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Depth Estimation from Image Structure

Antonio Torralba and Aude Oliva

Abstract—In the absence of cues for absolute depth measurements as binocular disparity, motion, or defocus, the absolute distance
between the observer and a scene cannot be measured. The interpretation of shading, edges, and junctions may provide a 3D model
of the scene but it will not provide information about the actual “scale” of the space. One possible source of information for absolute
depth estimation is the image size of known objects. However, object recognition, under unconstrained conditions, remains difficult and
unreliable for current computational approaches. Here, we propose a source of information for absolute depth estimation based on the
whole scene structure that does not rely on specific objects. We demonstrate that, by recognizing the properties of the structures
present in the image, we can infer the scale of the scene and, therefore, its absolute mean depth. We illustrate the interest in
computing the mean depth of the scene with application to scene recognition and object detection.

Index Terms—Depth, image statistics, scene structure, scene recognition, scale selection, monocular vision.

1 INTRODUCTION

THE fundamental problem of depth perception from
monocular information is illustrated in Fig. 1. In the
absence of cues for absolute depth measurement, such as
binocular disparity, motion, or defocus, the three cubes will
produce the same retinal image and, therefore, the absolute
distance between the observer and each cube cannot be
measured. The interpretation of shading, edges and junc-
tions may provide a 3D model of the cube (relative depth
between parts of the cube) but it will not inform about its
actual size. This ambiguity problem does not apply
however when dealing with real-world stimuli (Fig. 1b).
Physical processes that shape natural structures are
different at each scale (e.g., leaves, forests, mountains).
Humans also build different types of structures at different
scales, mainly due to functional constraints in relation with
human size (e.g., chair, building, city). As a result, different
laws with respect to the building blocks, the way that they
are organized in space and the shape of the support
surfaces, govern each spatial scale [14].

The constraints on the structure of the 3D scene at each
spatial scale can be directly transposed into image content.
Fig. 2 shows three pictures representing environments with
different mean depths: The scenes strongly differ in their
global configuration, the size of the component surfaces, and
the types of textures. Specifically, panoramic views typically
display uniform texture zones distributed along horizontal
layers. Views of urban environments in the range of a few
hundred meters show dominant long horizontal and vertical
contours and complex squared patterns. Close-up views of
objects tend to have large flat surfaces and, on average, no

o A. Torralba is with the Department of Brain and Cognitive Sciences, E25-
201, MIT, 45 Carleton Street, Cambridge, MA 02139.
E-mail: torralba@ai.mit.edu.

o A. Oliva is at the Center for Ophthalmic Research, Brigham and Women's
Hospital, 221 Longwood Avenue, Boston, MA 02115.
E-mail: oliva@search.bwh.harvard.edu.

Manuscript received 23 Feb. 2001; revised 28 Feb. 2002; accepted 1 Mar. 2002.
Recommended for acceptance by R. Sharma.

For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 113671.

clear dominant orientations [22]. As the observed scale
directly depends on the depth of the view, by recognizing
the properties of the image structure, we can infer the scale of
the scene and, therefore, the absolute depth.

Most of the techniques for recovering depth information
focus on relative depth information: shape from shading [13],
from texture gradients [35], from edges and junctions [2], from
symmetric patterns [32], from Fractal dimension [16], [26] and
from other pictorial cues such as occlusions, relative size, and
elevation with respect the horizon line [24]. Most of these
techniques apply only to a limited set of scenes. The literature
on absolute depth estimation is also very large but the
proposed methods rely on a limited number of sources of
information (e.g., binocular vision, motion parallax, and
defocus). However, under normal viewing conditions, ob-
servers can provide arough estimate of the absolute depth ofa
scene even in the absence of all these sources of information
(e.g., whenlooking ata photograph). One additional source of
information for absolute depth estimation is the use of the size
of familiar objects like faces, bodies, cars, etc. However, this
strategy requires decomposing the image into its constituent
elements. The process of image segmentation and object
recognition, under unconstrained conditions, remains still
difficult and unreliable for current computational ap-
proaches. The method proposed in this paper introduces a
source of information for absolute depth computation from
monocular views that does not require parsing the image into
regions or objects: the global image structure. The underlying
hypothesis of this approach is that the recognition of the scene
as a whole is a simpler problem than the one of general object
detection and recognition [21], [22], [37].

2 IMAGE STRUCTURE

In recent years, there have been an increasing number of
models of the image structure based on simple image
statistics (e.g., [4]). These models have been motivated by
applications in image indexing and computation of simila-
rities between pictures (e.g., [3], [5], [7], [10], [20], [39]) and
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Fig. 1. (a) Artificial stimulus: The monocular information cannot provide
an absolute depth percept. (b) Real-world stimulus: The recognition of
image structures provides unambiguous monocular information about
the absolute depth between the observer and the scene.

the study of models for natural images (e.g., [8], [17], [23],
[30]). For the purpose of this section, we consider a simple
definition of the image structure based on a description of
the textural patterns present in the image and their spatial
arrangement [21], [22], [37]. In this section, we discuss two
levels of description of the image structure based on the
second order statistics of images (Fig. 2). The first level, the
magnitude of the global Fourier transform of the image,
contains only unlocalized information about the dominant
orientations and scales that compose the image. The second
level, the magnitude of a local wavelet transform, provides
the dominant orientations and scales in the image with a
coarse description of their spatial distribution.

