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Abstract

We consider the problem of segmenting an image into
foreground and background, with foreground containing
solely objects of interest known a priori. We propose an in-
tegration model that incorporates both edge detection and
object part detection results. It consists of two parallel
processes: low-level pixel grouping and high-level patch
grouping. We seek a solution that optimizes a joint group-
ing criterion in a reduced space enforced by grouping cor-
respondence between pixels and patches. Using spectral
graph partitioning, we show that a near global optimum
can be found by solving a constrained eigenvalue problem.
We report promising experimental results on a dataset of15
objects under clutter and occlusion.

1. Introduction

The problem we are to solve is illustrated in Fig. 1: par-
tition an image into foreground and background, with ob-
jects of interest in the foreground and unknown clutters in
the background.
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Figure 1. Object-specific figure-ground segregation.

In most object segmentation formulations, only one type
of objects is considered and object knowledge is mainly em-
ployed to overcome data noise. It is often used when the
object of interest is known to be present and some initial es-
timation of the size and location can be obtained. For exam-

ple, in the deformable template approach [9], a deformable
prototype is used with a deformation space modeled from
training data. Some well-known applications are: detecting
the eye and mouth [11], tracking shapes in motion [1], and
segmenting anatomical parts in medical images [5].

An alternative to deformable templates for object seg-
mentation is proposed in [2]. Instead of a globally con-
strained template, object knowledge is represented using
pairs of image fragments and their figure-ground labeling
from a training set. An energy function is formulated for
segmenting a test image so that it can be covered by a set
of fragments whose appearances match with the data and
whose labeling are locally compatible.

This exemplar-based approach is appealing for its flex-
ible representation. However, the authors only showed re-
sults on low-resolution (40 × 30) images, each of which
has an object occupying the center, with little background.
There are a few problems not easily addressed in their
framework. 1) Hallucination: if falsely detected fragments
happen to align well locally, then there is no way to prevent
a wrong segmentation. This occurs very often when the
background has significant clutter. 2) Imprecision: since
the local segmentation of training examples is used for any
test image, details of region boundaries are inevitably lost.
3) Single object: the energy function defined might be suit-
able for one object present in the image, not for multiple
objects from the same or different classes. It is not trivialto
relate their cover scores from different objects so that partial
covers from multiple objects are always inferior to a whole
cover for one true object.

All these top-down object segmentation methods require
image data to conform to object models, whether encoded
in templates or fragments. Here, adopting image patches
as a representation, we propose a parallel segmentation and
recognition system that also addresses the above mentioned
shortcomings of [2].

Our basic idea is that image segmentation should take
both low-level feature saliency and high-level object famil-



iarity [6] into account. With the guidance of object knowl-
edge, segmentation would not get lost in imaging noise and
background clutter. With the verification of low-level fea-
ture saliency, we prevent the hallucination of falsely de-
tected object parts standing out from their surroundings.
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Figure 2. Our approach. A set of patches are detected and
identified with object parts in a training set. Patch grouping
is to find patches of consistent spatial configurations. Every
object part hypothesis is also associated with a local seg-
mentation of pixels. Here shows an overlay of such local
segmentations. Dark for figure, white for ground, gray for
the noncommittal. At the low-level, edges are first detected.
Pixel grouping is to find pixels of similar intensities. Object
specific figure-ground segregation is obtained by coupling
the patch and pixel grouping in their solution space, enforc-
ing the consistency endowed by the patch-pixel association.

We formulate our method in a graph theoretic frame-
work. Illustrated in Fig. 2, we first detect patches and edges,
and then we build two relational graphs for patch and pixel
grouping. They share the same representation and group-
ing criterion, except that the former has patches as nodes

and hypothesis compatibility as affinity between two nodes,
while the latter has pixels as nodes and feature similarity
as affinity between two nodes. We aim at optimizing a
combined grouping criterion, in a reduced solution space
where patch-pixel correspondence is encoded. These con-
straints facilitate figure-ground segregation to produce ob-
ject patches and their pixels in the foreground group, and
the rest in the backgroud group. Built upon our earlier work
on constrained cuts [10], we can solve near-global optimal
solutions efficiently.

