School of Computer Science
Carnegie Mellon

Probabilistic Graphical Models

Gaussian graphical models and
Ising models: modeling networks

Reading: See class website
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Where do networks come from?

e The Jesus network
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Evolving networks

Can | get his vote?

Corporativity,

Antagonism,

Cliques,

over time?

March 2005 January 2006 August 2006

© Eric Xing @ CMU, 2005-2014 3



Evolving networks
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X XX J
. . . °oe
Recall Multivariate Gaussian :
e Multivariate Gaussian density:
1 1 o\ vl _
p(x| 1,%) = PR expl 4 (x- 1) 27 (x- )

e WOLG: letpu=0 Q=x""

_ _ ‘Q‘m _1 2 _
p(Xsz’ ’Xp|1u_0’Q)_(27z_)n/2 exXp zzi:qii(xi) Zqijxixi

i<]

e We can view this as a continuous Markov Random Field with
potentials defined on every node and edge:
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Gaussian Graphical Model 4+
Cell type
n T
X" ~ N(0,2™)
Microarray
samples Encodes dependencies

among genes
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Precision Matrix Encodes Non-Zero eoco
Edges in Gaussian Graphical Modela | s

o) _ (Em))‘l

Edge corresponds to non-
Zzero precision matrix
element
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Markov versus Correlation

Network

Correlation network i1s based on Covariance Matrix

E«z’,’j =0 = X’LJ—X] or p(Xia Xj) — p(X‘Z)p(XJ)

A GGM Is a Markov Network based on Precision Matrix

» Conditional Independence/Partial Correlation Coefficients
are a more sophisticated dependence measure

Qi; =0 = X LX;|X_; or p(X;, X;|X_;) = p(Xi|X_i;)p(X;]X )

(

O ¥ ¥ ¥ % ¥
O ¥* ¥ ¥ % ¥
O OO % % %
OO * O % *

\

With small sample size,

£ 0 ) L2 L3

* 0

O O Tq T4
0O 0

* 0

0 =x ) 26 O

5
empirical covariance matrix cannot be inverted
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Sparsity -

e One common assumption to make: sparsity

e Makes empirical sense: Genes are only assumed to
Interface with small groups of other genes.

e Makes statistical sense: Learning is now feasible in high
dimensions with small sample size

o™ _ (s

sparse
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Network Learning with the
LASSO

e Assume network is a Gaussian Graphical Model

e Perform LASSO regression of all nodes to a target node

e 5, 9 .

3 /

© Eric Xing @ CMU, 2005-2014

10



Network Learning with the T
LASSO o3

e LASSO can select the neighborhood of each node

B1 = argming | Y — XB1* + Al|Ba ]

[ ] 515‘

B2 ®

b1
1 ‘ 6
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1Y = XBII° + A8l

Lagrangian Form
= argming

d Form
Y — X3

ine
= argming
t to:

Constral

J

e A convex relaxation.
subjec
P
Y IBl<cC
1

L1 Regularization (LASSO)

e Enforces sparsity!

.
i

A e
Wk

e

12
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Theoretical Guarantees ot

e Assumptions

e Dependency Condition: Relevant Covariates are not overly dependent

e Incoherence Condition: Large number of irrelevant covariates cannot be too
correlated with relevant covariates

e Strong concentration bounds: Sample quantities converge to expected values
quickly

If these are assumptions are met, LASSO will asymptotically recover
correct subset of covariates that relevant.
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Network Learning with the T
LASSO o3

e Repeat this for every node
e Form the total edge set

£ =1{(u,v) : maX(I/éuv‘a ’/é'vu‘) > 0}
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Consistent Structure Recovery

[Meinshausen and Buhlmann 2006, Wainwright 2009]

]
If . >C’\/ ng

Then with high probability,

A

S(8) = S(87)
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Why this algorithm work? .

e What is the intuition behind graphical regression?
e Continuous nodal attributes
e Discrete nodal attributes

e Are there other algorintms?

e More general scenarios:
non-iild sample and evolving networks

e (Case study
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Multivariate Gaussian

e Multivariate Gaussian density:

p(x|4,%) = expl- 3 (x- ) 27 (x- )}

(Zﬂ)n/Z‘z‘llz
e A joint Gaussian:

X1 Yo g Xe [ [ ] | 20 2Zpp
o= Gl o o)

e How to write down p(X,), p(X;|X,) or p(X,|X;) using the block
elements in zand £?

e [Formulas to remember:
p(Xz) = A (X, M7, V") P(X1‘X2):/’/(X1|m1|2iv1|2)

m3 = i, My, = 4 + Z122\:512 (Xz = 145)

Ve =Xz Vip =Xy _2122512221
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The matrix inverse lemma :

e Consider a block-partitioned matrix: M =

e First we diagonalize M

| -FH*|[E F][ 1 0] [E-FH?G 0
0 I [|G HI||-H'G I| | o0 H
e Schur complement: M/H = E-FH G
e Then we inverse, using this formula: xXyz=w = Y*'=27WX

w6 8] L S ]

| (MH)T -(MIH ) FH™ _|ET+ET'F(M/E)'GE™ -ET'F(M/E)”
-H'G(MH)" H'+H'G(M/H)'FH" -(M/E)"GE™ (M/E)"

e Matrix inverse lemma
(E-FH'G) =E*+E'F(H-GE'F) 'GE"
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The covariance and the precision
matrices

va_| (MH) -(M/H)"FH "
-H'G(MH)" H+H'G(M/H) FH"

J

Q= { O11 'C|115-1TZ—1_l } _ {Chl qg }
'q112—1_151 z—l_l(l T (3|115151T Z—1_1) o) Q—l
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Single-node Conditional

P(Xl‘xz) =N (X [Myp, Vyp)

My, = 14 +Z122512 (X; = #,)

V1|2 =2y — Z122512221
|

e The conditional dist. of a single node i given the rest of the
nodes can be written as:

p(X;| X)) = N(Hn + Yxx_ Y% x_ (X —

e WOLG: let £ =0

p(Xi|X i)

N

Px_;)s

2XX _ZXX ZX X ZX_t)()

= N(Zxx 2% x Xon Sxx, — Sxxo Bx x, Ox )
YT X qi—i)

a

X iy Qi—i
— i i )

Q= O 0110, 2 N } _ {qn Gy }
'q112-1_151 X (I + qll5151TZ _1) G Qi
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Conditional auto-regression o°
e From
pXGX ) = N (X q)

Y

e \We can write the following conditional auto-regression
function for each node:

e Neighborhood est. based on auto-regression coefficient

Si=4{j + Jj#i,0;#0}
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Conditional independence os
e From
XX ) = N(Z=X_iq:)

Y

e Given an estimate of the neighborhood s;, we have:
p(XilX=) = p(Xi]Xy)

e Thus the neighborhood s; defines the Markov blanket of node i
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Recent trends in GGM:

e Covariance selection (classical e L,-regularization based
method) method (hot !)

e Dempster [1972]: °

Sequentially pruning smallest
elements in precision matrix

e Drton and Perlman [2008]:

Improved statistical tests for
pruning

Serious limitations in
practice: breaks down when
covariance matrix is not
invertible

Meinshausen and Bihlmann [Ann.
Stat. 06]:

Used LASSO regression for
neighborhood selection

Banerjee [JMLR 08]:

Block sub-gradient algorithm for
finding precision matrix

Friedman et al. [Biostatistics 08]:

Efficient fixed-point equations
based on a sub-gradient
algorithm

Structure learning is possible

even when # variables > # '
samples

© Eric Xing @ CMU, 2005-2014
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The Meinshausen-Buhlmann °eoe
(MB) algorithm: oo

e 5olving separated Lasso for every single variables:

L1y L2y L1y Ly Le4+1r "0 Tp

o = xlr $21 Tty xk—l! xk—'—l! Y xp

The resulting
coefficient does not

ion problem begtweenyand z | correspond to the Q
value-wise
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L,-regularized maximum i
likelthood learning o°

—
N
e Input: Sample covariance matrix S g . 1 Z
[/
N =

e Assumes standardized data (mean=0, variance=1)
e S is generally rank-deficient

Thus the inverse does not exist
e Output: Sparse precision matrix Q

e Originally, Q is defined as the inverse of S, but not directly invertible
e Need to find a sparse matrix that can be thought as of as an inverse of S

