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Abstract

We address the problem of learning object class models and
object segmentations from unannotated images. We intro-
duce LOCUS (Learning Object Classes with Unsupervised
Segmentation) which uses a generative probabilistic model
to combine bottom-up cues of color and edge with top-down
cues of shape and pose. A key aspect of this model is that
the object appearance is allowed to vary from image to im-
age, allowing for significant within-class variation. By it-
eratively updating the belief in the object’s position, size,
segmentation and pose, LOCUS avoids making hard deci-
sions about any of these quantities and so allows for each
to be refined at any stage. We show that LOCUS success-
fully learns an object class model from unlabeled images,
whilst also giving segmentation accuracies that rival exist-
ing supervised methods. Finally, we demonstrate simulta-
neous recognition and segmentation in novel images using
the learned models for a number of object classes, as well
as unsupervised object discovery and tracking in video.

1. Introduction
Object recognition is one of the fundamental problems in
computer vision. A practical object recognition system
needs to be able to recognize tens of thousands of classes
of objects and learn about new object classes from a small
number of examples. When dealing with this number of
classes, it is essential that learning does not require any hu-
man involvement in annotating training images. This pa-
per addresses the problem of learning a model of an object
class from a small number of example images which have
not been segmented or marked up in any way. Instead, the
object segmentation is inferred during the learning process.

LOCUS uses a generative model to combine bottom-up
cues of color, texture and edge with top-down cues of object
shape and pose. The generative model provides a frame-
work for performing localisation, segmentation and pose es-
timation simultaneously. Rather than making any hard de-
cisions, an iterative procedure allows successive refinement
of each object’s segmentation, its position and its pose.

Our key assumption is that whilst there can be signif-
icant changes in color/texture from one object instance to
another, the object shape is consistent, and the variability of
color/texture within a single instance of an object is limited.

Hence, LOCUS aims to learn a representative object shape
which (after undergoing a deformation, shift and scale) de-
fines object interior and exterior regions of low color/texture
variability within a single image, but typically immense
variability across all the training images.

2. Related work

Previous approaches to learning object models can be cate-
gorised by the degree of human intervention required. The
most labour-intensive approaches involve models whose
structure is hand-crafted for a particular object class [1] or
that require object-specific landmarks to be annotated on all
training images [2]. More recent approaches use models ap-
plicable to a range of objects [3] or object classes [4, 5] but
still require hand-segmented training data and so would not
scale to large numbers of classes. A less labour-intensive
alternative in [6] uses motion in video to learn an object
model, which is then applied to still images. However, this
method only learns the variability in appearance of a single
object (e.g. due to pose and illumination); it does not cap-
ture variation between different objects of the same class.

Now let us turn to unsupervised approaches which do not
require hand-segmented training data. Constellation mod-
els [7] can be learned from cluttered, unsegmented images.
However, due to computational restrictions, such models
learn a sparse set of parts that do not cover the entire object
and so do not allow for object segmentation. Alternatively,
Borenstein and Ullman [8] use the overlap between auto-
matically extracted object fragments to determine the fore-
ground/background segmentation. However, as no global
shape model is used, there is no guarantee that the resulting
cover corresponds to an actual object and is not just caused
by background clutter resembling random object parts.

Our approach learns from unsegmented, cluttered im-
ages using a generative model incorporating both a global
shape model and bottom-up edge and color cues. The part
of our model used to infer the segmentation is similar to the
stand-alone segmentation tool GrabCut [9]. However, in our
case the segmentation is guided by the object class model
rather than by a human user. The palette-invariance in our
model builds on probabilistic index map (PIM) models [10],
but LOCUS uses a more expressive color distribution in the
entries of the palette, and introduces a deformation model
for the index maps.
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3. The LOCUS Generative Model
Figure 1 shows the hierarchical generative model of images
used in LOCUS. Each class is represented by describing the
process of forming a set of images containing an object of
that class. The aim is to infer the details of this process
given an image set and so determine the location, segmen-
tation and pose of each contained object, whilst learning a
common class model for all the objects.

