

Probabilistic Graphical Models

Approximate Inference: Monte Carlo methods

Eric Xing Lecture 16, March 17, 2014

Reading: See class website

© Eric Xing @ CMU, 2005-2014

Approaches to inference

- Exact inference algorithms
 - The elimination algorithm
 - Message-passing algorithm (sum-product, belief propagation)
 - The junction tree algorithms

• Approximate inference techniques

- Variational algorithms
 - Loopy belief propagation
 - Mean field approximation
- Stochastic simulation / sampling methods
- Markov chain Monte Carlo methods

How to represent a joint, or a marginal distribution?

• Closed-form representation

• E.g.,
$$(x_1, \dots, x_p)^T \sim \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}x - \mu\right)^T \Sigma^{-1}(x - \mu)\right)$$

 $\operatorname{E}_p(f(x)) = \int f(x) p(x) dx$

• Sample-based representation:

Monte Carlo methods

- Draw random samples from the desired distribution
- Yield a stochastic representation of a complex distribution
 - marginals and other expections can be approximated using sample-based averages

$$E[f(\mathbf{x})] = \frac{1}{N} \sum_{t=1}^{N} f(\mathbf{x}^{(t)})$$

- Asymptotically exact and easy to apply to arbitrary models
- Challenges:
 - how to draw samples from a given dist. (not all distributions can be trivially sampled)?
 - how to make better use of the samples (not all sample are useful, or eqally useful, see an example later)?
 - how to know we've sampled enough?

Example: naive sampling

• Construct samples according to probabilities given in a BN.

Alarm example: (Choose the right sampling sequence) 1) Sampling:P(B)=<0.001, 0.999> suppose it is false, B0. Same for E0. P(A|B0, E0)=<0.001, 0.999> suppose it is false...

2) Frequency counting: In the samples right, P(J|A0)=P(J,A0)/P(A0)=<1/9, 8/9>.

E0	B0	A0	MO	JO
E0	B0	A0	MO	JO
E 0	B 0	A0	MO	J1
E 0	B0	A0	MO	JO
E0	B0	A0	MO	JO
E0	B0	A0	MO	JO
E1	B0	A1	M1	J1
E0	B0	A0	MO	JO
E0	B0	A0	MO	JO
E0	B0	A0	MO	JO

Example: naive sampling

• Construct samples according to probabilities given in a BN.

Alarm example: (Choose the right sampling sequence)

3) what if we want to compute P(J|A1) ? we have only one sample ... P(J|A1)=P(J,A1)/P(A1)=<0, 1>.

4) what if we want to compute P(J|B1) ?
No such sample available!
P(J|A1)=P(J,B1)/P(B1) can not be defined.

For a model with hundreds or more variables, rare events will be very hard to garner evough samples even after a long time or sampling ...

-				
E0	B0	A0	MO	JO
E0	B0	A0	M0	JO
E0	B0	A0	M0	J1
E0	B0	A0	M0	JO
E0	B0	A0	M0	JO
E0	B0	A0	M0	JO
E1	B0	A1	M1	J1
E0	B0	A0	M0	JO
E0	B0	A0	M0	JO
E0	B0	A0	M0	JO

Monte Carlo methods (cond.)

• Direct Sampling

- We have seen it.
- Very difficult to populate a high-dimensional state space

• Rejection Sampling

• Create samples like direct sampling, only count samples which is consistent with given evidences.

• Likelihood weighting, ...

- Sample variables and calculate evidence weight. Only create the samples which support the evidences.
- Markov chain Monte Carlo (MCMC)
 - Metropolis-Hasting
 - Gibbs

Rejection sampling

- Suppose we wish to sample from dist. $\Pi(X)=\Pi'(X)/Z$.
 - $\Pi(X)$ is difficult to sample, but $\Pi'(X)$ is easy to **evaluate**
 - Sample from a simpler dist Q(X)
 - Rejection sampling

