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= Reading: See class website
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Inference Problems

e Compute the likelihood of observed data
e Compute the marginal distribution p(x4) over a particular subset

of nodes ACV

e Compute the conditional distribution p(
and B

zalrB) for disjoint subsets A

e Compute a mode of the density & = arg max p(x)

e Methods we have

reEX™

-

[ Brute force ] [ Elimination ] I:>

Message Passing

(Forward-backward , Max-product
/BP, Junction Tree)

~

J

Individual computations independent
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Sum-Product Revisited ot

e Tree-structured GMs

p($17° H ws xs) H wst xs:-fct t

SEV (s,t)eE

e Message Passing on Trees:

Miy(ws) kY {val@aave@l) [ Masdal) )

x), ueN(t)\s

e On trees, converge to a unique fixed point after a finite number of iterations
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Junction Tree Revisited o2

e General Algorithm on Graphs with Cycles

24 236

2 6

2 2

45 258 56

|_> 8 8
4 8 6 8
478 689

e Steps: => Trlangularlzatlon => Construct JTs

=> Message Passing on Clique Trees

os(xs) < Y ¢p(rp)
~ — )

bo(ze) — ¢S(x5)¢c(xc)
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Local Consistency o

e Given a set of functions {rc, C € C} and {rg, S € S} associated
with the cligues and separator sets

e They are locally consistent if:
ZTS(J}%) =1, VS eS

!
Lg

Z To(xe) = 15(xg), VC €€, SCC

rolrg=rs

e For junction trees, local consistency is equivalent to global
consistency!

© Eric Xing @ CMU, 2005-2014 5



An Ising model on 2-D image os

e Nodes encode hidden
iInformation (patch-
identity).

e They receive local
information from the
Image (brightness,
color).

e Information is
propagated though the
graph over its edges.

e Edges encode
‘compatibility’ between
nodes.

© Eric Xing @ CMU, 2005-2014 ai r Or Water ? .

A




Why Approximate Inference?

e Why can’t we just run junction tree on this graph?

e If NxN grid, tree width at least N

e N can be a huge number(~1000s of pixels)

e If N~O(1000), we have a clique with 2190 entries
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Approaches to inference

e EXxact inference algorithms

e The elimination algorithm
e Message-passing algorithm (sum-product, belief propagation)
e The junction tree algorithms

e Approximate inference techniques
e Variational algorithms
Loopy belief propagation
Mean field approximation
e Stochastic simulation / sampling methods
e Markov chain Monte Carlo methods
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Loopy Belief Propogation

© Eric Xing @ CMU, 2005-2014




Recap: Belief Propagation o°

K

K
® O o ® O6 o

- |

| O—O@—0« @—O—0F

| |
® ‘- @ ® o< o
e BP Message-update Rules
Miaj(xj)ocZvlij(xi’xj)l/ji(xi)HMk»i(xi) bi(Xi)OCWi(Xi)HMk(Xk)

k
L Texternal evidence
Compatibilities (interactions)

e BP on trees always converges to exact marginals (cf. Junction
tree algorithm)
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Beliefs and messages in FG os
I b
(%) oc 1(X) Hma_)i(xi)
7 '_ aeN (i)
I T 1
* “beliefs” “messages”
mi—>a(xi) = H mc—>i (Xi)
l . l ceN(i)\a
b (X.)oc f (X | .
—><T> <T><__— a( a) a( a)ieN]i[(a)ml_)a(Xl)

ma—>i(xi): Z fa(xa) Hmjea(xj)

X, \X; jeN (a)\i
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What if the graph is loopy? o°

O ® O
O *—0 -
O ® O




Belief Propagation on loopy
graphs

K

o —0 @

|

.
| —@—8@®« O—O—©
O

Mki

K
T
@
' |
K k
® l O o 9O
e BP Message-update Rules

Miaj(xj) oc er//ij(xﬂxj)lr//i(xi)]:[Mkﬁi(xi) bi(Xi) oC l//i(xi)H Mk(Xk)
Xi k

k
L Texternal evidence
Compatibilities (interactions)

e May not converge or converge to a wrong solution
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Loopy Belief Propagation o°

e A fixed point iteration procedure that tries to minimize F .
e Start with random initialization of messages and beliefs

e While not converged do

b; (X;) o Hma—ﬂ(xi) b, (X,) < f,(X,) Hmi—>a(xi)
aeN (i) <N (a)
m ()= [Imei() M) =2 (X)) [Imi.(x)
ceN(i)\a X \X jeN (a)\i

e At convergence, stationarity properties are guaranteed
e However, not guaranteed to converge!
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Loopy Belief Propagation -

e If BP is used on graphs with loops, messages may circulate
iIndefinitely

e But let’s run it anyway and hope for the best ... ©

e Empirically, a good approximation is still achievable
e Stop after fixed # of iterations
e Stop when no significant change in beliefs
e If solution is not oscillatory but converges, it usually is a good approximation