The class-specific information is captured in the class
mask model defining the broad global shape, the edge
model defining the typical edge locations and (optionally)
in a mild prior on the appearance features (color or tex-
ture). In addition, each image instance has hidden vari-
ables for its own object position, size, deformation, mask
and appearance distribution or palette (either over color or
texture). By allowing different object instances to have dra-
matically different appearance distributions, we make our
model palette-invariant, similar to [10]. Even though the
palette is treated as a hidden variable special to a particu-
lar image, the large number of pixels and low variability of
color or texture within an object make the palette inference
possible. Therefore, the object is defined primarily by its
shape, edge map, and in terms of appearance, by the self-
similarity of its colors or texture within a single image, in-
stead of a strong global color or texture model. This palette-
invariance allows us to cope with the dramatic appearance
differences among different objects of the same class. For
example, different horses can be brown, black, yellow, red,
white or spotted but their shape remains consistent. This
flexibility is illustrated in Fig. 2, where we show that the
learned class mask model is typically quite strong, while the
appearance of different instances of the same object varies
dramatically.

It is important to note, however, that while our model
performs well on segmentation tasks even when full palette
invariance is assumed, we get an additional boost in recog-
nition performance from capturing a (typically weak) class-
dependent prior distribution over the palettes.

We augment each image I by creating a corresponding
edge image e using a standard Canny edge detector. Our
generative model is of both the normal image and the edge
image, which are treated as separate observations. The sta-
tistical process of generating these two images is illustrated
in Figure 1. First a (smooth) deformation field as well as
an object position and size are sampled. Next the class
mask probability image and edge mean and variance images
are sampled from their respective prior distributions. These
mask/edge images are then deformed by the deformation
field, scaled and translated according to the previously gen-
erated position and size variables. The mask defining the
foreground-background segmentation of the image is sam-
pled from the transformed mask probability image. A fore-
ground edge image is sampled using the transformed edge

Deformation field D

Position & size T

Class mask prob. π Class edge prob. µo,σo

Edge image  e

Image I

Object 
appearance λ1

Background 
appearance λ0

Mask   m

Different 
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model for each 
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Shared between 
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Figure 1: Illustration of the LOCUS generative model for im-
ages of an object class (in this case, faces). Class-specific infor-
mation is contained in the class mask and edge probability models,
which govern the broad shape and typical edge locations for an ob-
ject class. The position, size, deformation, mask and appearance
of individual object instances are allowed to vary from image to
image. This generative process is detailed in in Section 3.

mean and variance images, and composited with a back-
ground edge image sampled from a background edge model
to create the edge image. Finally, object and background ap-
pearance distributions are sampled and used with the mask
to form an image.

In the rest of this section we will describe the elements
of this model in more detail, and then use it in Section 4 to
learn the object class parameters and perform unsupervised
image segmentation through probabilistic inference.

The class mask and edge models

The class mask and edge models define distributions over
the shape and edge locations of instances of the object class.
They are illustrated at the top of Figure 1. We represent the
object class by the learned parameters of these two models
and in the simplest version of LOCUS they are the only
model elements shared between images.

The class mask probability image defines a distribution
over the shape of an object of that class in a canonical pose.
It consists of a real-valued number πi ∈ [0, 1] for each
pixel, giving the probability that the pixel lies inside the
object. The indicator mask variables mi are used to define
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the foreground-background segmentation, so that

p(mi = 1) = πi. (1)

These probabilities can be arranged into an image π =
{π1, π2, . . .} as illustrated in Figure 1. We define a prior
distribution over π to be a product of beta distributions
P (π) =

∏
i Beta(πi |u0, u1), where we set both the

pseudo-counts u0 and u1 to be unity.
The class edge model defines a distribution over the pres-

ence or absence of edges for an instance of the class in a
canonical pose. It consists of a Gaussian distribution over
the Canny edge strength ei for each pixel. The edge model
is defined by mean image µ = {µi}I

i=1 and a variance im-
age σ = {σi}I

i=1, which define the Gaussian models on
edge observations. We have two such models, one for the
background and another for the object, denoted by µb,σb

and µo,σo, respectively. Therefore,

p(ei|mi = 1) = N (ei|µo
i , σ

o
i )

p(ei|mi = 0) = N (ei|µb
i , σ

b
i ).