2.1 Unlocalized Image Structure and Spectral

Signatures
The discrete Fourier transform (FT) of an image is defined as:

N—-1N-1

I(f)=>"

=0 y=|

i(x) h(x) e iAm<tx> (1)

where i(x) is the intensity distribution of the image along
the spatial variables x = (,y); j =+/—1; and the spatial
frequency variables are defined by f=(f.,f,)¢€
[—0.5,0.5] x [—0.5,0.5] (units are in cycles per pixel); and
h(x) is a circular window that reduces boundary effects.
The amplitude spectrum is defined as the magnitude of the
FT: A(f) = |I(f)|. The amplitude spectrum reveals the
dominant orientations and textural patterns in the image
(Fig. 2). It is acknowledged that the information concerning
spatial arrangements and shapes of the structures in the
image are contained in the phase function of the FT. In fact,
if we consider an image as being any possible distribution
of pixel intensities, then the amplitude spectrum is not
informative because many very different images would
have the same amplitude spectrum. However, in the
context of real-world scene pictures, the amplitude spec-
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Fig. 2. Three examples of images used in this study. The scenes
strongly differ in their absolute mean depth. For each scene, we show
the sections of the global magnitude of the Fourier transform (center)
and the sections of the magnitude of the windowed Fourier transform

(right).

trum has a strong relationship with the spatial structure of
the scene [22]. In order to study the relationship between
the image amplitude spectrum and the scene structure, we
define the spectral signature of a set of images S as the mean
amplitude spectrum:

As(f) = B[A(£) | 5], (2)

where FE is the expectation operator. The spectral signature
Ag(f) reveals the dominant structures shared by the images
of the set S. Several studies (e.g., [8], [30]) have observed
that the averaged amplitude spectrum of the set of real-
world scene pictures falls with a form: Ag ~ 1/|/f||* with
a ~ 1. Real-world scenes can be divided into semantic
categories that depict specific spectral signatures (see [22]
for a detailed discussion). The clearest example of picture
sets distinguished by their spectral signatures is man-made
versus natural structures. Both spectral signatures are
defined by the conditional expectations:

Ay (f) = E[A(f) | man-made] (3)

At (f) = E[A(f) | natural]. 4)

Fig. 3 shows the contour plots of the spectral signatures
obtained from more than 6,000 pictures (see a description of
the database in Section 6). Z(m(f ) has dominant horizontal
and vertical orientations due to the bias found in man-
made structures [1], [17], [22]. an(f ) contains energy in all
orientations with a slight bias toward the horizontal and the
vertical directions. These spectral characteristics are shared
by most of the pictures of both categories allowing the
discrimination between man-made and natural scenes with
a very high confidence (93.5 percent, refer to Section 5.1 and
[22], [37]).
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Fig. 3. Global spectral signatures of man-made and natural environ-
ments averaged from more than 6,000 images. The contour plots
represent the 50 percent and the 80 percent of the energy of the spectral
signatures. Units are in cycles per pixel.

2.2 Spatial Organization and Local Spectral
Signatures

An essential aspect of an image representation, that the
global amplitude spectrum does not encode, concerns the
spatial arrangement of the structural elements in the image
[3], [5], [7], [22], [37]. For example, panoramic landscapes
have the sky at the top, characterized by low spatial
frequencies, the horizon line around the center, and usually
texture at the bottom part. Urban scenes in the range of a
few hundred meters will have the sky at the top, buildings
in the middle part, and a road at the bottom. That specific
arrangement produces a particular spatial pattern of
dominant orientations and scales (Fig. 2) that can be
described using a wavelet transform:

I(x, k) = Y i(x') hi(x = x). (5)

Different choices of the functions h; provide different
representations (e.g., [33]). One of the most common functions
are complex Gabor wavelets: h(x) = e IxI*/7i¢=2mi<fix> n
such arepresentation, I(x, k) is the outputat the location x ofa
complex Gabor filter tuned to the spatial frequency defined by
fi. The resulting representation encodes local scale and
orientation information. When h(x) = h,(x) e 27<fex>
(h,(x) is a window with a circular support of constant radius
r), then I(x, k) corresponds to the Windowed Fourier trans-
form (WFT) and can be more conveniently written as I(x, f)
with f defined as in (1).

The magnitude A(x, k) = |I(x,k)| provides local struc-
tural information in a neighborhood of the location x. Both
the Gabor transform and the WFT provide similar structural
information. For visualization purposes, we will use the
WET for the figures in this paper: A(x,f) = |I(x,f)|. Fig. 2
shows sections of the WFT at 10 x 10 locations.

The local spectral signature of a set of images S is
defined as follows:

Ag(x,k) = E[A(x, k)| S]. (6)

The local spectral signature of a set of images gives
information about the dominant spectral features and their
mean spatial distribution. Fig. 5 shows examples of local
spectral signatures (WFT with 7 = 16 pixels) for man-made
and natural scene pictures with different depths (see next
section) and illustrates that even this simple statistics are

nonstationary when considering specific sets of images
(e.g., man-made environments in the range of 1Km).

3 IMAGE STRUCTURE AS A DEPTH CUE

In this paper, we refer to the mean depth of a sceneimage as a
measure of the scale or size of the space that the scene
subtends. This section presents the main sources of variability
found in the spectral features with respect to the mean depth.

