School of Computer Science
Carnegie Mellon

Probabilistic Graphical Models

Introduction to GM

and

Directed GMs: Bayesian Networks

Reading: see class homepage
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Logistics

e Class webpage:
e http://www.cs.cmu.edu/~epxing/Class/10708/
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« Time: Monday, Wednesday 4:30-5:50 pm
¢ Location: GHC 4307
« Recitations: TBD

Announcements

* The first reading summary is due on Wednesday, 01-15-13 at the beginning of the lecture.

* Class begins on Monday, 01-13-14. See you in class!

* If you are on the waiting list and have not been granted registration, please come to the class on the first day to learn
more about your chance of getting enrolled in the class. We are working on getting everyone registered but can not
guarantee that at this point.

» If you have any questions about class policies or course material, you can email all of the instructors at instructors-
10708@cs.cmu.edu. Please use this list instead of individual email addresses to ensure a prompt response.

® The class mailing list is 10708-students@cs.cmu.edu. o
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Logistics

Text books:

e Daphne Koller and Nir Friedman, Probabilistic Graphical Models
e M. I. Jordan, An Introduction to Probabilistic Graphical Models

Mailing Lists:

e To contact the instructors: instructor-10708@cs.cmu.edu

e Class announcements list: 10708-students@cs.cmu.edu.

TA:

e Willie Neiswanger, GHC 8011, Office hours: TBA

e Micol Marchetti-Bowick, GHC 8003, Office hours: TBA
e Dai Wei, GHC 8011, Office hours: TBA

Guest Lecturers:
e [BA

Class Assistant:
e Michael Martins, GHC 8001, x8-5527

Instruction aids: Canvas
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Logistics -

e 5 homework assignments: 40% of grade
e Theory exercises, Implementation exercises

e Scribe duties: 10% (~once to twice for the whole semester)
e Short reading summary: 10% (due at the beginning of every lecture)

e Final project: 40% of grade
° Applylng PGM to the development of a real, substantial ML system

Design and Implement a (rocord-breaking) distributed Deep Network on Petuum and apply to
ImageNet and/or other data

Build a web-scale topic or story line tracking system for news media, or a paper recommendation
system for conference review matching

An online car or people or event detector for web-images and webcam
An automatic “what’s up here?” or “photo album” service on iPhone

e Theoretical and/or algorithmic work

a more efficient approximate inference or optimization algorithm, e.g., based on stochastic
approximation

a distributed sampling scheme with convergence guarantee

e 3-member team to be formed in the first two weeks, proposal, mid-way
presentation, poster & demo, final report, peer review - possibly conference

submission !
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Past projects:
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Course Project

Your class project is an opportunity for you to explore an interesting multivariate analysis problem of your choice in the context of a real-world data set. Projects
can be done by you as an individual, or in teams of two to three students. Each project will also be assigned a 708 instructor as a project consultantfmentor.
They will consult with you on your ideas, but the final responsibility to define and execute an interesting piece of work is yours. Your project will be worth 30% of
yrour final class grade, and vill have two final deliverables:

1. awniteup in the form of a NIPS paper (8 pages maximum in NIPS format, including references), due Dec 3, worth 60% of the project grade, and

2. aposter presenting your work for a special ML class poster session at the end of the semester, due Nov 30, worth 20% of the project grade.

In addition, you must turn in a midway progress report (3 pages maximum in ITIPS format, ncluding references) describing the results of your first experiments
by Oct 31, worth 20% of the project grade. Note that, as with any conference, the page limuts are strict! Papers over the linut will not be considered.

Project Proposal:

You must tum in a brief project proposal (1-page masimurn) by Oct 10th

You are encouraged to come up a topic directly related to your own current research project or research topics related to graphical models of your own interest
that bears a twial technical comp (either or applicati d), but the proposed work must be new and should not be copied from your
previous published or unpublished work. For example, research on graphical models that you did this summer does not count as a class project.

e We will have a prize for the
best project(s) ...

a

Winner of the 2005 project:

J.Yang, Y. Liu, E. P. Xing and A. Hauptmann,
Harmonium-Based Models for Semantic
Video Representation and Classification ,
Proceedings of The Seventh SIAM International
Conference on Data Mining (SDM 2007).
(Recipient of the BEST PAPER Award)

Other projects:

Andreas Krause, Jure Leskovec and Carlos
Guestrin, Data Association for Topic Intensity
Tracking, 23rd International Conference on
Machine Learning (ICML 2006).

