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types of manifolds  

exhaust 
manifold

low-D surface 
embedded in 
high-D space

Sir Walter 
Synnot Manifold

1849-1928



  

Find a low-D basis for 
describing high-D data.
 
X → X'  S.T.   
dim(X') << dim(X)

uncovers the intrinsic 
dimensionality 
(invertible)

manifold learning  



  

plenoptic function / motion / occlusion

manifolds in vision  



  

appearance variation

manifolds in vision  

images from hormel corp.



  

deformation

manifolds in vision  

images from www.golfswingphotos.com



  

1.  data compression

2. “curse of dimensionality”

3.  de-noising

4.  visualization

5.  reasonable distance metrics *

why do manifold learning?  



  

reasonable distance metrics  



  

reasonable distance metrics  



  

reasonable distance metrics  

?



  

reasonable distance metrics  

?

linear interpolation



  

reasonable distance metrics  

?

manifold interpolation
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Isomap 
  
For n data points,  and a distance matrix D,
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...we can construct a m-dimensional space to 
preserve inter-point distances by using the top 
eigenvectors of D scaled by their eigenvalues.
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Infer a distance matrix using 
distances along the 
manifold. 

Isomap
  



  

Isomap
  
1. Build a sparse graph with K-nearest neighbors

D
g 
=

(distance matrix is
sparse)



  

Isomap
  
2. Infer other interpoint distances by finding 
shortest paths on the graph (Dijkstra's 
algorithm).

D
g 
=



  

Isomap
  
3. Build a low-D embedded space to best 
preserve the complete distance matrix.

Error function:

Solution – set points Y to top eigenvectors of D
g 

L2 norm

inner product 
distances in new 
coordinate 
system

inner product 
distances in 
graph



  

Isomap
  
shortest-distance on a graph is easy to 
compute



  

Isomap results: hands
  



  

- preserves global structure 

- few free parameters

- sensitive to noise, noise edges

- computationally expensive (dense 
matrix eigen-reduction)

Isomap: pro and con
  



  

Find a mapping to preserve 
local linear relationships 
between neighbors

Locally Linear Embedding
  



  

Locally Linear Embedding
  



  

1. Find weight matrix W of linear 
coefficients:

Enforce sum-to-one constraint with the 
Lagrange Multiplier:

LLE: Two key steps
  



  

2. Find projected vectors Y to minimize 
reconstruction error

must solve for whole dataset 
simultaneously

LLE: Two key steps
  



  

We add constraints to prevent 
multiple / degenerate solutions:

LLE: Two key steps
  



  

cost function becomes:

the optimal embedded coordinates are 
given by bottom m+1 eigenvectors of 
the matrix M

LLE: Two key steps
  



  

LLE: Result
  
preserves local 
topology

PCA

LLE



  

- no local minima, one free parameter
 
- incremental & fast

- simple linear algebra operations

- can distort global structure

LLE: pro and con
  



  

● Laplacian Eigenmaps (Belkin 2001)
● spectral method similar to LLE
● better preserves clusters in data

● Kernel PCA

● Kohonen Self-Organizing Map 
(Kohonen, 1990)

● iterative algorithm fits a network of pre-
defined connectivity 

● simple, fast for on-line learning
● local minima
● lacking theoretical justification 

Others you may encounter
  



  

the “curvier” your 
manifold, the denser your 
data must be

No Free Lunch
  

bad OK!



  

Manifold learning is a key tool in your 
object recognition toolbox

A formal framework for many different 
ad-hoc object recognition techniques

conclusions
  