A number of studies have focused in the study of the scale
invariance property of natural image statistics (e.g. [8], [17],
[28]). Most of these studies focus on small scaling changes (as
the ones that occur within a single image) and do not use
absolute units for the scale (images depicting structures at
different sizes in the real world are averaged together).
However, when considering large scale changes (a scaling
factor larger than 10), there exist significant differences
between the statistics of pictures depicting scenes and objects
at different scales in absolute units (e.g., meters). There are at
least two reasons that can explain the dependency between
the image structure and the scene mean depth:

e  The point of view: Under normal viewing conditions,
the point of view that an observer adopts on a specific
scene is strongly constrained. Objects can be observed
under almost any point of view. However, as distance
and scale overtake human scale, the possible view-
points become more limited and predictable [6]. The
dominant orientations of the image strongly vary
with the point of view (e.g., vanishing lines, [6], [22]),
and, consequently, the spatial arrangement of the
main structures (e.g., position of the ground level,
horizon line).

e  The building blocks: The building blocks (or primitives
[17]) refer to the elements (surfaces and objects) that
compose the scene. The building blocks (their shape,
texture, color, etc.) largely differ between natural and
man-made environments, as well as between indoor
and outdoor places [22], [36], [39]. The building blocks
of a scene also differ strongly from one spatial scale to
another due to functional constraints and to the
physical processes that shape the space at each scale.

Both the building blocks and the point of view of the

observer determine the dominant scales and orientations
found in an image. In the following, we discuss the
relationship between the image spectral components (global
and local) and the mean depth of the scene.

3.1 Relationship between the Global Spectral

Signature and Mean Depth

For the range of distances that we are working with (from
centimeters to kilometers), the problem of scaling cannot be
modeled by a zoom factor with respect to one reference
image. As the image is limited in size and resolution, by
zooming out the image by a factor larger than 2, new
structures appear at the boundaries of the image and,
because of the sampling, small details disappear. The
resulting new picture gets a completely different spatial
shape and a new amplitude spectrum that cannot be related
to the one of the original image by a simple scaling
operation. In order to study the variations of scene structure
for different depths, we use the spectral signatures (2). It is
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Fig. 4. Evolution of the slope of the global magnitude spectrum of real-
world pictures with respect to the mean depth of the scene. The picture
shows the evolution of the slope ap(6) at 0 (Horizontal; f.), 45 (Oblique)
and 90 (Vertical; f,) degrees, and its mean value averaged for all the
orientations. Error bars represent 90 percent intervals obtained by
Bootstrap.
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interesting to make the distinction between man-made and
natural structures as they strongly differ in the building
blocks and have different relationships between structure
and spatial scale or distance. Considering first man-made
structures, we define S as the set of pictures of man-made
scenes sharing the same mean distance (D) from the
observer. The spectral signature is:

Ap arit(f) = E[A(f) | D, man-made]. (7)

Fig. 5 shows the spectral signatures for different ranges
of depth. The spectral signatures can be modeled by:
Ap(f) ~ FD(Q)/HfH”“(H), as proposed in [22], where 6 = /f.
I'p(f) is a magnitude prefactor that is a function of
orientation. The spectral signature has a linear decaying
rate in logarithmic units with a slope given by —ap(6) ([22],
[30]). These two functions can be obtained by a linear fitting
at each orientation of the spectral signature in logarithmic
units [30]. Fig. 4 shows the mean slope @ (averaged with
respect to orientation), for different depths. The mean slope
reveals the mean fractal dimensionality of the picture,
which is related to its apparent roughness [26] or clutter
[17]. An increasing of the slope means a reduction of energy
in the high spatial frequencies, which thus changes the
apparent roughness of the picture. For man-made struc-
tures (Fig. 4a), we observe a monotonic decreasing slope
(i.e., increasing roughness) when increasing depth. This is
an expected result as close-up views on man-made objects
contain, on average, large flat surfaces and homogeneous
regions (i.e., low roughness). When increasing the distance,
surfaces are likely to break down in small pieces (objects,
walls, doors, windows, etc.) increasing, therefore, the global
roughness of the picture (Fig. 5).

Although the increase of clutter with distance appears as
something intuitive, it is not a general rule and it cannot be
applied to every picture. For natural structures, the spectral
signature exhibits a completely opposite behavior with
respect to the mean depth (see Figs. 4b and 5): the mean
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slope increases when depth increases. This fact is related to a
decreasing of the mean roughness of the picture, with
distances. Close-up views on natural surfaces are usually
textured, giving to the amplitude spectrum a small decaying
slope. When distance increases, natural structures become
larger and smoother (the small grain disappears due to the
spatial sampling of the image). The examples in Fig. 5
illustrate this point. For natural scene pictures, on average,
the more we increase the mean depth of the scene the more
energy concentrates in the low spatial frequencies, which is
the opposite behavior with respect to man-made structures.

The dominant orientations also provide relevant depth
related information (Fig. 5). To illustrate this point, Fig. 4
shows the slopes for the horizontal, oblique, and vertical
spectral components for both man-made and natural
structures at different scales. For instance, many panoramic
views have a straight vertical shape in their amplitude
spectrum due to the horizon line. City-center views have
similar quantities of horizontal and vertical orientations and
only a little energy for the oblique orientations. On average,
close-up views of objects have no strong dominant orienta-
tions and, thus, an isotropic amplitude spectrum.