For both the background and the foreground,
we define a prior distribution over µ and σ
which is a product of Normal-Gamma distributions
P (µ,σ) =

∏
i NormalGamma(µi, σi |me, λe, ae, be),

where the hyper-parameters me, λe, ae, be are chosen to
give a broad prior distribution. The priors on the class
shape and edge models define how much within-class
variation we expect a priori, and help regularize learning.
We use the same hyperparameters for all classes.

The preceding set of equations define a complete genera-
tive model of an edge map, with mask variables segmenting
the object treated as hidden variables. However, in what
follows we enrich the mask and edge model by transform-
ing the prior distributions before generating mask and edge
responses.

The deformation field
The deformation field allows for the shape of each object in-
stance to vary from the canonical shape, due to within-class
variability, changes in object pose or small changes in view-
point. Our model has some similarities with that of Kannan
et al [11] except that the deformation field is constrained to
be smooth and overlapping patches are not used. We di-
vide the image into discrete blocks (of 5 × 5 pixels) and
associate a deformation vector di with each block, indexed
by i. The deformation vectors are constrained to belong to
a fixed set of discrete shifts, where a maximum shift size
is imposed to keep this set relatively small (typically a few
hundred shifts). This restriction is appropriate because large
translations can be captured by the separate global transfor-
mation described below. The set of deformation vectors for
all blocks D = {d1,d2 . . .} defines the deformation field
for an image.

The prior over the deformation field D is a Markov Ran-
dom Field (MRF) which penalises the squared difference
between neighbouring vectors,

P (D) =
1
Z

exp
∑

(i,j)∈Ē

−α|di − dj |2 (2)

where the distance |di − dj |2 is the Euclidean distance be-
tween the two vectors and Ē is the set of all edges in a
4-neighbour connected grid. The constant α controls how
smooth the deformation can be (i.e. how much within-class
deformation is allowed) and is currently set by hand to a
fixed value.

The deformation field is applied to deform the class
model latent images π,µo and σo. For example, the de-
formation D can be applied to the mask probability image
π to create a deformed image π̃ using

π̃(x) = π(x − di) (3)

where x is a point in the ith block of π̃. Hence, it is possible
for a pixel in π to be duplicated when the deformation is
applied, allowing for local changes in scale.

Position and size transformation
Whilst the deformation model allows for local changes in
pose and shape, the overall position and size of the object
is handled by a separate global transformation T defined
as a scaling S followed by a translation t. Following [12],
we discretise the space of transformations and restrict it to
all whole-pixel translations at a small fixed range of scales.
The ratio between successive scales was set at 1.2 as only a
moderately coarse discretisation of the scale range is needed
because the deformation field can also model small changes
in scale.

The transformation can be applied to the deformed mask
probability image π̃ to create a transformed, distorted ver-
sion π̄ using π̄(x) = π̃(x/S − t). (4)
Although we currently restrict the global transformation to
a translation and scale, we could extend our model to allow
full affine transforms, as described in [13].

The mask model
As indicated above, for each image, the ith pixel with mea-
surement zi (a vector representing color and/or texture) has
an associated mask variable mi which is 1 if that pixel is
part of the object and 0 if it is part of the background. This
choice of a binary mask (rather than a real valued mask)
leads to more efficient and robust inference [14]. The de-
pendence of the mask on the class mask probability image
π is now given by

Pclass(m |π) =
∏

i
π̄mi

i (1 − π̄i)1−mi

where π̄i is the ith element of a deformed, transformed ver-
sion of π.
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We would also like to specify a prior which favours short
segmentation boundaries that are aligned with intensity gra-
dients in the image, as used in GrabCut[9]. This can be
achieved by using an MRF prior of the form

Pmrf(m | γ, β)=
1
Z

exp
∑

(i,j)∈Ē

−δ(mi �=mj)γe−β||zi−zj ||2

where Ē denotes the edges in an 8-neighbour connected
grid (i.e. connected horizontally, vertically and diagonally).
When the constant β = 0, this is simply an Ising prior,
encouraging short boundaries. We set β > 0 so that this
constraint is relaxed in regions of high contrast, favouring
segmentations which align with contrast edges in the image.
The setting of the constants γ and β is discussed in [9].