M. Sachan, A. Dubey, S. Srivastava, E. P. Xing
and Eduard Hovy, Spatial Compactness
meets Topical Consistency: Jointly modeling
Links and Content for Community Detection
Proceedings of The 7th ACM International
Conference on Web Search and Data Mining
(WSDM 2014).
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What Are Graphical Models?
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Reasoning under uncertainty!
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The Fundamental Questions .

e Representation
e How to capture/model uncertainties in possible worlds?
e How to encode our domain knowledge/assumptions/constraints?

e Inference
e How do | answers questions/queries

according to my model and/or based
given data?

e.g.. P(X.|D)
e Learning
e What model is "right"

for my data?

e.g.. M =arg max F(D; M)
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Recap of Basic Prob. Concepts o°

e Representation: what is the joint probability dist. on multiple

variables?
P(X,, X,, X5, X,, X5, Xg, X5, Xg)
A ]
e How many state configurations in total? --- 28
Are they all needed to be represented? ¢ g
[ J H
e Do we get any scientific/medical insight?

e Learning: where do we get all this probabilities?
e Maximal-likelihood estimation? but how many data do we need?
e Are there other est. principles?

e Where do we put domain knowledge in terms of plausible relationships between variables, and
plausible values of the probabilities?

e Inference: If not all variables are observable, how to compute the
conditional distribution of latent variables given evidence?

e Computing p(H|A) would require summing over all 26 configurations of the

unobserved variables o
© Eric Xing @ CMU, 2005-2014 9



. . 0000
What is a Graphical Model? 13
--- Multivariate Distribution in High-D Space °
e A possible world for cellular signal transduction:
[ReceptorA ] X, [ReceptorB ] X,
[ Kinase C ] X3 [ Kinase D ] X4 [ Kinase E ]x5
[ TFF } X,
[ Gene G ] X7 [ Gene H ] Xs

© Eric Xing @ CMU, 2005-2014 10



GM: Structure Simplifies eecs
Representation oo

e Dependencies among variables

o l _____________________________________________________________________ Membrane !

[ Kinase C ] X3 [ Kinase D ] X, [ Kinase E }:<5

© Eric Xing @ CMU, 2005-2014 1M



Probabilistic Graphical Models o°

a If Xi's are conditionally independent (as described by a PGM;, the

joint can be factored to a product of simpler terms, e.g.,

Receptor A X,

P(Xy, X,, X3, Xy, Xe, Xg, X7, Xg)

= P(Xy) P(X;) P(X;| Xy) P(Xy| X,) P(Xq| Xy)
P(Xel X3, X4) P(X7] Xg) P(Xg| Xs, Xo)

Stay tune for what are these independencies!

a Why we may favor a PGM?

a Incorporation of domain knowledge and causal (logical) structures
1+1+2+2+2+4+2+4=18, a 16-fold reduction from 28 in representation cost !

© Eric Xing @ CMU, 2005-2014 12



GM: Data Integration

Receptor B

W\\N X4 Kinase D Kinase E

© Eric Xing @ CMU, 2005-2014 13



More Data Integration o

e Text+ Image + Network =>» Holistic Social Media

e Genome + Proteome + Transcritome + Phenome + ... =
PanOmic Biology

© Eric Xing @ CMU, 2005-2014 14



Probabilistic Graphical Models o°

a If Xi's are conditionally independent (as described by a PGM;, the

joint can be factored to a product of simpler terms, e.g.,

Receptor A | X%, Receptor B 3¢,

P(Xy, X,, X3, Xy, Xe, Xg, X5, Xg)

Kinase E = P(XZ) P(X4| X2) P(X5| XZ)

a Why we may favor a PGM?

0 Incorporation of domain knowledge and causal (logical) structures
2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28 in representation cost !

0 Modular combination of heterogeneous parts — data fusion

© Eric Xing @ CMU, 2005-2014 15



Rational Statistical Inference o2

The Bayes Theorem:

. Likelihood Prior
Posterior L
l probability

probability
P (CIDLI()
2. p(d[h)p(h)

h'eH

e

Sum over space
of hypotheses

e This allows us to capture uncertainty about the model in a principled way

e But how can we specify and represent a complicated model?

e Typically the number of genes need to be modeled are in the order of thousands!
© Eric Xing @ CMU, 2005-2014 16




GM: MLE and Bayesian Learning | s¢

e Probabilistic statements of ® is conditioned on the values of the

observed variables A, . and prior p( |y)
p(&; 2)

-

¢l [Db [ E]

e [ H]

(ABCDE,..)=(T,EETE,...) “ <

A= (ABCDE,...)=(T.ET/TFE...