N Vo
log likelihood In J] M(=®|0,Q~1)  regularizer
=1

e Approach: Solve an L,-regularized maximum likelihood
equation
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From matrix opt. to vector opt.: 3
coupled Lasso for every single Var. oo

e Focus only on one row (column), keeping the others constant

L 1

V=T

I

e Optimization problem for blue vector is shown to be Lasso (L,-
regularized quadratic programming)

e Difference from MB’s: Resulting Lasso problems are coupled

e The gray part is actually not constant; changes after solving one Lasso problem
(because it is the opt of the entire Q that optimize a single loss function, whereas
iIn MB each lasso has its own loss function..

e This coupling is essential for stability under noise
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Learning Ising Model i
(1.e. pairwise MRF) oo

e Assuming the nodes are discrete (e.g., voting outcome of a
person), and edges are weighted, then for a sample x, we
have

P(x|®) = exp(Z@ T+ Z 000, — )

eV (i,j)€EE

e It can be shown the pseudo-conditional likelihood for node k is

Py(xy|x\r) = logistic (23:k <9\k, x\k>)
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New Problem: sece

Evolving Social Networks -

Can | get his vote?

Corporativity,

Antagonism,

Cliques,

over time?

March 2005 January 2006 August 2006
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Reverse engineering time-
specific "rewiring" networks




0000
| X XX
33
Inference I [Song, Kolar and Xing, Bioinformatics 09] °
e KELLER: Kernel Weighted L,-regularized Logistic Regression
o . t t
B = argn;%nlw(Qi) + M| 6 |1 Vi
where [, (0%) = Zt; L w(xt';xt)log P( xt 1,19:)
LLasso:
i = argman'}f ™:9) + Xl 9 |1

e Constrained convex optimization
e Estimate time-specific nets one by one, based on "virtual iid" samples
e Could scale to ~10% genes, but un tronger smoothness assumptions
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Algorithm — nonparametric
neighborhood selection

e Conditional likelihood

Pet(fcﬂaz{i) = logistic (2z¢ (6, a:‘iz>)

e Neighborhood Selection: S(z;) ={j | ng}j #£ 0}

e Time-specific graph regression:.
e Estimate at t* € [0,1]

m{ D wilt)(6:") +/\1||9||1}
teT™

Where  ~(0;2') = log Py (JJH‘E{&)

Ky, (t—t*)
Ztﬂ'e’rn Khn (t’ - t*)
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Structural consistency of cece
KELLER -

Assumptions
e Define: Qu=E[VIogPu[X,|[X\J], VueV ¥, =E {X&X *.,;T] . YueV
S = max max \S,i|, 0 min = Min max \9:\
Uu t eclE

e Al: Dependency Condition
i’\min((zgs) 2 C\'rmin- \VI?L = [U 1]
Amax () < Diax, ¥t € [0, 1]

e A2:Incoherence Condition J« € (0, 1] such that
|Q5es(Q5s) Y|, <1—a, VE*€[0,1]

e A3: Smoothness Condition
maxsup |o], (t*)] < Ap, maxsup|ol (t*)]| < A
u.v t* u,v

uv uv
t*

max sup |¢,,.(t*)| < By, maxsupl|d’ (t*)| < B

uv uy
u,v t* (& t*

e A4: Bounded Kernel
AM, > 1 max |K(2)| < My max K(z)? < M,
2€l =€
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Theorem

[Kolar and Xing, 09]
Assume that A1, A2, A3. A4 hold. Furthermore, assume
that the following conditions hold:
L g = O(?’L_%)
2. Swhin=oll),

sy log pn
3. —neEt = o(1)

5. grnin — Q( \/ Sn-rl:,?ipn)

then
5 ‘ I,
P {G(Al, fo B L ] e, (exp (—C”; 4 10gp)> 0

© Eric Xing @ CMU, 2005-2014
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000
0000
0000
st
Inferen ce ” [Amr and Xing, PNAS 2009, AOAS 2009] °
e TESLA: Temporally Smoothed L,-regularized logistic
regressionr T
N1 T : t
0;,...,0; = arg 9111”1.1}2? 2 Lavg (0;)