3.2 Relationship between the Local Spectral
Signatures and Depth

As in (7), we can study the averaged local amplitude
spectrum (local spectral signatures) for different depths.
Fig. 5 shows the evolution of the local spectral signatures
with respect to depth for man-made and natural structures.
We can see that not only the general aspect of the local
spectral signatures changes with depths but also the spatial
configuration of orientation and scales. Note that the
variations are mostly from top to bottom. The typical
behavior can be summarized as follows:

e An increase of the global roughness with respect to
depth for man-made structures and a decrease of
global roughness for natural structures.

e  For near distances (D < 10m), the spectral signatures
are stationary and there is almost no bias towards
horizontal and vertical orientations.

e For intermediate distances (10m to 500m) the
spectral signatures are nonstationary and biased
towards horizontal and vertical orientations. On
average, the scene structure is dominated by smooth
surfaces on the bottom (e.g., support surfaces like
roads, lakes, fields) and also on the top due to the
sky. The center contains buildings with high
frequency textures with cross-like spectra for man-
made environments or almost isotropic textures for
natural environments.

e For far distances (> 500m), the sky introduces a
smooth texture in the top part. A long horizontal
plane, filled with small squared man-made struc-
tures or with a smooth natural texture, usually
dominates the bottom zone.

To summarize, there exists a strong relationship between
the structures present in the image and the mean depth of the
scene. This point is demonstrated in the rest of the paper by
showing that absolute depth can be estimated from structural
features.
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Fig. 5. Evolution of the global and local spectral signatures of (a) man-made and (b) natural scenes with respect to the mean depth. Each signature is
obtained from averaging over more than 300 pictures with depths of, from left to right, 1, 10, 100, 1,000 meters and panoramic views (D > 1 Km).

4 Low-DIMENSIONAL REPRESENTATIONS OF IMAGE
STRUCTURE

The image features given by A(f) and A(x, k) (Section 2),
are very high-dimensional. In this section, we discuss low-
dimensional representations of the image structure based
on those features and we review other structural represen-
tations based on higher order statistics.

A number of low-dimensional representations based on
the statistics of wavelet coefficients (tuned to different
orientations and scales) have been used with success in
texture [12], [27], object [31] and scene representations [10],
[22], [39]. Representations based on global statistics are suited

for the description of textures [12], [27], [40]. Global statistics
assume stationarity and are computed by averaging measures
across the entire image. Although they are not appropriate
when representing nonstationary images, like pictures of
specific objects or scene categories, global statistics also

provide useful information for recognition tasks (e.g., [22]).
As discussed in Section 2, one of the simpler global

statistics is the output energy of each wavelet (5):

A2 = Y b = [A0RH(0) at. )



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 9,

SEPTEMBER 2002

Ay(xK)

Fig. 6. Comparison of the information available in the representations given by the global output energy of the wavelets, Ay, the cross-correlation of
wavelet coefficients, A, ;, and the local output energy of the analyzing wavelets, A,(x, k). The three representations use Gabor wavelets tuned to 4
scales and 4 orientations per scale. For each picture, we show three texture-like images obtained by coercing noise to have the same features than

the original image.

The features A} are samples of the power spectrum of the
image, A(f)?, averaged with by the FT transform, Hy(f), of
the wavelet hj(x). Aj; encodes information about the second
order statistics of the image. K is the number of wavelets
used in the decomposition and, therefore, the dimension-
ality of the representation. This representation encodes the
dominant orientations and scales in the image. There is no
information about the spatial organization or the shape of
the objects in the image. In order to illustrate the
information preserved by the representation, Fig. 6 shows
examples of real-world pictures and synthesized texture-
like images that have the same values of Aj. Therefore, the
real-world images and the synthesized textures are indis-
tinguishable by this representation.

According to studies of the statistics of natural images
(e.g., [17], [27], [34]), higher order statistics show also
particular characteristics for real-world pictures. For in-
stance, the magnitude of the wavelet coefficients at different
orientations and scales are correlated. The correlations
coefficients are a function of the elements that compose the
image and their spatial distribution (local sharp edges give
rise to high correlation coefficients [27]). The magnitude
correlations can be written as:

AL = DI (x, )] )

Note from (8), that this representation includes also
Ay = Ay The dimensionality of this representation is K 2,
although it can be reduced by computing only the
correlations of adjacent wavelet coefficients (in terms of
scale and orientation, [27]). Fig. 6 shows examples of
synthesized texture-like images that have the same magni-
tude correlations A;; than the original picture. The
generated textures preserve additional information about
the original image. Apart from the orientations and scales,
the magnitude correlations also preserve basic information
about the sparseness and degree of clutter of edges and
shapes found in the original picture.

More complete representations have been proposed in the
field of texture synthesis [12], [27], [40]. The marginal
histograms of the wavelet coefficients have been extensively
used for texture analysis and synthesis (e.g., [12]). The
dimensionality of the representation is BK where B is the
number of bins (used for the histogram estimation) and K is

the number of wavelets. The joint histogram of wavelet
coefficients [31] gives a complete representation of the
distribution but with much higher dimensionality (BX) than
the previous ones.