2. Integration Model

In this section, we focus on the integration problem, i.e.,
given pixel grouping cues, patch grouping cues, pixel and
patch correspondence cues, how do we integrate them to
make a global segregation? We will illustrate what these
cues represent here, and defer the discussion on how to get
these cues till the next section.

2.1. Representation: Affinity and Indicators

We take a graph-theoretic approach. A relational graph
is specified by the following: nodes, edges and their associ-
ated weights. Nodes represent the elements to be grouped.
Every pair of nodes are connected by an edge, with a weight
describing the likelihood that the two elements belong in
one group. We assume this weight is nonnegative and sym-
metric. If we haveN nodes andM other nodes, then the
pairwise relationships between them can be captured in an
N ×M matrix, called theaffinity matrix. When they are the
same set of nodes, the affinity matrix becomes symmetric.

We formulate our grouping problem by graphG =
{V, U; A, B, C}, where node setV = {1, · · · , N} denotes
a total ofN pixels, node setU = {N + 1, · · · , N + M}
denotes a total ofM patches, affinity matrixAN×N denotes
pixel similarity, affinity matrixBM×M denotes patch com-
patibility, association matrixCN×M denotes pixel-patch
mutual ownerships. See Fig. 3.

Object-specific figure-ground segregation now becomes
a node partitioning problem. Given node setV, let Γ2

V
=

{V1, V2} denote a division ofV into two disjoint sets:V =
V1 ∪ V2, V1 ∩ V2 = ∅. We want to findΓ2

V
andΓ2

U
so

that V1 andU1 contain object pixels and patches,V2 and
U2 have the rest of pixels and patches as background.

We introduceprobabilistic group indicatorsto represent
a partition. LetX = [X1, X2], whereXk(i) = Pr(i ∈ Vk).
For bipartitioning,X1(i) + X2(i) = 1, ∀i. This rendersX1

a sufficient descriptor forΓ2
V
. Similarly, we defineY =

[Y1, Y2] for patch groupingΓ2
U
.
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Figure 3. Graph representation. We haveN pixels in an
image, andM patches given by an object part detection sys-
tem. They each becomes a node in the graph on the right.A:
connections between pixels. They are derived from an edge
map, with low value for pixels on the two sides of an edge.
The affinities of a set of regularly spaced pixel nodes to their
neighbours are superimposed on the edge map. Darker for
larger values.B: connections between patches. They are
derived from object models, with low value for patches mis-
aligned spatially for the same object hypothesis. Thicker
lines for larger affinity.C: connections between pixels and
patches. Each pixel has different associations to different
patches. Here is a summary of associations to all patches.
Darker means larger association to an object part.

2.2. Criterion: Goodness of Grouping

Partitioning withinV orU itself is a basic grouping prob-
lem, for which we adopt the normalized cuts criterion in [7].
Take pixel grouping as an example. Let’s define theconnec-
tionsC between node setsO, O′ ⊂ V to be the total weights
on edges linking them:

C(O, O′; A) =
∑

i∈O,j∈O′

A(i, j). (1)

ThedegreeD of a set is its connections to all the nodes:

D(O; A) = C(O, V; A). (2)

A good partition has most of the weights contained within
the set itself. This can be measured inconnection ratioR:

R(O; A) =
C(O, O; A)

D(O; A)
.

Since we want to find a bipartition, the normalized cuts cri-
terionε aims to maximize the sum of the connection ratios
for the two sets:

ε(Γ2
V; A) =

2
∑

k=1

R(Vk; A). (3)

Likewise, for the case of patch grouping, we desire a parti-
tion that maximizeε(Γ2

U
; B).

