Content Based Image Search

Mark Desnoyer

Text Search - Bag of Words

Document = Query Corpus Rankings

Current Image Search

On the web uses context around image

Words around it
Words in the alt tag

Those words are treated as a document
Same as normal text

search

But we want pictures, not text!

Query: Horse

Searching With Pictures

How about searching with pictures instead

Using Visual Words For Search

Use visual words paradigm we've seen before
Can use all the text search machinery we already have
But, we're searching with pictures now

The Players

- O. Chum et al., "Total recall: Automatic query expansion with a generative feature model for object retrieval," in *Proc. ICCV*, vol. 2, 2007.
- N. Snavely, S. M. Seitz, and R. Szeliski, "Photo tourism: exploring photo collections in 3D," in *International Conference on Computer Graphics and Interactive Techniques* (ACM New York, NY, USA, 2006), 835-846.
- D. Nister and H. Stewenius, "Scalable recognition with a vocabulary tree," in *Proc. CVPR*, vol. 5, 2006.

SIFT Features

- Succinct descriptors
- Scale invariant
- Robust to changes in lighting, viewpoint, blur etc.
- Therefore, normally used in this search context

Bag of Words First Step - Build a Dictionary

- Must be big to be expressive enough to differentiate objects
- So, cluster SIFT features
- Each cluster is a word in the dictionary
- But K-means clustering 10M+ descriptors is O(NK)

 Hierarchical K-means (Nister)
 Approximate K-means (Chum)

Vocabulary Tree (Nister)

Copyright David Nistér, Henrik Stewénius

Vocabulary Tree (Nister)

Vocabulary Tree (Nister)

Vocabulary Tree (Nister)

Copyright David Nistér, Henrik Stewénius

Vocabulary Tree (Nister)

Approximate Nearest Neighbour (Chum)

- Most of the time in K-Means is spent doing Nearest Neighbour
- Nearest Neighbour can be approximated using kd-trees
- O(N logK) vs. O(NK)

Another Problem - Synonyms

Visual Polysemy. Single visual word occurring on different (but locally similar) parts on different object categories.

Visual Synonyms. Two different visual words representing a similar part of an object (wheel of a motorbike).

Video Google

- Search for recurring objects in a movie
- Synonyms suppressed by enforcing consistency in time
- Stop list used to throw out words that are too common

Photo Tourism Overview

Photo Tourism Scene Recontruction

Automatically estimate

- position, orientation, and focal length of cameras
- 3D positions of feature points

Copyright Noah Snavely

Photo Tourism

<u>Demo</u>

Photo Tourism Limitations

Matching is only performed between pairs of images
Does not scale to large datasets

Chum et al. Experiment

- 5K labeled images of sights at Oxford
- 1M Flickr images from popular tags (distractors)
- Dictionary built from Oxford Images
 16M descriptions -> 1M word dictionary
- Query for landmarks and calculate PR curve using different forms of query expansion

Oxford Buildings Dataset

Landmarks plus queries used for evaluation

- Ground truth obtained for 11 landmarks over 5062 images
- Evaluate performance by mean Average Precision
 Copyright James Philbin

Average Precision

- A good AP score requires both high recall and high precision
- Application-independent

Performance measured by mean Average Precision (mAP) over 55 queries on 100K or 1.1M image datasets

Beyond Bag of Words

• Can we use the **position** and **shape** of the underlying features to improve retrieval quality?

Both images have lots of matches – which is correct?

Beyond Bag of Words

• We can enforce **spatial consistency** between the query and each result to improve retrieval quality!

Lots of spatially consistent matches – **correct result**

Few spatially consistent matches – incorrect result

Beyond Bag of Words

• Extra bonus – gives us localization of the object

Estimating Spatial Correspondences

1. Test each correspondence

Estimating Spatial Correspondences

2. Compute a (restricted) affine transformation (5 dof)

Estimating Spatial Correspondences

3. Score by number of consistent matches

Use RANSAC on full affine transformation (6 dof)

Text Query Expansion

 In text search, some words are similar, but they are different in the dictionary

- e.g. gray and grey
- Improve results by expanding the query to include similar words

o e.g. "grey goose" -> "grey goose gray"

- Similar words are found by clustering on document data
- At query time, relevant clusters are found and pulled in
- False positives add a lot of noise to the results

Image Query Expansion - Baseline

Transitive Closure

Average Query Expansion

Recursive Average Query Expansion

Multiple Image Resolution Expansion

Query Expansion

Query image

Originally retrieved

Retrieved only after expansion

http://arthur.robots.ox.ac.uk:8080/search/? id=oxc1_hertford_000011

Results - PR Curves Before & After Expansion

Results - Effect Of Distractors

 My distractors: 9K images from searches like "building", "cathedral", "library", "historic", "spire" etc.

	Ground	d truth	Oxford + Flickr1 dataset						Oxford + Flickr1 + Flickr2 dataset						Oxford + mine
	OK	Junk	ori	qeb	trc	avg	rec	sca	ori	qeb	trc	avg	rec	sca	sca
All Souls	78	111	41.9	49.7	85.0	76.1	85.9	94.1	32.8	36.9	80.5	66.3	73.9	84.9	78.1
Ashmolean	25	31	53.8	35.4	51.4	66.4	74.6	75.7	41.8	25.9	45.4	57.6	68.2	65.5	66.3
Balliol	12	18	50.4	52.4	44.2	63.9	74.5	71.2	40.1	39.4	39.6	55.5	67.6	60.0	54.8
Bodleian	24	30	42.3	47.4	49.3	57.6	48.6	53.3	32.3	36.9	43.5	46.8	43.8	44.9	38.2
Christ Church	78	133	53.7	36.3	56.2	63.1	63.3	63.1	52.6	18.9	55.2	61.0	57.4	57.7	53.0
Cornmarket	9	13	54.1	60.4	58.2	74.7	74.9	83.1	42.2	53.4	56.0	65.2	68.1	74.9	53.6
Hertford	24	31	69.8	74.4	77.4	89.9	90.3	97.9	64.7	70.7	75.8	87.7	87.7	94.9	83.4
Keble	7	11	79.3	59.6	64.1	90.2	100	97.2	55.0	15.6	57.3	67.4	65.8	65.0	42.8
Magdalen	54	103	9.5	6.9	25.2	28.3	41.5	33.2	5.4	0.2	16.9	15.7	31.3	26.1	10.3
Pitt Rivers	7	9	100	100	100	100	100	100	100	90.2	100	100	100	100	40.2
Radcliffe Cam.	221	348	50.5	59.7	88.0	71.3	73.4	91.9	44.2	56.8	86.8	70.5	72.5	91.3	82.1
Total	539	838	55.0	52.9	63.5	71.1	75.2	78.2	46.5	40.5	59.7	63.1	67.0	69.6	64.7