Spatial organization, although not relevant for texture
representations, is a key attribute in scene representations
(e.g., [5], [22]). Spatial information can be introduced by
computing local statistics, averaging measures over local
neighborhoods at different spatial locations. This provides a
way of dealing with the nonstationary behavior of real
images. The local energy of the wavelet coefficients is:

Ao, k) = {I1Gx )P | M}

For simplicity, the notation | M represents the operation
of downsampling in the spatial domain until the
resulting representation A,/(x,k) has a spatial resolution
of M? pixels. Therefore, A)/(x,k) has a dimensionality
M?K. Note that the global statistics ((8)) are obtained
when M =1: A, = Ay=1(x,k). Fig. 6 shows synthesized
texture-like images that are constrained to have the same
features Ay/(x, k), with M =8, than the original image.
Similarly, we can define local higher-order statistics as:
A?W(Xvivj) = {[I(x,i)I(x,j)| | M}.

Each scene picture is represented by a features vector
v that contains the set of statistical measurements.
Applying simple techniques such as PCA, we can further
reduce the dimensionality of the features vector while
preserving most of the information that accounts for the
variability among different real-world pictures. The
principal components PCs are the eigenvectors of the
covariance matrix C = E[(v — m)(v —m)”], where v is a
column vector composed by the image features, and
m = E[v]. Expectation is approximated by the average with
respect to the entire image database.

In the rest of the paper, we refer to the column vector v as
the L-dimensional vector obtained by projection of the image
features onto the first L PCs with the largest eigenvalues.

In Section 6, we study the performance of the global
(energy and magnitude correlation) and the local image
statistics in predicting the mean depth of the scene. First, we
introduce the learning framework used for modeling the
relationship between scene mean depth and image statistics.

(10)
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5 PRroBaABILISTIC MODEL

In contrast to computational studies dedicated to depth
perception based on predefined laws (stereo disparity,
motion parallax, defocus, shading, texture gradients, etc.),
the system we introduce in this section is designed to learn the
relationship between the structures present in the picture and
the mean depth of the scene. As discussed in Section 3, the
relationship between structure and depth comes from the
particular way that the world appears (is built) at each scale.
Forinstance, the system has tolearn thatlong oblique contours
in anatural landscape scene are likely to correspond to a very
large-scale structure (e.g., a mountain) and that the texture
introduced by trees belongs to a medium-scale structure.

5.1 Depth Estimation
Our objective is to estimate the absolute mean depth of the

scene, D, by means of the image features, v. The function that
minimizes the mean square error between the estimated and
the real depth is the conditional expected value (see [25]):

p=EDiv= [ DipuDIvaD, ()

where

fop(D1v) = fouo(D,v)/ fo(v)

and f,(v f fpo(D,v)dD. The joint probability density
function (PDF) fDi,(D v) characterizes the relationship
between the two random variables D and v. As shown
before, the relationship between the depth and the image
statistics strongly differ between man-made and natural
scenes. For this reason, the image database was split in two
complementary groups: man-made (art) and natural (nat)
scenes. Note that both groups may contain images with
both natural and man-made structures, such as trees in a
street or a farm in a field.

Asshownin Figs. 3,5, and 6, there are strong differences in
the spectral characteristics of man-made and natural scenes.
Therefore, we can expect to have high confidence discrimina-
tion even when using only unlocalized structural informa-
tion, (8) [22]. Discrimination between man-made and natural
structures can be done by computing the conditional
probabilities for one image to belong to the art group or to
the nat group, once the image features have been measured.
One scene is considered as belonging to the art group if
f(v]art) > f(v|nat), with p(art) = p(nat). The learning of
the functions f(v|art) and f(v|nat) is performed using a
mixture of Gaussians and the EM algorithm. We trained a
classifier using the global structural features (8) and 2,000 pic-
tures (1,000 for each category). One Gaussian cluster was
enough for modeling the PDFs. The test was performed on
2,000 new pictures per group. The classification rate between
man-made and natural structures was 93.5 percent. Other
authors using other features have obtained similar results
[10], [39]. For the rest of the paper, we study performances in
depth estimation separately for both man-made and natural
structures.

5.2 Learning

For building the depth estimator, we need to estimate the
joint PDFs f(D,v|art) and f(D,v|nat). In the framework
of regression algorithms, several approaches have been
proposed for the estimation of the joint PDF [9]. Here, we

7

used cluster-weighted modeling ([9], p. 178) as it provides a
simple algorithm for the learning stage. For completeness,
we reproduce here the main expressions of the estimation
algorithm. In such a model, the joint PDF is expanded as a
sum of Gaussian clusters, each one modeling locally the
relationship between the input and the output distributions:

Ne
f(D,v|art) :ZgD|V )

i=1

g(vle), ple),  (12)
where D refers to depth and v to the image features. N,
corresponds to the number of clusters used for the approx-
imation. Each cluster is decomposed in three factors: p(c;) is
the weight of each cluster, g(v | ¢;) is a multivariate Gaussian,
with mean p; and covariance matrix X;, that defines the
domain of influence in the input space of the cluster:

exp[— 4 (v — ) X (v = pu)
(27T)L/2|X7j|]/2

g(vlei) = (13)

and g(D | v, ¢;) models the output distribution of the cluster:

exp {— (D —a; — VTE;>2/20'?:|
\/ﬁm '

This distribution is a Gaussian function with respect to D,
with variance o? and a mean that has a linear dependence on
the image features: a; + v/ b;. T denotes the transpose. The
model parameters, plc;), wi, Xi, o2, a;, and b;, with

i=1,..., N, are estimated using the EM algorithm [9], [15].

g(D|v,c;) =

(14)

the depths, in logarlthmlc umts, of a set of pictures and vt are
their respective structural features). The EM algorithm is an
iterative procedure composed of two steps:

e E-step: Computes the posterior probabilities of the
clusters given the observed data. For the k iteration:

