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Probabilistic Graphical Models 

Gaussian graphical models and 
Ising models: modeling networks 
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Reading: See class website
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Where do networks come from?
 The Jesus network
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Evolving networks

March 2005 January 2006 August 2006

Can I get his vote?

Corporativity, 

Antagonism,

Cliques,
…

over time?
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…

t=1 2 3 T

Evolving networks
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Recall Multivariate Gaussian
 Multivariate Gaussian density:

 WOLG:  let

 We can view this as a continuous Markov Random Field with 
potentials defined on every node and edge:
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Cell type

Microarray 
samples Encodes dependencies 

among genes

Gaussian Graphical Model
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Edge corresponds to non-
zero precision matrix 
element

Precision Matrix Encodes Non-Zero
Edges in Gaussian Graphical Modela
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 Correlation network is based on Covariance Matrix

 A GGM is a Markov Network based on Precision Matrix
 Conditional Independence/Partial Correlation Coefficients 

are a more sophisticated dependence measure

With small sample size, empirical covariance matrix cannot be inverted

Markov versus Correlation 
Network
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Sparsity
 One common assumption to make: sparsity

 Makes empirical sense: Genes are only assumed to 
interface with small groups of other genes.

 Makes statistical sense: Learning is now feasible in high 
dimensions with small sample size

sparse
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Network Learning with the 
LASSO
 Assume network is a Gaussian Graphical Model

 Perform LASSO regression of all nodes to a target node
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Network Learning with the 
LASSO
 LASSO can select the neighborhood of each node
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L1 Regularization (LASSO)
 A convex relaxation.

 Enforces sparsity!

Constrained Form Lagrangian Form



y

x1

x2

x3

xn-1

xn

1
2
3

n-1

n

© Eric Xing @ CMU, 2005-2014 12



Theoretical Guarantees
 Assumptions

 Dependency Condition: Relevant Covariates are not overly dependent
 Incoherence Condition: Large number of irrelevant covariates cannot be too 

correlated with relevant covariates
 Strong concentration bounds: Sample quantities converge to expected values 

quickly 

If these are assumptions are met, LASSO will asymptotically recover 
correct subset of covariates that relevant.
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Network Learning with the 
LASSO
 Repeat this for every node
 Form the total edge set 
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If 

Then with high probability, 

Consistent Structure Recovery
[Meinshausen and Buhlmann 2006, Wainwright 2009]
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Why this algorithm work?
 What is the intuition behind graphical regression?

 Continuous nodal attributes
 Discrete nodal attributes

 Are there other algorihtms?

 More general scenarios: 
non-iid sample and evolving networks

 Case study
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Multivariate Gaussian
 Multivariate Gaussian density:

 A joint Gaussian: 

 How to write down p(x2), p(x1|x2) or p(x2|x1) using the block 
elements in  and ?
 Formulas to remember:
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The matrix inverse lemma
 Consider a block-partitioned matrix:

 First we diagonalize M

 Schur complement:

 Then we inverse, using this formula:

 Matrix inverse lemma
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The covariance and the precision 
matrices
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Single-node Conditional 
 The conditional dist. of a single node i given the rest of the 

nodes can be written as:

 WOLG: let 
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Conditional auto-regression 
 From 

 We can write the following conditional auto-regression 
function for each node:

 Neighborhood est. based on auto-regression coefficient
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Conditional independence
 From

 Given an estimate of the neighborhood si, we have:

 Thus the neighborhood si defines the Markov blanket of node i
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Recent trends in GGM:
 Covariance selection (classical 

method) 
 Dempster [1972]: 

 Sequentially pruning smallest 
elements in precision matrix

 Drton and Perlman [2008]: 
 Improved statistical tests for 

pruning

 L1-regularization based 
method (hot !)
 Meinshausen and Bühlmann [Ann. 

Stat. 06]: 
 Used LASSO regression for 

neighborhood selection
 Banerjee [JMLR 08]: 

 Block sub-gradient algorithm for 
finding precision matrix

 Friedman et al. [Biostatistics 08]: 
 Efficient fixed-point equations 

based on a sub-gradient 
algorithm

 …

Serious limitations in 
practice: breaks down when 
covariance matrix is not 
invertible

Structure learning is possible 
even when # variables ＞ # 
samples
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The Meinshausen-Bühlmann 
(MB) algorithm: 

Step 1: Pick up one variable

Step 2: Think of it as “y”, and the rest as “z”

Step 3: Solve Lasso regression problem between y and z

Step 4: Connect the k-th node to those having nonzero weight in w

 Solving separated Lasso for every single variables:

The resulting 
coefficient does not 
correspond to the Q 
value-wise

© Eric Xing @ CMU, 2005-2014 24



L1-regularized maximum 
likelihood learning
 Input: Sample covariance matrix S

 Assumes standardized data (mean=0, variance=1)
 S is generally rank-deficient 

 Thus the inverse does not exist

 Output: Sparse precision matrix Q
 Originally, Q is defined as the inverse of S, but not directly invertible
 Need to find a sparse matrix that can be thought as of as an inverse of S 

 Approach: Solve an L1-regularized maximum likelihood 
equation

log likelihood regularizer
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From matrix opt. to vector opt.:
coupled Lasso for every single Var.