(A,BCDE,..)=(ETT,TE...)

Onaes = [0 P(O| A 2) dO \ p(@1A: ) P(A16)p(©: 2

posterior likelihood  prior
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Probabilistic Graphical Models o°

a If Xi's are conditionally independent (as described by a PGM;, the

joint can be factored to a product of simpler terms, e.g.,

P(Xy, X,, X3, Xy, Xe, Xg, X7, Xg)

= P(Xy) P(X;) P(X;| Xy) P(Xy| X,) P(Xq| Xy)
P(Xel X3, X4) P(X7] Xg) P(Xg| Xs, Xo)

a Why we may favor a PGM?

0 Incorporation of domain knowledge and causal (logical) structures
2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28 in representation cost !

0 Modular combination of heterogeneous parts — data fusion

0 Bayesian Philosophy =

e Knowledge meets data
© Eric Xing @ CMU, 2005-2014 18



So What is a Graphical Model? 4

In a nutshell:

GM = Multivariate Statistics + Structure

© Eric Xing @ CMU, 2005-2014 19



What is a Graphical Model? o

e [he informal blurb:

e Itis a smart way to write/specify/compose/design exponentially-large probability
distributions without paying an exponential cost, and at the same time endow the
distributions with structured semantics

P(X,X5,X5,X4,X5,X¢,X5,Xg) P(X.5) = P(X)P(X,)P(X; | X;X,)P(X, | X,)P(X5 | X,)
e A more formal description: P(Xe[ X3 X4)P(X7[X)P(Xe[ X5, X)

e It refers to a family of distributions on a set of random variables that are
compatible with all the probabilistic independence propositions encoded by a
graph that connects these variables

© Eric Xing @ CMU, 2005-2014 20



Two types of GMs oo

e Directed edges give causality relationships (Bayesian
Network or Directed Graphical Model):

P(Xy, Xp, Xay Xgs Xe, Xgr X Xo)

= P(X;y) P(X3) P(Xs] Xy) P(X4] X5) P(Xs| Xy)
P(Xgl X3, X4) P(X7] Xg) P(Xg| X5, Xo)

e Undirected edges simply give correlations between variables
(Markov Random Field or Undirected Graphical model):

P(Xq, Xy, X3, Xy, X, Xg, X7, Xg)
(o )x [
= UZ exp{E(X)+EX)+E (X5, X)+E(Xy, X)+E(Xs, X)) 7 )
+ E(Xg) Xg, Xg)+E(X, X)+E(Xg, Xs, Xo)} —

© Eric Xing @ CMU, 2005-2014 21



Bayesian Networks 4+

Structure: DAG

 Meaning: a node is - -
conditionally independent
of every other node in the ota M

network outside its Markov
blanket

 Local conditional distributions Xyﬂ‘
(CPD) and the DAG <@ N
completely determine the \\‘ -

joint dist. m \‘

- Children's co-parent ]

« Give causality relationships,
and facilitate a generative
process

Descendent

© Eric Xing @ CMU, 2005-2014 22



Markov Random Fields

Structure: undirected graph

 Meaning: a node is conditionally
Independent of every other node
in the network given its Directed
neighbors

» Local contingency functions
(potentials) and the cliques in
the graph completely determine
the joint dist.

 Give correlations between
variables, but no explicit way to
generate samples

© Eric Xing @ CMU, 2005-2014
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Towards structural specification of 3
probability distribution oo

e Separation properties in the graph imply independence
properties about the associated variables

e Forthe graph to be useful, any conditional independence
properties we can derive from the graph should hold for the
probability distribution that the graph represents

e The Equivalence Theorem

For a graph G,

Let 9, denote the family of all distributions that satisfy 1(G),

Let 9, denote the family of all distributions that factor according to G,
Then 9,=9,.

© Eric Xing @ CMU, 2005-2014 24



0000
0000
- 3
GMs are your old friends %
Density estimation m,s ®
Parametric and nonparametric methods X
X
Regression
J X Y
Linear, conditional mixture, nonparametric o O
L Q Q
Classification
Generative and discriminative approach X X

Clustering

© Eric Xing @ CMU, 2005-2014 25



An
(incomplete)
genealogy -
of graphical
models

SBN,
Boltzrmann
Machines

Cooperative

Quantization

Vector

Mixture of
Gaussians

vaQ)

Mmix

Gaussian

red-dim

(Picture by Zoubin
Ghahramani and
Sam Rowels)