E{k(Dt |vi,¢i) ¢ (Vi | i) pF (i) .
S gH(Dr v ) g8 (vi | er) pF(c)
(15)

pr(ci| Dy, vi) =

o  M-step: Computes the most likely cluster parameters:

221 Pk(Cz‘ | Dy, Vt)

P =SSN iy

P gy s = > 1P (Ci|Dt7Vt)17t7 (17)
Zt 1P (i | Dy, i)

X =< (vt (v =T >, (18)

bt = (X)) < Dv >, (19)

R L (20)

ol =< (D =l —vTbE)? >, (21)
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Fig. 7. Depth estimation using global energy features. For each picture we show the 80 percent section of its power spectrum, the function f(D|v)
obtained from the global energy features Ay, the estimated depth with the maximum likelihood (continuous line), and the real depth of the scene
(dashed line). (a) and (b) Correspond to pictures selected among the 25 percent of pictures with the highest confidence and (c) and (d) pictures
selected among the 25 percent of pictures with the lowest confidence. In (c) and (d), the PDFs have multimodal shape and produce more errors than

in (a) and (b).

The simplified notation <>; represents the weighted
average as detailed in (17). Further details concerning the
learning equations may be found in [9]. Assuggested in [9], we
added a small constant to o¥*! to the diagonal elements of
X% in order to avoid the clusters becoming too narrow.
Restricting the matrices X; to be diagonal slightly reduces
performances but results in much fewer model parameters
and faster learning. For the firstiteration, the centers of the N,
clusters are initialized with the values of a random set of
training data.

Once the learning is completed (after 30 iterations), the
conditional PDF of depth, given the measured image
features, is:

S g(D v, ci) g(v]e) plei)
Zf-vil 9(v|ei)p(ei)

Therefore, given a new scene picture, the mean depth is
estimated from the image statistics as a mixture of linear
regressions (11):

b S+ VB g(v]e) ple) (29)

it g(v e ple:)
We can also estimate depth using the maximum likelihood:
D= maxp{ fp(D|v, art)}. The estimation of the PDF
f(D|v,S) provides a method to measure the reliability of
the estimation provided by (23) for each new picture:

fop(D|v, art) = (22)

0% = E[(D - D)’|v] = vail o 9(V|Ci)p(0i). (24)

S g(vle) ple)

The confidence measure allows rejecting estimations that
are not expected to be reliable. The bigger the value of the
variance o2, the less reliable is the estimation D.

6 ABSOLUTE DEPTH ESTIMATION

In this section, we report the results of depth estimation using
global and local structural features. The simulations were
performed using a database of 8,000 images (256 x 256 pixels
in size and 8 bits, gray scale). They come from the Corel stock
photo library, a personal digital camera, images downloaded
from the Web, and images captured from television. The
database was composed of pictures of man-made and natural
environments, close-up views of objects, and textures.
Pictures with strange point of views were not included. The
horizontal axis of the camera was parallel to the ground plane.
In this study, color was not taken into account. Most of the
images where in focus, therefore, blur cannot be used for
depth measurements.

6.1 Depth Calibration

For the images used, the real distance and the aperture
angle of the camera were unknown. Therefore, a calibration
procedure was required in order to have absolute depth
information for each picture. Depth was calibrated inde-
pendently for man-made and natural scenes. The authors
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Fig. 8. Examples of man-made scenes sorted according to mean depth. (a) Pictures selected among the 85 percent of pictures with the highest
confidence estimations. Middle line shows the 80 percent level section of the local amplitude spectrum and the bottom line shows the conditional
PDF of depth obtained from the features A,,(x, k). (b) Pictures selected among the images with the lowest confidence estimations.

organized 4,000 images of each group according to their
mean depth. Then, four observers reported the depth, in
meters, of 400 images. A third order polynomial was used
to fit the reported depths, averaged across the four subjects,
as function of the ranks obtained in the sorting task.

6.2 Depth from Global Image Statistics

For the learning of the relationship between depth and
global structural features, f(D, v|S), we used 2,000 images
for the training for each group, S = {art, nat} ranging from
close-up to panoramic views. We tested the ability to
predict the scene scale of new pictures using the global
energy features (8), A; and the magnitude correlation
features (9), A;;. In both cases, the features vector was
given by projecting the representations into their respective
principal components (Section 4). In both cases, the best
performance were achieved when using N, = 8 clusters and
about L = 25 PCs. The images were decomposed using a
bank of Gabor filters tuned to six orientations and five
scales (K = 30). Increasing the complexity of the model did
not result in an increase of performance.

Fig.7 shows pictures of man-made and natural scenes with
their amplitude spectrum and the estimated conditional PDFs
(22) when using the PCs of the global energy features, Aj.
From the PDFs, for each image we estimated the mean depth
of thescene (23) and the confidence of the estimation (24). Fig.9
compares the performance of the two sets of features and
shows how performance increases when rejecting images
withlow confidence estimations. For man-made scenes, when
considering all the images from the test set, the estimated
depth was in the same decade (D¢ € [Dyear/3.2, Dyear * 3.2])

than the real depth for 65 percent of the pictures when using
the global energy features. Performances were better when
using the PCs of the magnitude correlation features (70 per-
cent). For these two sets of measures, the number of features
used for the estimation is the same (L = 25) as we used the
same number of PCs for training the algorithm. Similar results
were obtained for natural scenes.

