Analysis: TextonBoost and Semantic Texton Forests

Daniel Munoz 16-721 Februrary 9, 2009

Papers

- [shotton-eccv-06] J. Shotton, J. Winn, C. Rother, A. Criminisi, *TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-Class Object Recognition and Segmentation*, ECCV 2006
- □ [shotton-cvpr-08] J. Shotton, M. Johnson, R. Cipolla, *Semantic Texton Forests for Image Categorization and Segmentation*, CVPR 2008

Problem

Ultimate goal for both these papers:

[shotton-eccv-06]

[shotton-cvpr-08]

□ Simultaneous segmentation and recognition of objects in images

[shotton-eccv-06]

 [shotton-eccv-06] J. Shotton, J. Winn, C. Rother, A. Criminisi, *TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-Class Object Recognition and Segmentation*, ECCV 2006

Data and Classes

Goal: assign every pixel to a label

Object classes	Building	Grass	Tree	Cow	Sheep	Sky	Aeroplane	Water	Face	Car
Bike	Flower	Sign	Bird	Book	Chair	Road	Cat	Dog	Body	Boat

• MSRC-21 database ("void" label ignored for training and testing)

Claimed contributions

- Discriminative model capable of fusing
 - shape
 - appearance
 - context

information to efficiently recognize and accurately **segment** the object classes present in an image

New texton-based features which are capable of modeling object shape, appearance and context.

□ Efficient training of model on large dataset with many labels

• Piece-wise CRF training with boosting

Outline

- □ High-level description of approach:
 - Learn classifier based on relative texture locations for each class
 - Refine classification with Conditional Random Field (CRF)
 - Improve classification with additional pixel information

□ Review of CRFs....

Conditional Random Fields

- □ Main idea:
 - Local classifiers (SVM, LR, etc.) classify each pixel individually

- Markov Random Field (MRF) framework classifies all pixels jointly
 - \checkmark Each pixel is a node in a undirected graph
 - ✓ Interactions/dependencies indicated by linked nodes

Conditional Random Fields

 Discriminative MRF for jointly estimating the label assignments to random variables (c), given all data observations (x)

Models the joint distribution $P(\mathbf{c}|\mathbf{x}, \boldsymbol{\theta}) = \frac{1}{Z(\boldsymbol{\theta})} \prod_{i \in V} \Psi_i^{(1)}(c_i, \mathbf{x}; \boldsymbol{\theta}) \prod_{(i,j) \in E} \Psi_{i,j}^{(2)}(c_i, c_j, \mathbf{x}; \boldsymbol{\theta})$ (1)

- $\Psi^{(1)}$ models the local score in the label assignment
- $\Psi^{(2)}$ models the score for the *pairwise* assignment
- Z costs exponentially to explicitly compute $(|L|^{V}|)$

Inference

- □ Inference = finding the best joint labeling
 - NP-complete problem in general
- □ Two options: 1) argmax labeling 2) labeling + confidences
- Argmax labeling with usually Graph-Cut inference
 - Edge potentials need to satisfy submodularity constraints
 - ✓ Pott's model satisfies this (more on this later)
 - ✓ High-order potentials possible
 - Recent research with non-submodular potentials
 - ✓ Quadratic Pseudo-Boolean Optimization (QPBO)
- □ Labeling + confidences
 - Estimate the marginal probabilities
 - Usually done with Belief Propagation (or one of its variants)
 - Approximate solution if loops present
 - ✓ Computation exponential in size of smallest clique (tree-width)
 - ✓ Hence, most models are *pairwise* (maximal clique size of 2)

Back to TextonBoost...