/

y HMM

Factorial HMM

red-dim

Mixture of
Factor Analyzers

Factor Analysis
(P CA)

/

nony
ICA

\

mixX - mixture

red-dim : reduced

dimension
dyn dynamics
aistrio . aistriouteda

representatior

nonlin - nonlinear
switch : switching

Mixture of
HMMs

\

Switching
State-space
Models

Linear

Cynamical
Systemns (SSMs)

dyn )
Y nonlin
Nonlinear Nonli
Gaussian an |n<_:‘;ar
eligf Dynamical
f 2005-2014 Systems

A
N‘

Mixture of
LDSs
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Fancier GMs:
reinforcement learning

e Partially observed Markov decision processes (POMDP)

Ao Ay A, A A

DU S S S
&

—_———
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Fancier GMs:
machine translation :

acan  TELEGRAM RECEIVED.
i, ——
Frow 288 from London § 5747.
e o
intent to begtn on the first of Februsry
unrestricted eubmarine werfere. ¥e onall sndeavor
in splte of this to keep the United Btates of
americs meutrsl. In the event of this mot succeed-
ing, ¥e make Kexlco & propossl of alliance on tns
folloving baeis: make war together, mske pesce
together, generous Timancisl suppert snd sm under=
standing on our part that Mexico {a te reconquer
the loet territery in Texas, New Mexico, and
arizons. The settlement in detsil 1s loft to you.
— You will Inforn the President of the sbove most
secretly ea soon as the outbresk of war with the
Unfted States of Americs 18 certain and sdd the
uggentlon ihat he ehould, on his oW iniuistive,
Jepen to izmedlate rdherence &nd at the s
time me¢iate betwosn Jepan and ourgelves. Pl
call the President's attention to the fact that

92)
—

ne ruthless employment of our submsrines now
offers the prospect of compelling Englend In &

few montha Lo maKe posce.” Sipned, LI LA

K

=0

“n

The HM-BIiTAM model
(B. Zhao and E.P Xing,
ACL 2006)
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Fancier GMs:
genetic pedigree oo

An allele network

© Eric Xing @ CMU, 2005-2014 29



Fancier GMs:
solid state physics

Ising/Potts model

© Eric Xing @ CMU, 2005-2014 30



Application of GMs

Machine Learning
Computational statistics

Computer vision and graphics

Natural language processing
Informational retrieval

Robotic control

Decision making under uncertainty
Error-control codes

Computational biology

Genetics and medical diagnosis/prognosis
Finance and economics

Etc.

© Eric Xing @ CMU, 2005-2014

31



Why graphical models -

e A language for communication
e A language for computation
e Alanguage for development

e Origins:
e Wright 1920’s

e Independently developed by Spiegelhalter and Lauritzen in statistics and Pearl in
computer science in the late 1980’s

© Eric Xing @ CMU, 2005-2014 32



Why graphical models %

e Probability theory provides the glue whereby the parts are combined,
ensuring that the system as a whole is consistent, and providing ways to
interface models to data.

e The graph theoretic side of graphical models provides both an intuitively
appealing interface by which humans can model highly-interacting sets of
variables as well as a data structure that lends itself naturally to the design of
efficient general-purpose algorithms.

e Many of the classical multivariate probabilistic systems studied in fields
such as statistics, systems engineering, information theory, pattern
recognition and statistical mechanics are special cases of the general
graphical model formalism

e The graphical model framework provides a way to view all of these systems
as instances of a common underlying formalism.

--- M. Jordan
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A few myths about graphical i
models oo

e They require a localist semantics for the nodes \/
e They require a causal semantics for the edges X
e [hey are necessarily Bayesian X

e They are intractable VL
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Plan for the Class

e Fundamentals of Graphical Models:
e Bayesian Network and Markov Random Fields
e Discrete, Continuous and Hybrid models, exponential family, GLIM
e Basic representation, inference, and learning

e Case studies: Popular Bayesian networks and MRFs

Multivariate Gaussian Models
Hidden Markov Models
Mixed-membership, aka, Topic models

e Advanced topics and latest developments

e Approximate inference
Monte Carlo algorithms
Vatiational methods and theories
Stochastic algorithms

Nonparametric and spectral graphical models, where GM meets kernels and matrix algebra

e “Infinite” GMs: nonparametric Bayesian models

e Structured sparsity

e Margin-based learning of GMs: where GM meets SVM

e Regularized Bayes: where GM meets SVM, and meets Bayesian, and meets NB ...

® Appl ications © Eric Xing @ CMU, 2005-2014 35