We select between these two distributions using a latent
switch variable s so that our mask likelihood is

P (m |π, γ, β) = Pclass(m |π)sPmrf(m | γ, β)1−s. (5)

During inference, uncertainty in the state of smeans that the
effect of both the class and MRF distributions is combined.

The edge model
In the same way that they affect the mask prior, the defor-
mation field D and the rigid transformation T are applied
to the foreground edge prior µo,σo to yield µ̄o, σ̄o,

p(ei|mi = 1) = N (ei|µ̄o
i , σ̄

o
i )

p(ei|mi = 0) = N (ei|µb
i , σ

b
i ). (6)

In our experiments, the background model is not trans-
formed, given the expected diversity in it, but if the objects
in the background are to be fully explained away, then a
mixture of LOCUS foreground models should be applied to
each layer in the scene.

The appearance model
Each image has as a hidden variable its own palette, which
either models its color or its texture (we try both alterna-
tives). The appearance model consists of a full covariance
Gaussian mixture model in either RGB color space or a
‘texture space’ consisting of the responses of 17 texture fil-
ters. For efficiency, the mixture components are shared be-
tween the foreground and background models and only the
mixing proportions differ, as suggested in [15]. This shar-
ing allows for the components to be learned once (at ini-
tialization) and from then on only the proportions of pixels
in each component need to be updated for each layer, with
the proportions defining a histogram over clusters. Hence,
we achieve significantly greater efficiency than updating a
separate mixture model for each layer. The mixture model
parameters are θ = {λ1,λ0, η,Σ}, where λ0 and λ1 are the
mixture coefficients (histograms) for the background and
object respectively. We define a weak Dirichlet prior for
each λ.

The distribution over an RGB pixel or vector of filter
responses zi depends on the corresponding mask pixel mi

and the mixture model parameters θ,

P (zi |mi,θ) =
K∑

k=1

λmi

k N (zi | ηk,Σk). (7)

The use of a shared K-component model provides addi-
tional flexibility as it allows the use of fewer components
for a simple background than for a complex object, or vice
versa.

4. Inference and Learning
The aim of the inference algorithm is to learn a distribution
over the latent variables in our model given the observed
variables, the set of images I = {I1, . . . , IN}. Each image
is defined by its measurement map {zi} and edge map ei.
Exact inference is intractable and so we resort to using a
structured variational approximation [16].

The approximate posterior over the variables corre-
sponding to each image takes the factorised form

P (D,T,m,λ, s | I) ≈ Q(D)Q(T)Q(λ)Q(s)
∏

i
Q(mi)

and the posterior over the class and background variables is

P (π,µo,σo,µb,σb | I) ≈
∏

i
Q(πi)Q(µi, σi)Q(µb

i , σ
b
i )

where the product is over pixels in each case. We give each
Q factor the same functional form as the corresponding fac-
tor in P , so that Q(πi) is a Beta distribution, Q(µi, σi) is
a Normal-Gamma distribution, and so on. The only excep-
tion to this is that we select Q(D) to be a delta function
δ(D = D�) for reasons of efficiency.

Let the set of all latent variables be X. Variational infer-
ence involves maximising the quantity

L(Q) = 〈logP (X, I)〉Q + H(Q) (8)

where 〈.〉Q is an expectation under the distribution Q and
H(Q) is the entropy of Q. We can maximise L(Q) with
respect to any factor Q(Xi),Xi ∈ X by applying

logQ(Xi) = 〈logP (X, I)〉Q(X\Xi)
+ const. (9)