Loopy-belief Propagation for Approximate Inference: An Empirical Study
Kevin Murphy, Yair Weiss, and Michael Jordan.
UAI '99 (Uncertainty in Al). ]
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So what is going on? -

e Is it a dirty hack that you bet your luck?

o—0—©
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Approximate Inference

e Let us call the actual distribution P
P(X) :1/ZH f.(X,)
foeF

e We wish to find a distribution Q such that Q is a “good”
approximation to P

e Recall the definition of KL-divergence

KL(Q,[1Q,) = ¥ Qu(X)log(2tX)

Qz(X))

o KL(Qq]|Q2)>=0
o KL(Q,]|Q)=0Iff Q;=Q,

e We can therefore use KL as a scoring function to decide a good Q

e But, KL(Q,]|Q,) # KL(Q2||Q1)

© Eric Xing @ CMU, 2005-2014
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Which KL?

e Computing KL(P||Q) requires inference!
e But KL(Q||P) can be computed without performing inference

onP
KLQIIP)= . Q(X)lo g(§§X§

=ZQ(X)|09Q(X)—ZQ(X)|09F’(X)
=—-Hy(X)-E,log P(X)
e Using P(X)= 1/ZHf(X)

KL(Q || P)_—H (X)-E Iog(l/ZHf (X))
=—Ho(X)-logl/Z - > E, Iog f (X,)
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Optimization function '+

KL(Q|IP)=[-Hy(X)- > E,log f,(X,){+logZ

faeF
\ J
~
F(P.Q)
e Wewillcall F(P,Q) the “Free energy” *

o F(P,P)="

o F(P,Q)>=F(P,P)
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The Energy Functional -

Let us look at the functional

F(P,Q) :_HQ(X)_ ZEQ |Og 1:a(Xa)

faeF

Y Eqlog f,(X,) can be computed if we have marginals over each f,
faeF

Ho = -2 Q(X)logQ(X) is harder! Requires summation over all
possiblxe values

Computing F, is therefore hard in general.

Approach 1: Approximate F(P,Q) with easy to compute Ié(P,Q)

© Eric Xing @ CMU, 2005-2014
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Tree Energy Functionals .

e Consider a tree structured distribution

e The probabrlrty can be written as: b(x) = Hb Hbi (x )l—di

* H,.- ZZb linb, ( Z .—IZb Inb
o FTree:ZZbax +21 de )Inb, (x

- F12+F23+--+F67+F78_F1_F5_Fz_Fa_Fs_F7
e involves summation over edges and vertices and is therefore easy to compute
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Bethe Approximation to Gibbs i

Free Energy 7 e

e For a general graph, choose F(P,Q) = Faun

H getne = ZZb )inb, ( Z —IZb )Inb,(x
Foctne = ZZb +Zl d Zb Inb <fa(xa)>_Hbetha

e Called “Bethe apprOX|mat|on after the phyS|C|st Hans Bethe

Fbethe—F12+F23+ +F67+F78 F F 2F 2F

e Equal to the exact Gibbs free energy when the factor graph is a tree

e In general, Hg, IS NOt the same as the H of a tree
© Eric Xing @ CMU, 2005-2014 22



Bethe Approximation -

e Pros:

e [Easy to compute, since entropy term involves sum over pairwise and
single variables

e Cons:
o F(P,Q)=F,; may or may not be well connected to F(P,Q)
e It could, in general, be greater, equal or less than F(P,Q)

e Optimize each b(x,)'s.
e For discrete belief, constrained opt. with Lagrangian multiplier

e For continuous belief, not yet a general formula
e Not always converge

© Eric Xing @ CMU, 2005-2014
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Bethe Free Energy for FG os