 $\boldsymbol{x}^* \sim \boldsymbol{Q}(\boldsymbol{X}),$ accept \boldsymbol{x}^* w.p. $\Pi'(\boldsymbol{x}^*) / \boldsymbol{k} \boldsymbol{Q}(\boldsymbol{x}^*)$

• Correctness:

Pitfall

$$p(x) = \frac{\left[\Pi'(x)/kQ(x)\right]Q(x)}{\int \left[\Pi'(x)/kQ(x)\right]Q(x)dx}$$
$$= \frac{\Pi'(x)}{\int \Pi'(x)dx} = \Pi(x)$$
$$kq(x_0) \qquad kq(x)$$

 x_0

x

Rejection sampling

• Pitfall:

- Using $Q = \mathcal{N}(\mu, \sigma_q^{2/d})$ to sample $P = \mathcal{N}(\mu, \sigma_p^{2/d})$
- If σ_q exceeds σ_p by 1%, and dimensional=1000,
- The optimal acceptance rate $k=(\sigma_q/\sigma_p)^d \approx 1/20,000$
- Big waste of samples!

• Adaptive rejection sampling

• Using envelope functions to define Q

Unnormalized importance sampling

- Suppose sampling from $P(\cdot)$ is hard.
- Suppose we can sample from a "simpler" proposal distribution Q(·) instead.
- If Q dominates P (i.e., Q(x) > 0 whenever P(x) > 0), we can sample from Q and reweight:

• What is the problem here?

Normalized importance sampling

• We can get around the nasty normalization constant $\boldsymbol{\alpha}$ as follows:

• Let
$$r(X) = \frac{P'(x)}{Q(x)}$$
 $\Rightarrow \langle r(X) \rangle_Q = \int \frac{P'(x)}{Q(x)} Q(x) dx = \int P'(x) dx = \alpha$

Now

$$\left[f(\mathbf{X}) \right]_{P} = \int f(\mathbf{x}) P(\mathbf{x}) d\mathbf{x} = \frac{1}{\alpha} \int f(\mathbf{x}) \frac{P'(\mathbf{x})}{Q(\mathbf{x})} Q(\mathbf{x}) d\mathbf{x}$$

$$= \frac{\int f(\mathbf{x}) r(\mathbf{x}) Q(\mathbf{x}) d\mathbf{x}}{\int r(\mathbf{x}) Q(\mathbf{x}) d\mathbf{x}}$$

$$\approx \frac{\sum_{m} f(\mathbf{x}^{m}) r^{m}}{\sum_{m} r^{m}} \quad \text{where } \mathbf{x}^{m} \sim Q(\mathbf{X})$$

$$= \sum_{m} f(\mathbf{x}^{m}) \mathbf{w}^{m} \quad \text{where } \mathbf{w}^{m} = \frac{r^{m}}{\sum_{m} r^{m}}$$

© Eric Xing @ CMU, 2005-2014

Normalized vs unnormalized importance sampling

 $E_{Q}[f(X)w(X)] =$

• Normalized importance sampling is biased, e.g., for M = 1:

$$E_{Q}\left[\frac{f(x^{1})r(x^{1})}{r(x^{1})}\right] =$$

- However, the **variance** of the normalized importance sampler is usually lower in practice.
- Also, it is common that we can evaluate P'(x) but not P(x), e.g.
 P(x|e) = P'(x, e)/P(e) for Bayes net, or P(x) = P'(x)/Z for MRF.

Likelihood weighting

- We now apply normalized importance sampling to a Bayes net.
- The proposal Q is gotten from the mutilated BN where we **clamp** evidence nodes, and cut their incoming arcs. Call this P_{M} .

- The unnormalized posterior is P'(x) = P(x, e). So for $f(X_i) = \delta(X_i = x_i)$, we get $\hat{P}(X_i = x_i | e) = \frac{\sum_m w_m \delta(x_i^m = x_i)}{\sum_{w_m} w_m}$ where $w_m = P'(x^m, e) / P_M(x^m)$.