Learning a local classifier

☐ The TextonBoost CRF model

shape-texture

$$\log P(\mathbf{c}|\mathbf{x}, \boldsymbol{\theta}) = \sum_{i} \widetilde{\psi_i(c_i, \mathbf{x}; \boldsymbol{\theta}_{\psi})}$$

- □ Shape-texture Potential
 - Function based on new features called *shape filters*

□ Trained using boosting to produce multi-class logistic classifier

- See [torralba-pami-07], Yuandong's upcoming analysis (Week 11)
- □ Most **important** potential in the model

Capturing context

Shape-texture Potential $\psi_i(c_i, \mathbf{x}; \boldsymbol{\theta}_{\psi}) = \log \widetilde{P}_i(c_i | \mathbf{x})$

• Main idea: capture the context of relative texton locations for certain classes

□ Step 1: Texton Map generation (17 filters, K=400)

input image

filter bank

clustering and assignment

texton map (colors ⇔ texton indices)

- □ Step 2: Shape Filter
 - For each texton *t*
 - ✓ Inputs
 - Texton Map
 - (Rectangle mask r, texton query t)
 - Pixel location *i*
 - ✓ Output
 - Area in rectangle mask that match *t*
 - End result is a texton histogram of area responses
- How does this capture shape?

rectangle r t

r texton t

Slides from Shotton's ECCV talk

□ Integral images

appearance context

Slides from Shotton's ECCV talk

Shape as Texton Layout

texton map

ground truth

texton map

feature response image

Slides from Shotton's ECCV talk

Shape as Texton Layout

$$(r_1, t_1) = (\square, \square)$$
$$(r_2, t_2) = (\square, \square)$$

texton map

summed response images $v(i, r_1, t_1) + v(i, r_2, t_2)$

 $v(i, r_1, t_1) + v(i, r_2, t_2)$

Learning context

□ What do we do with these histograms of shape filters?

• Boosting over the shape-filter counts of texton *t* in rectangle *r*

$$\widetilde{P}_{i}(c_{i}|\mathbf{x}) = \frac{\exp(H(c_{i}))}{\sum_{c'_{i}} \exp(H(c'_{i}))}$$
$$h(c_{i}) = \begin{cases} a\delta(v(i,r,t) > \theta) + b & \text{if } c_{i} \in N \\ k_{c_{i}} & \text{otherwise} \end{cases}$$

Ideal algorithm:

- For each pixel in the Texton Map
 - \checkmark For each possible rectangle mask orientation
 - For each texton
 - » Augment shape-filter to training set
- Actual algorithm
 - For each pixel in the **sub-sampled** Texton Map
 - ✓ For **10 random** rectangle masks
 - For each texton (K=400)
 - » Augment shape-filter to training set with
 0.3% probability
- □ 42 hours for 5,000 rounds on 276 images

Initial result

Cumulative Results

shape-texture

69.6%

pixel-wise segmentation accuracies

Refining classification

Let's smooth the borders

$$\log P(\mathbf{c}|\mathbf{x}, \boldsymbol{\theta}) = \sum_{i} \underbrace{\phi_{i}(c_{i}, \mathbf{x}; \boldsymbol{\theta}_{\psi})}_{i} + \sum_{(i,j) \in \mathcal{E}} \underbrace{\phi(c_{i}, c_{j}, \mathbf{g}_{ij}(\mathbf{x}); \boldsymbol{\theta}_{\phi})}_{\phi(c_{i}, c_{j}, \mathbf{g}_{ij}(\mathbf{x}); \boldsymbol{\theta}_{\phi})}$$

Edge Potential

• Use neighborhood to find and enforce boundaries

$$\phi(c_i, c_j, \mathbf{g}_{ij}(\mathbf{x}); \boldsymbol{\theta}_{\phi}) = -\boldsymbol{\theta}_{\phi}^T \mathbf{g}_{ij}(\mathbf{x}) \delta(c_i \neq c_j).$$

D Main idea: $\mathbf{g}_{ij} = [\exp(-\beta ||\mathbf{x}_i - \mathbf{x}_j||^2), 1]^T$

- If class is the **same**, then the pixel **difference** should be **small**
- If class is **different**, then the pixel **difference** should be **big**
- This is a Pott's model
 - Efficient inference on CRF with graph-cuts
- $\Box \ \theta_{\varphi}$ hand tuned with validation data

Progress

Cumulative Results

Augmenting the model

- □ Can we improve?
 - Add pixel color information and a prior on class locations in the image
- □ Final TextonBoost CRF model