N

e = X 20,06, ?Exg ¥ 1) )nb

X

a

H et ZZb Inb, (x,) Zd IZb )Inb, (x

I:Bethe - _< fa (Xa )> —-H betha



Minimizing the Bethe Free Energy
° L = FBethe+Z7/i{1_Zbi(Xi)}

Y S a0 b0 Th ()]

a ieN(a) X L X \X

e Set derivative to zero




Constrained Minimization of the cece
Bethe Free Energy oo

— FBethe + Z%{Z bi (Xi) _1}

LYY S >{zb< )-b(x >}

a ieN(a) x; X, \X

oL
B0 = bi(xi)ocexp[i a;mﬂa.(x)]
o0 = ba(xa>ocexp[—Ea<xa)+ieNz(agai(xi)j
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Bethe = BP on FG ot

e We had:
b. (X,) oc exp[ Z/Ia,(x )J b,(X,)x exp[— log f,(X,)+ Zﬂai(xi)
i a N (i) ieN (a)
® Identlfy Iog(m|—>a IOg Hmb—>|

e to oObtain BP equatlons e

I b; (%;) oc 1,(X;) H m,_,; (%)
— L T aEN(i)T

! “beliefs” “messages”

l l ba(xa)OC fa(xa) H Hmc—>i(xi)
_ a _ ieN (a) ceN (i)\a

t The “belief’ is the BP approximation of

the marginal probability.
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BP Message-update Rules E
Using b, ,; (x;) = > b, (X,), we get
Xa \X;
ma—>i(xi): Z fa(xa) H Hmb—>j(xj)
X, \X; jeN(a)\i beN(j)\a

(A sum product algorithm )

i a

O‘i

QD
PP
)

Oi

—
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Summary so far -

P(X)= 1/sz

|:> F(PiQ):_HQ(X)_ZEQ Iog fa(xa)

ll

F(P,Q) = ZZb log ((:; 21 d.) Zb )logh (x

ba(Xa)oceXp[ log f,(X,)+ Q2 A (X ))
= \le— < 2
bi(xi)ocexr)[

ieN (a)
© Eric Xing @ CMU, 2005-2014
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The Theory Behind LBP 4

e [or a distribution p(X|#) associated with a complex graph,
computing the marginal (or conditional) probability of arbitrary
random variable(s) is intractable

e Variational methods
e formulating probabilistic inference as an optimization problem:

q" =argmin { Fey (P,0)

Foee = 2 2001 200 1)1 i 1)< ~{1,66) o
q:a (tractable) probability distribution

© Eric Xing @ CMU, 2005-2014 30



The Theory Behind LBP

e But we do not optimize q(X) explicitly, focus on the set of beliefs
- €0, b :{bi,j :T(Xi’xj)’ b, =7(x%)}

e Relax the optimization problem

e approximate objective: H g~ F (b)

relaxed feasible set:
: M—>M, (M, 2M)

b* =argmin { (E), +F(b) |
e The loopy BP algorithm: >0
e afixed point iteration procedure that tries to solve b*

© Eric Xing @ CMU, 2005-2014
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The Theory Behind LBP oo

e But we do not optimize q(X) explicitly, focus on the set of beliefs
« €0, b={b=7(x,X;), by=70%)}
e Relax the optimization problem

e approximate objective: Heera =H (b ;. b))

o relaxed feasible set: M, ={ 720|ZT(XI_):l,zf(xi,xj):r(xj) }

b" =argmin { (E), +F(b) |
e The loopy BP algorithm: 2o
e afixed point iteration procedure that tries to solve b*

© Eric Xing @ CMU, 2005-2014 32



Mean Field Approximation

© Eric Xing @ CMU, 2005-2014
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Naive Mean Field

e Fully factorized variational distribution

a(x) = ][ a(xs)

seV

© Eric Xing @ CMU, 2005-2014
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Naive Mean Field for Ising Model | ¢

e Optimization Problem

max {ZH [bs + Z Ostfispte + ZH (1ts) }

[0,1]"
nel (s,)EE SEV

e Update Rule

s < 0(93 + Z QSM)

teN (s)
o 1 =p(Xy=1) =E,[X;] resembles “message” sent from node ¢ to s

{E,[X¢],t € N(s)} forms the “mean field” applied to S from its
neighborhood

© Eric Xing @ CMU, 2005-2014 35



Mean field methods ot

e Optimize q(X,) in the space of tractable families

e I.e., subgraph of G, over which exact computation of H, is
feasible

e Tightening the optimization space

e exact objective: H q
e tightened feasible set: Q ST (T <Q)

g =argmin <E>q —H

qeT q

© Eric Xing @ CMU, 2005-2014 36



Cluster-based approx. to the T
Gibbs free energy ~ (uessmocon | 3

Exact: G[p(X)] (intractable)
Clusters: G[{q.(X.)}]