GivenΓ2
V

andΓ2
U
, our joint criterionε̄ takes both indi-

vidual goodness and relative importance into account:

ε̄(Γ2
V, Γ2

U; A, B) =

2
∑

k=1

R(Vk; A) ·
D(Vk; A)

D(Vk; A) + D(Uk; B)

+

2
∑

k=1

R(Uk; B) ·
D(Uk; B)

D(Vk; A) + D(Uk; B)
. (4)

A is weighed less if its values are in general less thanB.
Note that this is different from a convex combination of
ε(Γ2

V
; A) andε(Γ2

U
; B). Here we linkV1 to U1, V2 to U2,

and weight them separately. In fact, we have:

ε̄(Γ2
V, Γ2

U; A, B) = ε

(

Γ2
V∪U;

[

A

B

])

. (5)

We introduce some further notation. For any nonnega-
tive matrixA, let DA denote its degree matrix. It is a diag-
onal matrix withDA(i, i) =

∑

j A(i, j), ∀i. When group
indicators are binary, we have:

ε̄(X, Y ; A, B) =

2
∑

k=1

ZT
k WZk

ZT
k DW Zk

, (6)

Z =

[

X

Y

]

, W =

[

A

B

]

, DW =

[

DA

DB

]

. (7)

We use this formula to extend the definition ofε̄ to the real
domain so that it gives a meaningful measure whenX and
Y are probabilistic.

2.3. Criterion: Feasibility of Grouping

Measurement̄ε still leaves pixel grouping and patch
grouping under-constrained, which can lead to uninter-
pretable solutions in our object-specific figure-ground seg-
regation. Ideally, patches inU1 bring their pixels intoV1,
and vice versa. When such grouping correspondence is en-
forced, we have a smaller but meaningful set of segmenta-
tions to look at. Among these feasible solutions, the one
yielding the best̄ε corresponds to the desired grouping.

If spatial configuration of some patches are consistent
with their part labels, then they are inU1. This decision so
far has nothing to do with the low-level pixel grouping; it



is entirely based on high-level object models. However, the
implication of this patch grouping on pixels is clear. Pix-
els claimed by the patches are more likely to be inV1, re-
gardless of their dissimilarity in low level features. Con-
versely, pixels of similar features are inV1 in pixel group-
ing, the patches claiming these pixels are more likely to be
in U1, regardless of their incompatible hypotheses. See Fig.
4. This happens naturally for falsely detected parts which
rarely have boundary support in low-level features, there-
fore we can pull them into background easily.

Y → X X → Y

Figure 4. Correspondence constraints between high-level
and low-level grouping. The foreground probability of
nodes at one level are influenced by their affinitive neigh-
bours at the other. Left: when some patches consistently
indicate an object, their common pixels are likely to be fore-
ground; when in conflict, they compete to claim their com-
mon pixels with their association strengths. Right: for pix-
els within a coherent region, they unanimously bring their
common patch into the corresponding group. Otherwise,
the patch is drawn to the identity of its dominant pixels.

Such double competition between high-level grouping
and low-level grouping can be captured in constraints on
the two group indicatorsX andY through the association
affinity C. We first encode the between-patch competition
by re-weighting among patches:

C̄(i, p) = C(i, p) ·
C(i, p)

maxq C(i, q)
. (8)

For pixeli, its association with patchp does not change if it
is the strongest among all the patches; otherwise,C(i, p)
gets damped by its proportion to the maximum weight,
weak connections becoming even weaker.

After the non-maximum suppression among patches, we
consider between-pixel competition by normalizing weights
among pixels:

Y = D−1
C̄

C̄X. (9)

This equation links the probabilities for nodes in one set
to the other. For example, given the foreground probabil-
ity of every pixel, the foreground probability of a patch is
the expectation of those of its member pixels. If the major-
ity of these pixels are inV1, then this patch as well as any
other patch claiming most of these pixels is probably inU1.
Eqn. (9) can be rewritten as

LZ = 0, L = [D−1
C̄

C̄,−I]. (10)

whereI is an identity matrix of appropriate dimensions and
L is assumed full rank.

2.4. Solution: Constrained Optimization

Putting the goodness and feasibility of grouping to-
gether, we have a constrained optimization problem:

Z∗ = arg max ε̄(Z; W ), subject to LZ = 0. (11)

Our low-level pixel grouping and high-level patch grouping
are coupled in their solution space through pixel-patch in-
teractions. We have a modular computational framework,
yet it is not at all feedforward.