Performance increase when rejecting images with low
confidence. Figs. 7a and 7b show a set of images selected
among the 25 percent of the images from the test set that
provided the highest confidence levels using the global
energy features. Figs. 7c and 7d show examples of man-
made and natural scenes with low confidence estimations.

Although a mean depth estimation based on global
features is unreliable for most of the pictures, there is a
significant correlation between unlocalized structure and
absolute depth (0.64 for man-made scenes and 0.72 for
natural scenes) showing that simple image statistics vary
with the real scene scale. To obtain reliable estimations, we
have to include spatial information.

6.3 Depth from Local Features

Fig. 8 shows estimationresults obtained using thelocal energy
of the wavelet coefficients (10), Ay (x, k). The spatial resolu-
tion of Ap(x,k) was set to M =4 as it provides the best
performance. Increasing the resolution did not improve the
results. For thelearning, we used 2,000images, N. = 8clusters
and L = 25 PCs. Fig. 9 compares performance using the local
energy features to the estimation using features from global
image statistics. Performances are significantly better for
man-made scenes but not for natural scenes. For man-made
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Fig. 9. Results of depth estimation for man-made and natural scenes. The graphs compare the performances of the three sets of features (global
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The error bars represent 90 percent of variability when using different sets of images for the training and for the test. In all the graphs we used,
N, = 8 clusters to model the PDFs and L = 25 features extracted from the PCA for each of the three set of measures.

scenes, 76 percent of depth estimations were in the interval
Dy € [Dreat/3.2, Dyeqr * 3.2]. Performances rapidly increase
when considering images with high confidence estimations.
Performances reach 88 percent when considering, for man-
made scenes, 50 percent of the pictures from the test set with
thehighest confidence (Figs. 8aand 10). Fornaturalimages the
results were lower. 70 percent of the estimations D,at Were in
the interval D, € [Dreat/3-2, Dyear * 3.2] which is the same
result than the one obtained using the magnitude correlation
features.

In order to compare the algorithm performance with
human performance, we compared the depth reported by
each observer (as described in Section 5.1) with the mean
depth reported by the others as a measure of consistency
between different observers. For man-made scenes, the
percent of pictures with an error in the interval of one decade
with respect to the mean, for each subject, was 82 percent,
90 percent, 93 percent, 81 percent, and 79 percent (the first
subject is one author and the others are nontrained subjects).
Results are slightly better than those provided by the
algorithm (76 percent). For natural scenes, the percent of
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pictures with an error in the interval of one decade was
74 percent, 79 percent, 61 percent, 66 percent, and 54 percent
which is similar to the performance obtained by the local
energy statistics (Fig. 9).

It is interesting to consider independently the structures
present at different locations in the image by writing the
conditional PDF as:

N
F(AMGR) | D, art) = [ [ fe,(Vayu, | D, art) (25)
j=1

which corresponds to consider that, once D is specified, the
image features at different spatial locations, are indepen-
dent. At each location x; = (z;,y;), the vector of local
features is vy, = {An(x;, )}, - Therefore, vy, contains
the energy of the wavelet coefficients averaged over a
neighborhood of the location x;.

The conditional PDFs f, ,.(va,, | D, art) model the
statistical dependencies between the energy features v, ,. at
the spatial location z;, y; and the mean depth of the scene D.
Each local conditional PDF can be estimated independently

1000
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Fig. 10. Estimation results on 1,000 images from the test set using local second order image statistics for man-made (a) and (b) and natural scenes
(c) and (d). (b) and (d) show the results for the 50 percent of the images of each set with the highest confidence level.
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Fig. 11. Examples of scenes with man-made structures and the relation
between local structures (M = 4) and the mean depth of the scene. Note
that similar structures are associated to different depths as a function of
image position.

with the model of (12) and trained using the EM algorithm.
We assume a uniform prior for the distributions of depths
f(D) inthe database. For the training, we used N, = 8 clusters
to model each local PDF. Due to the nonstationary statistics of
real-world images, the functions fa;y; will differ from one
spatial location to another. Fig. 11 shows two examples of
depth estimation using (25). Performance were the same as
the one reported in Fig. 9 using the PCs of Ay/(x, k). Although
this procedure results in more computations than when using
the features obtained by the PCA, the writing of the PDF as in
(25) allows studying how the local structures relate to the
mean depth of the scene.

There are some important observations about the
relationship between the local image structure and the
mean depth of the scene:

e For the features used, the relationship between the
mean depth of the scene and the local structure at
one spatial position is weak and it is necessary to
integrate information across the whole picture to
improve the reliability. Fig. 11 shows the shape of
the local conditional PDFs f,,,. of depth given the
local structure present in the picture. Most of the
local PDFs are multimodal or spread across several
orders of magnitude in depth.

e The functions f, , model the relationship between
the structure at one spatial location and the mean
depth of the whole scene. They are not necessarily
related to the local depth at the location around
(x;,y;). For example, the texture associated with the
sky indicates mean depths in the range from
100 meters to panoramic, which does not correspond
to the distance between the observer and the clouds.

e The same local structure (v4) can be related to
different mean depths when located at different
spatial positions (Fig. 11). A flat surface in the top
will be interpreted as a possible sky patch. However
the same surface in the bottom part will be an indicator
of short and mean distances (from 1 to 100 meters). On
the contrary, a textured patch located in the top part
will discard far depths, but located in the bottom, it
may be correlated with a panoramic view (see Fig. 11).

e As suggested by Fig. 5, the image statistics are
stationary with respect to the horizontal spatial
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dimension, z. That means that the local conditional
PDFs can be written as f,, ,. = f,,. The results remain
unaffected by this simplification. However, scene
structure statistics and their relationship with the
mean depth of the scene strongly vary with respect to
elevation, y;, and consequently this is an important
factor for depth estimation. Assuming complete
stationary, f,,, = f, gives poor estimation results.
To summarize, the results show that reliable estimations
of the absolute depth of a real-world scene may be
computed from monocular information by recognizing
structures and texture patterns in the image. In the next
section we introduce some applications of computing the
mean depth of a scene.