Likelihood weighting algorithm

$$\begin{split} & [x_{1:n},w] = \text{function LW(CPDs, } G, E) \\ & \text{let } X_1, \dots, X_n \text{ be a topological ordering of } G \\ & w = 1 \\ & x = (0, \dots, 0) \\ & \text{for } i = 1 : n \\ & \text{let } u_i = x(Pa_i) \\ & \text{if } X_i \not\in E \\ & \text{then sample } x_i \text{ from } P(X_i | u_i) \\ & \text{else} \\ & x_i = e(X_i) \\ & w = w * P(x_i | u_i) \end{split}$$

Efficiency of likelihood weighting

- The efficiency of importance sampling depends on how close the proposal Q is to the target P.
- Suppose all the evidence is at the roots. Then Q = P(X|e), and all samples have weight 1.
- Suppose all the evidence is at the leaves. Then Q is the prior, so many samples might get small weight if the evidence is unlikely.
- We can use arc reversal to make some of the evidence nodes be roots instead of leaves, but the resulting network can be much more densely connected.

Weighted resampling

- Problem of importance sampling: depends on how well Q matches P
 - If P(x)f(x) is strongly varying and has a significant proportion of its mass concentrated in a small region, r_m will be dominated by a few samples

- Note that if the high-prob mass region of Q falls into the low-prob mass region of P, the variance of $r^m = P(x^m)/Q(x^m)$ can be small even if the samples come from low-prob region of P and potentially erroneous .
- Solution
 - Use heavy tail Q.
 - Weighted resampling

$$w^{m} = \frac{P(x^{m})/Q(x^{m})}{\sum_{l} P(x^{l})/Q(x^{l})} = \frac{r^{m}}{\sum_{m} r^{m}}$$

© Eric Xing @ CMU, 2005-2014

Weighted resampling

- Sampling importance resampling (SIR):
 - Draw *N* samples from $Q: X_1 \dots X_N$ 1.
 - 2.
 - Constructing weights: $w_1 \dots w_N$, $w^m = \frac{P(x^m)/Q(x^m)}{\sum_i P(x^i)/Q(x^i)} = \frac{r^m}{\sum_m r^m}$ Sub-sample x from $\{X_1 \dots X_N\}$ w.p. $(w_1 \dots w_N)$ 3.
- **Particular Filtering**
 - A special weighted resampler
 - Yield samples from posterior $p(X_t|Y_{1:t})$
 - Also known as sequential Monte Carlo

Sketch of Particle Filters

$$p(X_t | \mathbf{Y}_{1t}) = p(X_t | Y_t, \mathbf{Y}_{1t-1}) = \frac{p(X_t | \mathbf{Y}_{1t-1}) p(Y_t | X_t)}{\int p(X_t | \mathbf{Y}_{1t-1}) p(Y_t | X_t) dX_t}$$

• Thus $p(X_t|Y_{1:t})$ is represented by

$$\left[\boldsymbol{X}_{t}^{m} \sim \boldsymbol{p}(\boldsymbol{X}_{t} \mid \boldsymbol{Y}_{1:t-1}), \boldsymbol{w}_{t}^{m} = \frac{\boldsymbol{p}(\boldsymbol{Y}_{t} \mid \boldsymbol{X}_{t}^{m})}{\sum\limits_{m=1}^{M} \boldsymbol{p}(\boldsymbol{Y}_{t} \mid \boldsymbol{X}_{t}^{m})}\right]$$

- A sequential weighted resampler
 - Time update

 $p(X_{t+1} | Y_{1t}) = \int p(X_{t+1} | X_t) p(X_t | Y_{1t}) dX_t$

- $= \sum_{m} w_{t}^{m} p(X_{t+1} | X_{t}^{(m)}) \text{ (sample from a mixture model)}$
 - Measurement update

$$p(X_{t+1} | \mathbf{Y}_{1t+1}) = \frac{p(X_{t+1} | \mathbf{Y}_{1t}) p(Y_{t+1} | X_{t+1})}{\int p(X_{t+1} | \mathbf{Y}_{1t}) p(Y_{t+1} | X_{t+1}) dX_{t+1}}$$
$$\Rightarrow \left\{ X_{t+1}^{m} \sim p(X_{t+1} | \mathbf{Y}_{1t}), \ w_{t+1}^{m} = \frac{p(Y_{t+1} | X_{t+1})}{\sum\limits_{m=1}^{M} p(Y_{t+1} | X_{t+1})} \right\} \text{ (reweight)}$$