T
+A ) 1165 s
t=1

T
X ) 165 =07 |1,
t=2

where 1,,,(0f) = & ;ztl log P (x| _;.08).

e Constrained convex optimization

e Scale to ~5000 nodes, does not need smoothness assumption, can
accommodate abrupt changes.
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Temporally Smoothed Graph i
Regression oo

ol ...oT

T T T
_ min (x50 +A) Tul+ X)) 1V
TESLA: T;; 2; ;;

u-,...,ur ;ve ..,V
1 ()

st —wp <0 <wi, t=1,....T,VjeV\i

1,07

st —ol <0 -0 <wlt=2,...T,VjeV\i,
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Modified estimation procedure o°

e estimate block partition on which the coefficient functioEs

are constant

n b
min } _ (V; = XiB(t:)" + 2% 3 |18l Iy ()
=1 k=1

e estimate the coefficient functions on each block of the
partition

: 0 — . 2 **
%%tg(y; Xi7)2 + 201 |, (**)
Ay
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Structural Consistency of TESLA | &¢
|KolarI and XingI 2009|

.. It can be shown that, by applying the results for model
selection of the Lasso on a temporal difference
transformation of (*), the block are estimated
consistently

. Then it can be further shown that, by applying Lasso on
(**), the neighborhood of each node on each of the
estimated blocks consistently

e Further advantages of the two step procedure
e choosing parameters easier
e faster optimization procedure
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Senate network — 109" congress | ¢

e Voting records from 109th congress (2005 - 2006)

e There are 100 senators whose votes were recorded on the
542 bills, each vote is a binary outcome
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Senate network — 109t congress

January 2006 August 2006

March 2005

39

© Eric Xing @ CMU, 2005-2014



Senator Chafee ot
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Senator Ben Nelson o2

1=0.2 17=0.8
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Progression and Reversion of
Breast Cancer cells

S1 (normal)

T4 (malignant) @

O
O

aD
........... .
T4 revert 1 T4 revert 3

T4 revert 2

© Eric Xing @ CMU, 2005-2014 42



Estimate Neighborhoods Jointly sece
Across All Cell Types T
S1
How to share information
across the cell types?
T4

@ ®) T4R3
“o:
T4R2
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Sparsity of Difference

Penalize differences between networks of adjacent cell types

S1
‘, . vav
l H9T4 . 981”1
L
o ONR V!

|gT4R _ T4, 2o 9T4R3 0",
H 9T4R2 9T4‘
T4R1 09 T4R3
9/ 9/
fiii'

T4R2
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Network Overview

EGFR-ITGB1

PI3K-MAPKK
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Interactions — Biological cece
Processes oo

T4 cells: Increased Cell Proliferation,

S1 cells Growth, Signaling, Locomotion
)
& 2 &
g g &
P & ] B
X ] @ A
& s & o
o c’? OQ& RN
S (o) . >
e R 5 & 58 o
X0 9% o° "
o2 “ 65‘ s ©
es
IMune System Procesg )
biologj i biologj
e, gical regulatio, cell prolife m::fogrca, "€gulation
¢,
abo/’b Pro Zc aboﬁc r
Cess G009 %, OCegs
A
%
RS
RXY
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. . . 0000
Interactions — Biological sec:
o0
Processes o
T4 cells MMP-T4R cells:
Significantly reduced
s & . interactions g &
QO’QK e,(@Q K\°1§<L® co’&
L§ OQ@ ef\‘o
‘30, ‘\é X U\\)S
‘}'60\ e'(-ost\m
0o
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Interactions — Biological eecs
Processes :

PISK-MAPKK-T4R: Reduced Growth,

T4 cells Locomotion and Signaling
)
ég; &
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o &
< -1:6
Q > AN
o & o“
%) TS @ N
(53 5 £
lo. 2 g RN &
Cy,. Ox. O @ \US
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O/@,, \0\0\
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Summary

« Graphical Gaussian Model

. The precision matrix encode structure
- Not estimatable when p >>n

. Neighborhood selection:
. Conditional dist under GGM/MRF
. Graphical lasso
. Sparsistency

. Time-varying Markov networks

. Kernel reweighting est.
. Total variation est.
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