7 APPLICATION FOR SCENE RECOGNITION AND
OBJECT DETECTION

Computing the complete 3D structure of the scene yields a
great amount of information useful for motion planning,
grasping objects, etc. However, a coarse estimate of the mean
distance between the observer and the background and main
objects composing the scene is relevant for identifying the
context in which the observer is immersed and can be used to
restrict the search and recognition of objects.

7.1 Scene Category Recognition

Scene category recognition refers to the classification of a
scene into a semantic group (e.g. street, room, forest, etc.).
With the development of applications in image indexing,
novel procedures in computational scene recognition have
been recently proposed ([3], [5], [7], [10], [22], [36], [39]), but
recognition performances are limited by the small number
of semantic categories that these models propose (e.g., city
versus landscape, indoor versus outdoor, suburban versus
urban scenes). In that regard, adding the estimation of the
mean depth of a scene to other attributes may significantly
increase performances of semantic recognition. As an
illustration, Fig. 12 shows the distribution, along the mean
depth axis, of basic scene categories commonly employed
by human observers when asked to name images [22], [29],
[39]. Even if the groups overlap, the mean depth allows the
emergence of specific semantic categories, like objects,
indoors, urban streets, highways and panoramic environ-
ments for man-made structures, and rivers/forests, fields,
mountains, and ocean views for natural images.

7.2 Task and Context-Dependent Scale Selection

One fundamental problem in computational vision is to
find which are the scales in which the main elements of the
scene are localized in the picture. If this information is
available as a result of a low cost preprocessing stage, then
subsequent stages of object detection and recognition could
be greatly simplified by focusing the processing onto the
only diagnostic/relevant scales. In that aim, Lindeberg [18],
[19] proposed a method for scale selection for the detection
of low-level features as edges, junctions, ridges, and blobs
when there is no a priori information about the nature of the
picture. The method is based on the study of the evolution
over scales of scale-space derivatives.

We propose to use the mean depth to select the scale at
which one particular object can be found [38]. This provides
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a method for scale selection that is both task and context
dependent. The expected size of one object can be estimated
by using the mean depth of the scene by S ~ Ko/D?,
were Ky,; is a normalization constant. This will give a
restriction of the possible scales as D here refers to the
estimation of the mean depth of the scene. Fig. 13 shows the
expected sizes of heads for different scenes computed using
the mean depth given by the algorithm.

We selected a subset of pictures in man-made environ-
ments containing people (urban outdoor and indoor
environments from 1 to 100 meters). We trained the
algorithm to predict the height of the people’s heads based
in the local structural information. For 83 percent of the
scenes tested (900 for the learning and 250 for the test), the
estimated height of people’s heads was in the interval
[H/2, H = 2], where H is the true height measured directly
from the image. As a consequence, the estimated distance
(D = K/H) is also in the interval [D/2, D * 2] for 83 percent
of scenes tested. This result is better than the one reported
in Section 6.3 due to be working with only a subset of scenes

Fig. 13. Task and context-dependent scale selection. The boxes
represent the attended size of people heads estimated using the mean
depth as a descriptor of context information.

(scenes with people) and to have a more accurate depth
calibration based on head height and not on subjective
evaluations of mean depth. Note that the estimated distance
(D) of people in the pictures is obtained without any
detection stage of faces or bodies. Instead, we use the whole
picture as the context in which heads are located [38].

8 CONCLUSION

The dominant structures present in a scene (e.g., squared
blocks, diagonal planes, horizontal surfaces, small grain
textures, etc.) that confer to a space its identity (e.g., a
highway, a street, a coast) strongly differ with spatial scale.
In other words, the structure of the space, the size and
position of the main elements of the scene vary with the
distance of the observer (spatial scale) in a very predictable
and regular way. The results of this paper show that:

e There exist differential structural regularities at
different scales in both man-made and natural
environments. Therefore, natural and man-made
real-world structures are not self-similar when we
change the scale of analysis.

e Those structural regularities are stable enough to
estimate the absolute mean depth of a scene by
recognizing the structures present in the image.

Depth computation as proposed here does not require

recovering the local 3D structure of the scene as an
intermediate step. The recognition of structures in the scene
provides absolute depth related information that does not
require object recognition, processing of surfaces, shading,
or junctions. Therefore, the estimated depth provides
contextual information and can be used to simplify object
recognition stages by choosing the more adequate scale of
analysis and by limiting the type of possible objects.
Furthermore, mean depth is a key attribute for scene
recognition. Combined with other perceptual attributes
[22], depth can allow the recognition of the semantic
category of the scene as a first step in the visual processing
before the analysis of 3D surfaces or object detection.
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