A prior on class location

- **Location Potential** $\lambda_i(c_i, i; \boldsymbol{\theta}_{\lambda}) = \log \boldsymbol{\theta}_{\lambda}(c_i, \hat{i})$
- □ Create normalized image coordinates for all images
- □ Lookup the count of queried class at normalize location in training set

$$\boldsymbol{\theta}_{\lambda}(c_{i},\hat{i}) = \left(\frac{N_{c,\hat{i}} + \alpha_{\lambda}}{N_{\hat{i}} + \alpha_{\lambda}}\right)^{w_{\lambda}}$$
Prevent overfit (tuned)

Think Naïve Bayes

$$\square N_{cow, \bigstar} = 1 \quad N_{\bigstar} = 3$$

Modeling color

 color

- **Color potential** $\pi(c_i, \mathbf{x}_i; \boldsymbol{\theta}_{\pi})$
- Motivation: hard to learn model for color across many images due to illumination variances
 - Solution: learn potential independently on each image
- Main idea:
 - Use the classification from other potentials as a prior
 - Examine the distribution of color with respect to classes
 - Keep the classification color-consistent
 - ✓ Ex: Pixels associated with cows are black → remaining black pixels in the image should be a cow
- □ (Convoluted) Approach:
 - Gaussian Mixture Model over image CIELab
 - ✓ (Distribution of color)
 - Iteratively weight components using EM-like approach
 - ✓ Inference to get initial image labeling
 - ✓ Weight components so similar color components have same class
 - ✓ Repeat

Putting it together

Cumulative Results

Learning reminder

• 4-neighborhood graph

Parameters learned independently

Results

Successes

Results

G Failures

Results

□ Quantitative results on MSRC-21

True class	building	grass	tree	COW	sheep	sky	aeroplane	water	face	car	bike	flower	sign	bird	book	chair	road	cat	gop	body	boat
building	61.6	1.7	9.7	0.3		2.5	0.6	1.3	2.0	2.6	2.1		0.6	0.2	4.8		6.3	0.4		0.5	
grass	0.3	97.6	0.5								0.1									1.3	
tree	1.2	4.4	86.3	0.5		2.9	1.4	1.9	0.8	0.1							0.1		0.2	0.1	
cow		30.9	0.7	58.3				0.9	0.4			0.4			4.2					4.1	
sheep	16.5	25.5	4.8	1.9	50.4									0.6			0.2				
sky	3.4	0.2	1.1			82.6		7.5									5.2				
aeroplane	21.5	7.2				3.0	59.6	8.5													
water	8.7	7.5	1.5	0.2		4.5		52.9		0.7	4.9			0.2	4.2		14.1	0.4			
face	4.1		1.1						73.5	7.1					8.4			0.4	0.2	5.2	
car	10.1		1.7						$\mathbf{\sim}$	62.5	3.8		5.9	0.2			15.7				
bike	9.3		1.3							1.0	74.5		2.5			3.9	5.9		1.6		
flower		6.6	19.3	3.0								62.8			7.3		1.0				
sign	31.5	0.2	11.5	2.1		0.5		6.0		1.5		2.5	35.1		3.6	2.7	0.8	0.3		1.8	
bird	16.9	18.4	9.8	6.3	8.9	1.8		9.4						19.4			4.6	4.5			
book	2.6		0.6						0.4			2.0			91.9					2.4	
chair	20.6	24.8	9.6	18.2		0.2					3.7				1.	15.4	4.5		1.1		
road	5.0	1.1	0.7					3.4	0.3	0.7	0.6		0.1	0.1	1.1	$\mathbf{\sim}$	86.0			0.7	
cat	5.0		1.1	8.9				0.2		2.0					0.6		28.4	53.6	0.2		
dog	29.0	2.2	12.9	7.1				9.7							8.1		11.7		19.2		
body	4.6	2.8	2.0	2.1	1.3	0.2			6.0	1.1					9.9		1.7	4.0	2.1	62.1	
boat	25.1		11.5			3.8		30.6		2.0	8.6		6.4	5.1			0.3				6.6

□ Overall pixel-wise accuracy is 72.2%

- ~15 times better than chance if evenly guessing
- What if guessing proportional to the distribution of pixels per class?
- What are the precision rates?