 Focus only on one row (column), keeping the others constant

 Optimization problem for blue vector is shown to be Lasso (L1-
regularized quadratic programming)

 Difference from MB’s: Resulting Lasso problems are coupled
 The gray part is actually not constant; changes after solving one Lasso problem 

(because it is the opt of the entire Q that optimize a single loss function, whereas 
in MB each lasso has its own loss function..

 This coupling is essential for stability under noise
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Learning Ising Model 
(i.e. pairwise MRF)
 Assuming the nodes are discrete (e.g., voting outcome of a 

person), and edges are weighted, then for a sample x, we 
have 

 It can be shown the pseudo-conditional likelihood for node k is 

© Eric Xing @ CMU, 2005-2014 27



New Problem: 
Evolving Social Networks

March 2005 January 2006 August 2006

Can I get his vote?

Corporativity, 

Antagonism,

Cliques,
…

over time?
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T0 TN

…

Drosophila development

t*

n=1 or some small #

Reverse engineering time-
specific "rewiring" networks
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Inference I
 KELLER: Kernel Weighted L1-regularized Logistic Regression

 Constrained convex optimization
 Estimate time-specific nets one by one, based on "virtual iid" samples
 Could scale to ~104 genes, but under stronger smoothness assumptions

[Song, Kolar and Xing, Bioinformatics 09]

Lasso:
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 Conditional likelihood

 Neighborhood Selection:

 Time-specific graph regression:
 Estimate at

Where

and

Algorithm – nonparametric 
neighborhood selection
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Structural consistency of 
KELLER

Assumptions
 Define: 

 A1: Dependency Condition

 A2: Incoherence Condition

 A3: Smoothness Condition

 A4: Bounded Kernel
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Theorem [Kolar and Xing, 09]

© Eric Xing @ CMU, 2005-2014 33



 TESLA: Temporally Smoothed L1-regularized logistic 
regression

 Constrained convex optimization
 Scale to ~5000 nodes, does not need smoothness assumption, can 

accommodate abrupt changes. 

Inference II [Amr and Xing, PNAS 2009, AOAS 2009]
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Temporally Smoothed Graph 
Regression

TESLA:

…
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Modified estimation procedure
 estimate block partition on which the coefficient functions 

are constant

 estimate the coefficient functions on each block of the 
partition

(*)

(**)
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Structural Consistency of TESLA

I. It can be shown that, by applying the results for model
selection of the Lasso on a temporal difference 
transformation of (*), the block are estimated 
consistently

II. Then it can be further shown that, by applying Lasso on 
(**), the neighborhood of each node on each of the 
estimated blocks consistently

 Further advantages of the two step procedure
 choosing parameters easier
 faster optimization procedure

[Kolar, and Xing, 2009]
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Senate network – 109th congress

 Voting records from 109th congress (2005 - 2006)
 There are 100 senators whose votes were recorded on the 

542 bills, each vote is a binary outcome
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Senate network – 109th congress

March 2005 January 2006 August 2006
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Senator Chafee
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Senator Ben Nelson

T=0.2 T=0.8
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S1 (normal)

Progression and Reversion of 
Breast Cancer cells

T4 (malignant)

T4 revert 1

T4 revert 2

T4 revert 3
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T4

S1

T4R1

T4R2

T4R3

Estimate Neighborhoods Jointly 
Across All Cell Types

How to share information 
across the cell types?

© Eric Xing @ CMU, 2005-2014 43



Penalize differences between networks of adjacent cell types

T4

S1

T4R1

T4R2

T4R3

Sparsity of Difference
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RSS for all cell types

sparsity Sparsity of difference

Tree-Guided Graphical Lasso 
(Treegl)
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S1

T4

EGFR-ITGB1

PI3K-MAPKK

MMP

Network Overview
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S1 cells
T4 cells: Increased Cell Proliferation, 
Growth, Signaling, Locomotion

Interactions – Biological 
Processes
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MMP-T4R cells: 
Significantly reduced 
interactions

T4 cells

Interactions – Biological 
Processes
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PI3K-MAPKK-T4R: Reduced Growth, 
Locomotion and SignalingT4 cells

Interactions – Biological 
Processes
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Summary
 Graphical Gaussian Model

 The precision matrix encode structure
 Not estimatable when p >> n

 Neighborhood selection:
 Conditional dist under GGM/MRF
 Graphical lasso
 Sparsistency

 Time-varying Markov networks
 Kernel reweighting est.
 Total variation est.
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