
School of Computer Science

Probabilistic Graphical Models 

Approximate Inference:
Monte Carlo methods

Eric Xing
Lecture 16, March 17, 2014

Reading: See class website
1© Eric Xing @ CMU, 2005-2014



Approaches to inference
 Exact inference algorithms

 The elimination algorithm
 Message-passing algorithm (sum-product, belief propagation)
 The junction tree algorithms      

 Approximate inference techniques
 Variational algorithms

 Loopy belief propagation 
 Mean field approximation 

 Stochastic simulation / sampling methods
 Markov chain Monte Carlo methods
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How to represent a joint, or a 
marginal distribution?
 Closed-form representation

 E.g., 

 Sample-based representation:
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Monte Carlo methods
 Draw random samples from the desired distribution 

 Yield a stochastic representation of a complex distribution
 marginals and other expections can be approximated using sample-based 

averages

 Asymptotically exact and easy to apply to arbitrary models

 Challenges:
 how to draw samples from a given dist. (not all distributions can be trivially 

sampled)?

 how to make better use of the samples (not all sample are useful, or eqally 
useful, see an example later)?

 how to know we've sampled enough?
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Example: naive sampling
 Construct samples according to probabilities given in a BN.

Alarm example: (Choose the right sampling sequence)
1) Sampling:P(B)=<0.001, 0.999> suppose it is false, 
B0. Same for E0. P(A|B0, E0)=<0.001, 0.999> suppose 
it is false... 
2) Frequency counting: In the samples right, 
P(J|A0)=P(J,A0)/P(A0)=<1/9, 8/9>.

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J1

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E1 B0 A1 M1 J1

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J1

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E1 B0 A1 M1 J1

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0
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Example: naive sampling
 Construct samples according to probabilities given in a BN.

Alarm example: (Choose the right sampling 
sequence)

3) what if we want to compute P(J|A1) ? 
we have only one sample ...
P(J|A1)=P(J,A1)/P(A1)=<0, 1>.

4) what if we want to compute P(J|B1) ? 
No such sample available!
P(J|A1)=P(J,B1)/P(B1) can not be defined.

For a model with hundreds or more variables, 
rare events will be very hard to garner evough 
samples even after a long time or sampling ...

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J1

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E1 B0 A1 M1 J1

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0

E0 B0 A0 M0 J0
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Monte Carlo methods (cond.)
 Direct Sampling 

 We have seen it.
 Very difficult to populate a high-dimensional state space 

 Rejection Sampling
 Create samples like direct sampling, only count samples which is consistent with 

given evidences.

 Likelihood weighting, ...
 Sample variables and calculate evidence weight. Only create the samples which 

support the evidences.

 Markov chain Monte Carlo (MCMC)
 Metropolis-Hasting
 Gibbs
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Rejection sampling
 Suppose we wish to sample from dist. (X)='(X)/Z.

 (X) is difficult to sample, but '(X) is easy to evaluate
 Sample from a simpler dist Q(X)
 Rejection sampling

 Correctness:

 Pitfall …
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Rejection sampling
 Pitfall:

 Using Q=N(,q
2/d) to sample P=N(,p

2/d) 
 If q exceeds p by 1%, and dimensional=1000,
 The optimal acceptance rate k=(q/p)d1/20,000
 Big waste of samples!

 Adaptive rejection sampling
 Using envelope functions to define Q
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Unnormalized importance 
sampling
 Suppose sampling from P(·) is hard.
 Suppose we can sample from a "simpler" proposal distribution 

Q(·) instead.
 If Q dominates P (i.e., Q(x) > 0 whenever P(x) > 0), we can 

sample from Q and reweight:

 What is the problem here?
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Normalized importance sampling
 Suppose we can only evaluate P'(x) = P(x) (e.g. for an 

MRF).
 We can get around the nasty normalization constant  as 

follows:

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Normalized vs unnormalized 
importance sampling
 Unormalized importance sampling is unbiased:

 Normalized importance sampling is biased, e.g., for M = 1:

 However, the variance of the normalized importance sampler is 
usually lower in practice.

 Also, it is common that we can evaluate P'(x) but not P(x), e.g. 
P(x|e) = P'(x, e)/P(e) for Bayes net, or P(x) = P'(x)/Z for MRF.
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Likelihood weighting
 We now apply normalized importance sampling to a Bayes net.
 The proposal Q is gotten from the mutilated BN where we clamp 

evidence nodes, and cut their incoming arcs. Call this PM.

 The unnormalized posterior is P'(x) = P(x, e).
 So for f(Xi) = (Xi = xi), we get                                      
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Likelihood weighting algorithm
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Efficiency of likelihood weighting
 The efficiency of importance sampling depends on how close 

the proposal Q is to the target P.
 Suppose all the evidence is at the roots. Then Q = P(X|e), and 

all samples have weight 1.
 Suppose all the evidence is at the leaves. Then Q is the prior, 

so many samples might get small weight if the evidence is 
unlikely.

 We can use arc reversal to make some of the evidence nodes 
be roots instead of leaves, but the resulting network can be 
much more densely connected.
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Weighted resampling
 Problem of importance sampling: depends on how well Q

matches P
 If P(x)f(x) is strongly varying and has a significant proportion of its mass 

concentrated in a small region, rm will be dominated by a few samples

 Note that if the high-prob mass region of Q falls into the low-prob mass 
region of P, the variance of                                  can be small even if the 
samples come from low-prob region of P and potentially erroneous .

 Solution
 Use heavy tail Q.
 Weighted resampling
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Weighted resampling
 Sampling importance resampling (SIR):

1. Draw N samples from Q: X1 … XN

2. Constructing weights: w1 … wN ,
3. Sub-sample x from {X1 … XN} w.p. (w1 … wN)

 Particular Filtering

 A special weighted resampler
 Yield samples from posterior p(Xt|Y1:t)
 Also known as sequential Monte Carlo
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Sketch of Particle Filters
 The starting point

 Thus p(Xt|Y1:t) is represented by

 A sequential weighted resampler
 Time update

 Measurement update
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PF for switching SSM
 Recall that the belief state has O(2t) Gaussian modes
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PF for switching SSM
 Key idea: if you knew the discrete states, you can apply the right 

Kalman filter at each time step.

 So for each old particle m, sample
from the prior, apply 

the KF (using parameters for St
m) 

to the old belief state
to get an approximation to

 Useful for online tracking, 
fault diagnosis, etc. 
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Rao-Blackwellised sampling
 Sampling in high dimensional spaces causes high variance in the 

estimate.
 RB idea: sample some variables Xp, and conditional on that, 

compute expected value of rest Xd analytically:

 This has lower variance, because of the identity:
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Rao-Blackwellised sampling
 Sampling in high dimensional spaces causes high variance in the 

estimate.
 RB idea: sample some variables Xp, and conditional on that, 

compute expected value of rest Xd analytically:

 This has lower variance, because of the identity:

 Hence                                                   , so                                             
is a lower variance estimator.
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Summary: Monte Carlo Methods
 Direct Sampling 

 Very difficult to populate a high-dimensional state space 

 Rejection Sampling
 Create samples like direct sampling, only count samples which is consistent with 

given evidences.

 Likelihood weighting, ...
 Sample variables and calculate evidence weight. Only create the samples which 

support the evidences.

 Markov chain Monte Carlo (MCMC)
 Metropolis-Hasting
 Gibbs
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