Comparison with previous work

	Accur	racy	Speed (7	$\overline{\mathrm{Train}/\mathrm{Test})}$	
	Sowerby	Corel	Sowerby	Corel	
This paper – Full CRF model	88.6%	74.6%	5h/10s	12h/30s	
This paper – Unary classifier only	85.6%	68.4%			
He et al. $-$ mCRF model [1]	89.5%	80.0%	Gibbs	Gibbs	
He et al. – unary classifier only	82.4%	66.9%			

Table 1. Comparison of segmentation/recognition accuracy and efficiency.

Discussion

- □ What I like about this paper:
 - Classification of many classes
 - Publicly released database
 - Simple approach (minus color potential)
- □ What I dislike about this paper:
 - Training is ad-hoc
 - Multiple parameters are set by hand
 - Doesn't improve on referenced work [he-cvpr-04]

Training data split (MSRC-21)

	building	10.8
Distribution of data over training split	grass	19.0
\Box 7 out of 21 classes > 5% of pixels	tree	9.1
1	cow	3.2
	sheep	2.2
	sky	9.5
	aeroplane	1.6
	water	8.3
	face	1.8
	car	3.3
	bicycle	2.8
	flower	2.6
	sign	1.9
	bird	1.5
	book	5.3
	chair	1.8
	road	9.3
	cat	1.7
	dog	1.5
	body	2.3
	boat	0.7

Testing data split (MSRC-21)

	building	10.4
Distribution of data over testing split	grass	19.8
\Box 7 out of 21 classes > 5% of pixels	tree	8.4
	cow	2.9
Similar proportions to training split	sheep	2.3
	sky	9.8
	aeroplane	1.3
□ Guess random, proportionally $\rightarrow \sim 9\%$ chance	water	7.8
	face	1.8
	car	3.4
TextonBoost is 8 times better than chance	bicycle	2.5
	flower	3.5
	sign	3.0
	bird	1.3
	book	5.3
	chair	2.0
	road	8.1
	cat	1.4
	dog	2.1
	body	1.9
	boat	1.0

[shotton-cvpr-08]

□ [shotton-cvpr-08] J. Shotton, M. Johnson, R. Cipolla, *Semantic Texton Forests for Image Categorization and Segmentation*, CVPR 2008

Overview

Goal: (same as before)

□ Motivation:

- 1) Visual words approach is slow
 - ✓ Compute feature descriptors
 - ✓ Cluster
 - ✓ Nearest-neighbor assignment
- 2) CRF is even slower
 - ✓ Inference always a bottle-neck
- □ Approach: operate on pixel values
 - Simple & efficient

□ Result: works well and efficiently

Overview

- Contributions
 - Semantic Texton Forests: local classification with hierarchical information
 - The Bag of Semantic Textons Model
 - Image-level prior to improve semantic segmentation

□ Quick decision tree review...

Decision Trees

□ Who here has a car?

Structure of a decision tree

Encoding decisions

- Randomized Decision Forests
 - Input: "features" describing pixel
 - Output: Predicted class distribution
- □ Approach
 - Each node *n* in the decision tree contains an empirical class distribution P(c|n)
 - **Important**: Learn decision trees such that similar "features" should end up at the **same leaf nodes**

• The leaves $L = \{l_i\}$ of a tree contain most discriminative information \checkmark Classify by averaging $P(c|L) = \frac{1}{T} \sum_{t=1}^{T} P(c|l_t)$

Another histogram of texton-like per pixel!

Features?