where the notation 〈.〉Q(X\Xi)
means expectation under

the distribution consisting of the product of all factors
of Q except Q(Xi). Approximate inference proceeds by
repeatedly iterating though all latent variables in the or-
der {λ,m,T,D,π,µo,σo,µb,σb} and optimising each in
turn. Rather than expand (9) for each factor separately and
implement each update by hand, we use Variational Mes-
sage Passing (VMP) [17] to apply this variational inference
procedure automatically.
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Figure 2: Unsupervised learning of a horse model. The left column shows four of the 20 images used to learn a class model consisting
of a mask model and an edge model. The learned mask model is illustrated at the top right by the expected value of π i.e. the probability of
the mask being on at each pixel. Beneath it, the class edge mean shows average edge strength for each pixel (the variance in strength is also
learned but is not shown). These two images demonstrate that the model has captured the shape and outline of a horse in a neutral position,
despite the dramatic variation in the color and pose of the horses in the example images. Column 2 gives the most probable segmentation
of each horse under the variational distribution. Columns 3 and 4 demonstrates that the pose of each horse has been captured by showing
the mask probability and edge mean images transformed into the inferred pose of each horse. Column 5 shows the first horse transformed
into the position, size and pose of each of the other three, showing that a dense registration between horses has been obtained.

To achieve the optimisation of the factor Q(D) corre-
sponding to the deformation field D, we need to maximise
terms of the form

∑
i

ψ(di) −
∑

(i,j)∈Ē

α|di − dj |2 (10)

where the sums are over blocks and edges between blocks.
We can find the deformation field D� which maximises (10)
by using graph cuts in an α-expansion algorithm, as de-
scribed in [18, 19].

The terms in L(Q) involving the mask m take the form
∑

i

〈φ(mi)〉Q(m) −
∑

(i,j)∈E

β′ 〈δ(mi �= mj)〉Q(m) (11)

where the sums are over pixels and edges between pixels.
Notice that the expression now includes expectations under
Q because we wish to model the uncertainty in our mask,
and so we cannot use graph cuts to optimise (11) directly. If
we assume a factorised posterior distribution, we can apply
(9) to optimise each pixel in turn (holding its neighbours
fixed). However, this assumption is flawed as the poste-
rior over mask pixels contains strong correlations due to the
strong pairwise interaction terms and so the optimisation
can get caught in a local minima. To avoid this, we first use
graph cuts to find the configuration m� which would max-
imise (11) if the expectations were removed. Then in the

variational framework we use a Q distribution of the form
Q(m) = f [m = m�]+(1−f)q(m), where [] is the indica-
tor function defining the deterministic distribution over m
with all mass at m�, and q(m) is a normalized distribution
over m thus ensuring that Q is also normalized. In our ex-
periments, using f ≈ 0.3 provided a bias towards the most
probable mask (with at least 30% of mass on m�), while
still allowing for uncertainty.

5. Experimental Results

We applied LOCUS to several sets of images, each contain-
ing an object of the same class in a variety of positions,
sizes and poses, against a range of backgrounds. Our algo-
rithm segments the images automatically using all images
together to find a consistent segmentation based on there
being the same object in each.

The first image set contained 20 images from the Weiz-
mann horse database [8], a selection of which are shown
in the left hand column of Figure 2. The horses in these
images have differing poses and scales but are all facing to
the left. The images were scaled so that the longest side of
the image was 200 pixels, so that object scale was learned
relative to image size and independent of image resolution.
On these re-scaled images, a Matlab implementation of our
algorithm converged in a few minutes on a 3GHz PC.
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Figure 3: Results of unsupervised learning of eight object classes. The top two images of each column summarise the class mask and
edge models learned from 20 images containing an object of that class. Beneath these are the inferred segmentations of two of images,
indicated by a blue outline. For each class, LOCUS has extracted the shape of the object in a neutral pose. For the face and car classes
some edge structure has been captured which corresponds to features internal to the object (e.g. eyes/wheels). Thus, the model for these
classes represents more than just the outline/shape of the object.

The results of the learning process are summarised in
Figure 2. The two images at the right of the figure sum-
marise the learned class model by indicating the mask prob-
ability and average edge strength for each pixel. Each
resembles a horse in a neutral position, showing that the
global shape and outline of the horse has been inferred cor-
rectly. Some parts of the horse (e.g. the legs and tail) appear
more faintly, either because they are not present in all im-
ages or because the position of the part is too far from the
neutral position for the deformation field to cope with.