(i 2 i E N :'\» f 2 g ig,&-&%
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Mean field approx. to Gibbs free cece
energy g

e Given a disjoint clustering, {C,, ... , C}, of all variables

° Lot q(X) =] a(X,),

e Mean-field free energy

Gy ZZHq( )E(xci)+ZZqi(xci)lnqi(xci)

X, I X,

e.g., GMF :qu Xi)q(Xj)yﬁ(Xin)-l-qu( (X)+ZZC| |nC| (naive mean field)

i<J XX

e Will never equal to the exact Gibbs free energy no matter what clustering is used,
but it does always define a lower bound of the likelihood

e Optimize each g;(x.)'s.
e Variational calculus ...
e Do inference in each g;(x,) using any tractable algorithm

© Eric Xing @ CMU, 2005-2014 38



The Generalized Mean Field T
theorem oo

Theorem: The optimum GMF approximation to the
cluster marginal is isomorphic to the cluster posterior of
the original distribution given internal evidence and its
generalized mean fields:

qi*(XH,Ci) — p(XH,Ci |XE,Ci’<XH,MBi >q )

J#i

GMF algorithm: Iterate over each Q;

© Eric Xing @ CMU, 2005-2014 39



A generalized mean field T
al gor Ithm [xing et al. UAI 2003] oo
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A generalized mean field
al g O I | t h m [xing et al. UAI 2003]

A?:@A
CHD ERD EXD




Convergence theorem

Theorem: The GMF algorithm is guaranteed to

converge to a local optimum, and provides a lower
bound for the likelihood of evidence (or partition
function) the model.

© Eric Xing @ CMU, 2005-2014
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The naive mean field
approximation oo

e Approximate p(X) by fully factorized q(X)=P;q;(X)
e For Boltzmann distribution p(X)=exp{2,; < ; 4; XX+ X }/Z :

mean field equation: Q Q
g (X:) - eXp{Q,-OX,. +j§fi (9,'J' X,’ <XJ >qj -I—A,} Q —>®/<— Q

=p(X; (X)), 1j e D) Q/ e

- <Xj> resembles a “message” sent from node j to i
q.

J
"{(X,), 1] €N}orms the “mean field” applied to X; from its neighborhood
J

© Eric Xing @ CMU, 2005-2014 43



Example 1: Generalized MF i
approximations to Ising models .

X080 L8 &L
58888888
SLES 0
B2 E883

Cluster marginal of a square block C,:

A4

q(XCk)oceXp< z Qinin+Z(9ioxi+ Z eijxi<xj>q(xckl)

i,jECk iECk ieCk,jeMBk,
k'eMBCk

Virtually a reparameterized Ising model of small size.
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GMF approximation to Ising
models

55688888
58385088
586885088
58888088

Singleton marginal error CPU time
CME. %

1l ]
GMF,, o5 _

0.87 1

0.6 [ 1
15} '
0.4 . I E 10k |
i { ;I | | |
0— ; : — (i — T . — —

attractive repulsive attractive repulsive

. ©FEric Xing @ CMU, 2005-2014 .
Attractive coupling: positively weighted

Repulsive coupling: negatively weighted 45



Example 2: Sigmoid belief i
network .

Singleton marginal error CPU time
0.5 ‘ 140
120
041 -GMFr 1
1001
0.31 1 80+
0.2" i . &0y
401
0.1 1
20
oL _ 1ie Xing @ CMU, 2005-201¢ [ |
no obs with obs no obs with obs
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Example 3: Factorial HMM
9090900 TREG-0-0-0-0-0"
T s
00000 OOO0OO0COOOO0




Automatic Variational Inference :

.. =@ & —O—0—a
—~—EO—E—

fHMM Mean field approx. Structured variational approx.

e Currently for each new model we have to

e derive the variational update equations
e write application-specific code to find the solution

e Each can be time consuming and error prone

e Can we build a general-purpose inference engine which
automates these procedures?
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Cluster-based MF (e.g., GMF) o°

e a general, iterative message passing algorithm

e clustering completely defines approximation

e preserves dependencies
e flexible performance/cost trade-off
e clustering automatable
e recovers model-specific structured VI algorithms, including:
e fHMM, LDA

e Vvariational Bayesian learning algorithms

e easily provides new structured VI approximations to complex
models

© Eric Xing @ CMU, 2005-2014
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