Note that our formulation is not the same as maximizing
ε(Γ2

V
; A + B̄), which is a simple addition of two grouping

processes, with the patch affinityB converted into an equiv-
alent pixel affinity matrixB̄ = (D−1

C̄
C̄)T B(D−1

C̄
C̄) using

the constraint in Eqn. (9).

With z = Z1 − α, whereα =
ZT

1
DW Z1

1T DW 1 is a partition-
dependent constant, we turn the above into a constrained
eigenvalue problem:

z∗ = argmax
zT Wz

zT DW z
, subject to Lz = 0. (12)

The solution is the eigenvector with the largest nontrivial
eigenvalueλ < 1:

QD−1
W Wz∗ = λz∗, (13)

whereQ is a projector onto the feasible solution space:

Q = I − D−1
W LT (LD−1

W LT )−1L. (14)

We avoid explicitly computing Q by calculating
QD−1

W Wz∗ directly in the iteration of an eigensolver.
Usually the rank ofL is small, so it can be done with little
increase in time and space complexity.

Here is an overview of our algorithm.

1: Detect edges.
2: Evaluate pixel feature similarityA.
3: Detect patches.
4: Evaluate patch consistencyB.
5: Evaluate pixel-patch ownershipC.
6: FormDW andL.
7: SolveQD−1

W Wz∗ = λz∗.
8: Thresholdz∗ for a discrete segmentation.



3. Implementations

An image is first convolved with quadrature pairs of ori-
ented filtersf ’s to extract orientation energyOE [4]. Let
i
¯

denote the location of pixel or patchi. Pixel affinityA is
inversely correlated with the maximum magnitude of edges
crossing the line connecting two pixels:

A(i, j) = exp

(

−
1

2σ2
e

·

[

maxt∈(0,1) OE(i
¯
+ t · j

¯
)

maxk OE(k
¯
)

]2
)

,

OE = (g ∗ fodd)
2 + (g ∗ feven)2. (15)

A(i, j) is low if i, j are on the two sides of a strong edge.
For patches, we use the results provided in [3]. Shown in

Fig. 5, parts are represented by exemplars sampled from a
few angles and scales. Local color, intensity, and orientation
histograms are computed as features.

Figure 5. Samples of object parts in a training set.

Based on an optimal distance measured learned from a
training set in order to maximize discrimination among ob-
jects, patchp is labeled with the nearest neighbourp′ with
scored(p, p′), see Fig. 6. There could be multiple patches
detected at the same location, corresponding to multiple ob-
ject part hypotheses of the same local area in the image.

We measure the quality of detected patches in two terms.
One is its own credibility denoted in a diagonal matrixEC :

EC(p, p) = exp

(

−
1

2σ2
p

[

d(p, p′) − dmin

dmax − dmin

]2
)

, (16)

wheredmax anddmin are the minimum and maximumd
values of all patches in imageg. The more similar patch
p is to p′, the better the confidence. The other is its com-
patibility with nearby patches. LetS(p′, p) be the binary
object silhouette of the training image to which partp′ be-
long, registered to the locationp in imageg. Two patches
p andq are consistent, ifS(p′, p) andS(q′, q) overlap well.

This measure increases with the distance betweenp andq:

ES(p, q) = exp

(

−
1

2σ2
s

[

1 −
||S(p′, p) ∧ S(q′, q)||1
||S(p′, p) ∨ S(q′, q)||1

]2
)

·

(

1 − exp

(

−
1

2σ2
d

· −
||p

¯
− q

¯
||22

r(p) · r(q)

))

, (17)

where∧ and∨ are logical and/or operations,|| · ||k is Lk-
norm,r(p) is the radius of patchp. In particular,ES(p, q) =
0, if p

¯
= q

¯
. These two factors combined, we have patch

compatibility measuresE for patch grouping:

E = ET
C · ES · EC . (18)

E = 0.6

E = 1.0

E = 0.0

Figure 6. Patches have high affinity if their correspond-
ing object silhouettes overlap well.