The second column of Figure 2 shows the inferred mask
(i.e. segmentation) for each of the images in the first col-
umn. Subjectively, these appear very accurate for many of
the images (a quantitive assessment is below). Typical seg-
mentation mistakes are the inclusion of small areas of back-
ground close to the horse silhouette and the omission of all
or part of the head, leg or tail, especially when they are in
an unusual position.

The third and fourth columns show the mask probability
and edge mean images transformed into the learned position
and pose of the object for each training image. Notice how
the deformation field is able to capture significant changes
in object pose and also some changes in viewpoint. Be-
cause the deformation field provides a mapping from each
object instance to the model, it has effectively provided a
dense registration between corresponding parts of the dif-
ferent object instances. This allows us to transform one
horse into the position and pose of another by first trans-
forming it into the neutral position and then applying the
deformation field learned from another image, as illustrated
in the fifth column where the horse in the first image has
been transformed into the learned poses of the other three.

Multiple object classes
Because our learning process does not require any labelling
of images, it can be readily applied to many sets of images,
so as to learn a range of object classes. To demonstrate the
flexibility of the LOCUS model, we applied it to images
of eight classes: horses, cows, cars (side and rear views),
motorbikes, aeroplanes, faces and trees. Images were used
from the Caltech [7] and TU Darmstadt [5] databases. For
each class, the model was trained on 20 images containing
objects of that class. Other than re-scaling each image, the
only preprocessing performed was to flip asymmetric ob-
jects (e.g. cows) to face a consistent direction and to remove
images where the object is very small (less than 20% of the
width/height of the largest instance). The objects were not
centred in each image, but they were moderately large –
typically occupying around 15 − 30% of the image pixels.

Figure 3 shows the learned class models and typical seg-
mentations for each class. In each case, LOCUS has suc-
cessfully extracted the shape and outline of the object in
a neutral pose. In several classes (e.g. faces, cars), some
internal edge structure has also been captured correspond-
ing the internal parts such as eyes or wheels. The inferred
segmentations are subjectively of good quality for all the
classes, with excellent performance on cars, horses, faces.
The weakest performance was on motorbikes because dif-
fering viewpoints meant that translation/scale was insuffi-
cient to align the bikes and learn a consistent outline.

Segmentation accuracy
For the horse and cars (side) classes, ground truth segmen-
tations were available, which allowed us to assess the ac-
curacy of the segmentation quantitively. The most proba-
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ble mask m� under the learned posterior was determined
for each image (see Section 4) and the percentage of pix-
els in agreement with the ground truth segmentation was
found. The average percentage across all images in each
class is shown in Table 1. For comparison, the table also in-
cludes results from Borenstein et al [4] whose method used
54 hand-segmented training images. Their quoted results
are for 200 test images and so we re-ran LOCUS with 200
horse images to provide a fairer comparison – this is the
result which is reported in the table. However, our segmen-
tation accuracy was very similar (within 0.5%) for various
subsets of the data, even for small datasets of 20 horse im-
ages.

As can be seen, our unsupervised method achieved seg-
mentation accuracies in excess of 93%, which rivals the
fully supervised method. Borenstein and Ullman [8] also
report results for unsupervised segmentation. They achieve
accuracies of 90-92% but on the task of segmenting cropped
horses heads – a significantly more constrained situation
than segmenting entire horses in arbitrary poses.

The benefit of segmenting all images together is high-
lighted by the final row of Table 1. This gives the segmenta-
tion accuracy if we remove the class model (the shared part
of the model) and segment each image separately. Hence,
we just learn a mask m and the color models λ for each
image so as to minimize the visual entropy within each part
of the scene. For both cases, this gives a significant reduc-
tion in accuracy. There is a greater reduction for cars than
for horses because the backgrounds of the car images are
typically more cluttered – if we remove the class model for
object shape, the model is free to erroneously label back-
ground clutter as foreground.

