5 2 1 1
, n) 4 8 n(_d,,gﬁra
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-+ W3 n di + T
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Gibbs Sampling is a special case | i3t
of MH -

e The GS proposal distribution is
Q(Xi”x—i |Xi’X—i) = P(X”X-i)
e \Where x, denotes all variables except x;

e Applying MH to this proposal, we find that samples are always
accepted (which is exactly what GS does):

AKX X | X, X ) = mln[ P (X, X)Q(X;, X, Xf’Xi)]
P(X,X_)Q(X/, X | X, X_,

:min[ P, X)P (% |x.)] (4 POCIXG)P ()P (X | X, ))
P(x.,X_)P(X'|X.) P(x | X )P(X)P(X'| X))
=min(11)=1

e GSis simply MH with a proposal that is always accepted!
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Practical Aspects of MCMC

e How do we know if our proposal Q(x’|x) is any good?
e Monitor the acceptance rate
e Plot the autocorrelation function

e How do we know when to stop burn-in?
e Plot the sample values vs time
e Plot the log-likelihood vs time

© Eric Xing @ CMU, 2005-2014
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Acceptance Rate

Low-variance proposal High-variance proposal

P(x) P(x)
Q(X’|x
Q(X’|x)

e Choosing the proposal Q(x’|x) is a tradeoff:

e “Narrow”, low-variance proposals have high acceptance, but take many
iterations to explore P(x) fully because the proposed x are too close

e “Wide”, high-variance proposals have the potential to explore much of
P(x), but many proposals are rejected which slows down the sampler

e A good Q(x'|x) proposes distant samples x’ with a sufficiently
high acceptance rate
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Acceptance Rate

Low-variance proposal High-variance proposal

P(x) P(x)
Q(X’|x
Q(X’|x)

e Acceptance rate is the fraction of samples that MH accepts.
e General guideline: proposals should have ~0.5 acceptance rate [1]

e (Gaussian special case:

e If both P(x) and Q(x’|x) are Gaussian, the optimal acceptance rate is
~0.45 for D=1 dimension and approaches ~0.23 as D tends to infinity [2]

[1] Muller, P. (1993). “A Generic Approach to Posterior Integration and Gibbs Sampling”
[2] Roberts, G.O., Gelman, A., and Gilks, W.R. (1994). “Weak Convergence and Optimal Scaling of Random Walk Metropolis Algorithms”
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Autocorrelation function

Low autocorrelation High autocorrelation

Autocorrelation Rl(k)
Autocorrelation Rl(k)

o
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e MCMC chains always show autocorrelation (AC)
e AC means that adjacent samples in time are highly correlated

e We quantify AC with the autocorrelation function of an r.v. x:

3 (%~ %) (Ky — %)
R, (k) = =

k
T\ 2
(Xt o X)
t=1
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The first-order AC R,(1) can be used to estimate the Sample

Size Inflation Factor (SSIF): 4R
+ X

S, =
1- Rx (1)

e [f we took n samples with SSIF s, then the effective sample size is n/s,
e High autocorrelation leads to smaller effective sample size!
e We want proposals Q(x’|x) with low autocorrelation
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Sample Values vs Time

Well-mixed chains

Poorly-mixed chains
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e Monitor convergence by plotting samples (of r.v.s) from

multiple MH runs (chains)

e If the chains are well-mixed (left), they are probably converged

e If the chains are poorly-mixed (right), we should continue burn-in
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Log-likelihood vs Time
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e Many graphical models are high-dimensional
e Hard to visualize all r.v. chains at once

e Instead, plot the complete log-likelihood vs. time
e The complete log-likelihood is an r.v. that depends on all model r.v.s
e Generally, the log-likelihood will climb, then eventually plateau
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Summary

e Markov Chain Monte Carlo methods use adaptive proposals
Q(x’|x) to sample from the true distribution P(x)

e Metropolis-Hastings allows you to specify any proposal Q(x’|x)
e But choosing a good Q(x’|x) requires care

e Gibbs sampling sets the proposal Q(x’|x) to the conditional
distribution P(x’|x)
e Acceptance rate always 1!
e But remember that high acceptance usually entails slow exploration
e Infact, there are better MCMC algorithms for certain models

e Knowing when to halt burn-in is an art

© Eric Xing @ CMU, 2005-2014 54