PF for switching SSM

• Recall that the belief state has O(2^t) Gaussian modes

PF for switching SSM

- Key idea: if you knew the discrete states, you can apply the right Kalman filter at each time step.
- So for each old particle *m*, sample S_t^m ~ P(S_t | S_{t-1}^m) from the prior, apply the KF (using parameters for S_t^m) to the old belief state (x_{t-1|t-1}^m, P_{t-1|t-1}^m) to get an approximation to P(X_t | y_{1:t}, s_{1:t}^m)
- Useful for online tracking, fault diagnosis, etc.

Rao-Blackwellised sampling

- Sampling in high dimensional spaces causes high variance in the estimate.
- RB idea: sample some variables X_p , and conditional on that, compute expected value of rest X_d analytically:

$$E_{p(X|e)}[f(X)] = \int p(x_{p}, x_{d} | e) f(x_{p}, x_{d}) dx_{p} dx_{d}$$

$$= \int_{x_{p}} p(x_{p} | e) \left(\int_{x_{d}} p(x_{d} | x_{p}, e) f(x_{p}, x_{d}) dx_{d} \right) dx_{p}$$

$$= \int_{x_{p}} p(x_{p} | e) E_{p(X_{d}|x_{p}, e)}[f(x_{p}, X_{d})] dx_{p}$$

$$= \frac{1}{M} \sum_{m} E_{p(X_{d}|x_{p}^{m}, e)}[f(x_{p}^{m}, X_{d})], \qquad x_{p}^{m} \sim p(x_{p} | e)$$

• This has lower variance, because of the identity:

 $\operatorname{var}[\tau(X_p, X_d)] = \operatorname{var}[E[\tau(X_p, X_d) | X_p]] + E[\operatorname{var}[\tau(X_p, X_d) | X_p]]$

Rao-Blackwellised sampling

- Sampling in high dimensional spaces causes high variance in the estimate.
- RB idea: sample some variables X_p , and conditional on that, compute expected value of rest X_d analytically:

$$E_{p(X|e)}[f(X)] = \int p(x_{p}, x_{d} | e) f(x_{p}, x_{d}) dx_{p} dx_{d}$$

$$= \int_{x_{p}} p(x_{p} | e) \left(\int_{x_{d}} p(x_{d} | x_{p}, e) f(x_{p}, x_{d}) dx_{d} \right) dx_{p}$$

$$= \int_{x_{p}} p(x_{p} | e) E_{p(X_{d}|x_{p}, e)}[f(x_{p}, X_{d})] dx_{p}$$

$$= \frac{1}{M} \sum_{m} E_{p(X_{d}|x_{p}^{m}, e)}[f(x_{p}^{m}, X_{d})], \qquad x_{p}^{m} \sim p(x_{p} | e)$$

• This has lower variance, because of the identity:

 $\operatorname{var}[\tau(X_p, X_d)] = \operatorname{var}[E[\tau(X_p, X_d) | X_p]] + E[\operatorname{var}[\tau(X_p, X_d) | X_p]]$

• Hence $\operatorname{var}[E[\tau(X_p, X_d) | X_p]] \leq \operatorname{var}[\tau(X_p, X_d)]$, so $\tau(X_p, X_d) = E[f(X_p, X_d) | X_p]$ is a lower variance estimator.

Summary: Monte Carlo Methods

- Direct Sampling
 - Very difficult to populate a high-dimensional state space
- Rejection Sampling
 - Create samples like direct sampling, only count samples which is consistent with given evidences.
- Likelihood weighting, ...
 - Sample variables and calculate evidence weight. Only create the samples which support the evidences.
- Markov chain Monte Carlo (MCMC)
 - Metropolis-Hasting
 - Gibbs