Segmentation accuracy

Horses Cars (side)

LOCUS (color) 93.1% 91.4%

LOCUS (texture) 93.0% 94.0%
unannotated training images

Borenstein et al 93.6% -
hand-segmented training images

LOCUS - no class model 88.6% 82.1%

Table 1: Average segmentation accuracy for the horse and car
(side) classes with both color and texture appearance models.
The accuracy given is the average percentage of correctly labelled
pixels across all the images of each class. For comparison, we
include results from Borenstein et al [4] showing that our unsu-
pervised learning achieves similar segmentation accuracies to a
method which requires hand segmented training data. The use of a
texture model instead of a color model gives a significant improve-
ment in accuracy for the car class but leaves the horse segmenta-
tion accuracy effectively unchanged. The final row demonstrates
the reduction in accuracy if the class model is removed.

True Inferred label

label Cars (rear) Cars (side) Cows Faces Horses Planes

Cars (rear) 18 1

Cars (side) 16 4

Cows 6

Faces 1 19

Horses 1 3 12 2

Planes 19

Table 2: Confusion matrix for recognition with LOCUS.

Recognition with segmentation
We applied the LOCUS model to the task of object recogni-
tion to see what performance could be achieved using essen-
tially only outline information. For each class, we fixed the
variational parameters for π,µo,σo to the values learned
previously from 20 training images of that class. We then
estimated the variational posterior over the remaining vari-
ables for each test image and used L(Q) for classification.
Because we learned a distribution over all hidden variables
including the mask, we also learned a segmentation of the
object being classified. The average classification accuracy
for six object classes was 88% (see Table 2 for a confusion
matrix). Notice that the global shape model allows discrim-
ination between horses and cows, which are difficult to dis-
tinguish using only local appearance information.

Unsupervised motion segmentation
The LOCUS model can also be applied to the frames of a
video sequence, which results in unsupervised segmenta-
tion of video into two layers1. The palette invariance gives
robustness to large changes in illumination, pose and back-
ground clutter.

6. Future work and conclusions
We would like to extend LOCUS to model more details of
the interior appearance of objects, so as to improve clas-
sification performance. However, we would still like the
model to be largely invariant to the choice of the palette for
an object instance. To achieve this, we use the probabilistic
index map (PIM) representation of structure, as proposed in
[10]. The PIM model allows us to learn, in an unsupervised
fashion, the internal parts within the object, corresponding
to, for example, an aeroplane’s tail fin, a person’s skin or
a car’s windows (see Figure 4). A PIM can be seen as an
extension of a Multiple Cause Vector Quantizer [20] with a
more general form of part appearance model.

For the foreground class, instead of a single distribution
over local features, we use the PIM model which assigns to
every pixel i an index si. These indices point to an entries of
a smaller palette of appearance models (e.g., in Figure 4, we
used six different indices denoted by different colors). As

1See http://johnwinn.org/Research/LOCUS.html for video results.
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Face PIM

Car PIM

Horse PIM

Plane PIM

Figure 4: Modes of the deformable probabilistic index maps
(dPIMs) and inferred individual index maps. The deformation
field allows for local changes in location of particular parts and
hence dPIMs are less diffuse and capture more fine-grained
internal structure than standard PIMs.

opposed to [10], here all indices share the meta-palette, as
did the foreground and background models in the previous
sections, and the appearance distributions for each index are
defined by the histogram λsi

k

P (zi | si,mi = 1,θ) =
K∑

k=1

λsi

k N (zi | ηk,Σk). (12)

The variability in the object structure is then defined by the
distribution over indices, p({si}) =

∏
i p(si).

The mask variable mi can be seen as a special case of
a PIM index, except that in this paper, only the foreground
mi = 1 undergoes a deformation. By still using the mask
model from the previous section, and requiring p(si) to un-
dergo the same deformation as the mask prior, we introduce
the deformable PIM model illustrated in Figure 4 by the
modes of the class priors p(si) and the inferred index map
si for a few images. The addition of the deformable PIM to
the model leads to a more precise localization of the object
and better registration of object parts. We are in the pro-
cess of applying this model to improve our segmentation
and classification accuracy.

In conclusion, LOCUS achieves simultaneous localisa-
tion, pose estimation, segmentation and recognition of ob-
jects in still images or video. In addition to PIMs, we are

investigating extensions to LOCUS to allow for varying ob-
ject viewpoints, multiple objects and occlusion.
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