S(p′, p) projects an expected local segmentation of pix-
els. We denote it by matrixHS , each column of which has
N pixels, taking the corresponding values ofS(p′, p) within
a window25% larger than the patch itself:+1 for object
pixels and−1 for background pixels. Taking an average
of HS based on the affinity with neighbouring pixels and
patches, we refine this initial estimation by (Fig. 7):

H = A · HS · E. (19)

Finally, since each detected patchcouldhave both fore-
ground and background pixels, we assign two nodes to it.
The resulting foreground and background patch nodes take
pixels of positive and negative associations respectively,
have no affinity between them and take the same affinity
patterns as their parents:

B = γ

[

E

E

]

, γ =
1

2
·
1T A1

1T E1
(20)

C =
[

H � (H > 0), −H � (H < 0)
]

, (21)

where� is element-wise product,γ is to balance the pixel
and patch graphs so that their total degrees match.

We have four parameters for the Gaussian functions used
to evaluate these affinity measures. They are fixed for all
test images:σe = 0.02, σp = 0.33, σs = 0.08, σd = 0.17.

Once we get the optimal eigenvector, we compare10
thresholds uniformly distributed within its range and choose
the discrete segmentation that yields the best criteriaε̄.
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Figure 7. Signed pixel-patch associations.HS is a high-
level projection to imageg based on object models. After
diffusion with both pixel and patch affinity,H is refined
and propagated. Due to the signed representation, the final
association is canceled out if a boundary is expected at a
uniform region. Each pixel has different associations to dif-
ferent patches. Here we show the summation of its weights
to all patches. Dark for foreground, white for background.

4. Results

541s 150s 206s

Pixel only Pixel w/ ROI Pixel-patch

Figure 8. Comparison of pixel grouping, focused pixel
grouping and pixel-patch grouping. Row #1: optimal eigen-
vectors. Row #2: segmentations. The MATLAB running
times are given with1GHz CPU and1GB memory.

In Fig. 8, we compare grouping in three conditions:
#1: low-level pixel grouping only, whereε(Γ2

V
; A) is max-

imized;#2: we use object detection to narrow down a re-
gion of interest (ROI) which contains several candidate ob-
jects, and then optimizeε(Γ2

V
; A) for these pixels;#3: our

joint pixel-patch grouping. Low-level grouping alone is at-
tracted to a large uniform region that is irrelavent to our
objects of interest. With focus of attention, it is still eas-
ily distracted by falsely detected object parts, with strong
edges separating from the background. Only with the guid-
ance of patch grouping, the object of interest, despite very
weak contrast at its boundaries, pops out from the rest of the
clutter. In addition, because the solution space is reduced,

the computational time is in fact reduced.

In Fig. 9, the first4 results show that occlusion, impreci-
sion of part locations, orientation and scales are tolerated in
the joint segmentation, with boundaries cleanly determined
by the data. The last two results show that patches them-
selves are not sufficient to describe an object. When the
detected patches are not correct so that boundaries are ob-
scured, then the object could be merged into background as
a whole. When patches do not cover the object, the joint
grouping could damage or even miss the object.

5. Conclusions

We have developed a joint optimization model to inte-
grate detected object parts and edges to produce object-
specific figure-ground segregation. Our results show that it
does not hallucinate object boundaries like most top-down
object segmentation, nor does it get lost in regions of un-
interested features as most low-level image segmentation.
Imprecision of patch detection and poor contrast of edges
are tolerated to certain degree.

However, since we lack a good representation of objects
for segmentation, especially for the global shape informa-
tion rather than just the patches provided, our integration
model is not fully demonstrated. In particular, we would
like to include another process - contour grouping. With the
guidance of object models, we might eliminate the major
problem of low-level contour grouping: random continua-
tion of edgels [8]. How to get good estimation of grouping
correspondence also warrants further research.

On the other hand, our formulations can also be consid-
ered an integration framework for node grouping and hyper-
edge grouping. Instead of viewing patches as independent
nodes, we can regard them as hyper-edges defined on ba-
sic elements - pixel nodes. The interaction matrix describes
the incidence relationships. This provides a way to include
high-order relationships into one grouping framework. It
has already been noted that pairwise relationships are not
enough in describing grouping constraints, for example we
need to describe cues or hypotheses that are only valid de-
pending on other cues. Our work could potentially provide
such a representation.
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Figure 9. Results for six images.
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