- □ Think of the **simplest** features you can do.
- Center a *d*-by-*d* patch around a pixel (5x5)
- Possible features:
 - □ Feature #1: its value in a color channel (CIELab)
 - □ Feature #2: the sum of two points in the patch
 - □ Feature #3: the difference of two points in the patch
 - □ Feature #4: the absolute difference of two points in the patch
- Feature invariance accounted for by rotating, scaling, flipping, affine-ing training data
- Random Decision Tree training:
 - □ Take random subset of training data
 - $\Box \quad Generate random features f from above$
 - $\Box \quad \text{Generate random threshold } t$
 - □ Split data into left I_l and right I_r subsets according to $I_l = \{i \in I_n \mid f(\mathbf{v}_i) < t\}$
 - □ Repeat for each side
- Does this actually work?

This feature maximizes information gain

 $I_{\mathbf{r}} = I_n \setminus I_1$.

(b)

Filters found

- □ Each **patch** represents one leaf node. It is the summation of all the patches from the training data that fell into that leaf.
- □ Learns colors, orientations, edges, blobs

Simple model results

□ Semantic Texton Forests are better than chance (~5%)

	Global	Average
supervised	49.7%	34.5%
weakly supervised	14.8%	24.1%

- MSRC-21 dataset
- □ Supervised = 1 label per pixel
 - Increase one bin in the histogram at a time
- □ Weakly-supervised = all labels in image per pixel
 - Increase multiple bins in the histogram at a time

Adding tricks to the model

□ More extensions with this model: **Bags of Semantic Textons**

How can we get a prior estimate for what is in region *r*?
2 Options:

- 1) Average leaf histograms in region *r* together *P*(*c*|*r*)
 ✓ Good for segmentation priors
- 2) Create hierarchy histogram of node counts H_r(n) visited in the tree for each classified pixel in region r
 - Want testing and training decision paths to match

category

region prior

Histogram-based Classification

- □ Main idea:
 - Have 2 vectors as features
 - ✓ (training-tree's histograms, testing-tree's histograms)
 - Want to measure similarity to do classification
- Proposed approach: Kernalized SVM
 - Kernel = Pyramid Match Kernel (PMK)
 - Computes a histogram distance, using hierarchy information
 - Train 1-vs-all classifiers
- □ Review on Pyramid Match Kernel...

Example pyramid match

Level 0

Example pyramid match

Level 1

Example pyramid match

Level 2

Scene Categorization

- □ The whole image is one region
 - Using histogram matching approach
 - End result is an **Image-level Prior**
- Comparison with other similarity metric (radial basis function, RBF)
 - Unfair? RBF uses only leaf-level counts, PMK uses entire histogram

- K_c = trick to account for unbalanced classes
- Note Mean Average Precision reported here, but **not elsewhere**
- Number of trees has diminishing returns

Figure 5. Categorization accuracy vs number of STF trees.

Improving Semantic Segmentation

- □ Use idea of **shape-filters** to improve classification
- Main idea: After initial STF classification, learn how a pixel's class interacts with neighboring regions' classes

Approach: Learn a *second* random decision forest (segmentation forest)

- Use **different** weak features:
 - ✓ Histogram count at some level $H_{r+i}(?)$
 - ✓ Region prior probability of some class P(? | r+i)
- Difference with shape filters:
 - Shape-filters learn: cow is adjacent to green-like texture
 - Segmentation forest learn: cow is adjacent to grass

□ Trick: multiply with image-level prior for best results

• Convert SVM decision to probability

rectangle r

Computation time

G Fast

- STF feature extraction = 275 ms
- Image categorization = 190 ms
- Segmentation forest = 140 ms
- Total ~ 605 ms
- $\Box TextonBoost = 6000 ms$

MSRC-21 Results

VOC 2007 Segmentation

Discussion

- □ What I like about this paper:
 - Simple concept
 - Good result
 - Works fast (testing & training)
- □ What I dislike about this paper:
 - More difficult to understand
 - Low-resolution classification
 - ✓ Segmentation forest operates at patches
 - Test-time inference is dependent on amount of training
 - \checkmark Must iterate through all trees in the forest at test time
 - Many "Implementation Details" scattered through the paper.
 ✓ What is the trick to get it to work?
 - How dependent is the performance on decision tree parameters?