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Abstract

We present an algorithm that uses multiple cues to recover shading and reflectance intrinsic
images from a single image. Using both color information and a classifier trained to rec-
ognize gray-scale patterns, each image derivative is classified as being caused by shading
or a change in the surface’s reflectance. Generalized Belief Propagation is then used to
propagate information from areas where the correct classification is clear to areas where it
is ambiguous. We also show results on real images.

1 Introduction

Every image is the product of the characteristics of a scene. Two of the most important
characteristics of the scene are its shading and reflectance. The shading of a scene is the
interaction of the surfaces in the scene and the illumination. The reflectance of the scene
describes how each point reflects light. The ability to find the reflectance of each point
in the scene and how it is shaded is important because interpreting an image requires the
ability to decide how these two factors affect the image. For example, the geometry of
an object in the scene cannot be recovered without being able to isolate the shading of
every point. Likewise, segmentation would be simpler given the reflectance of each point
in the scene. In this work, we present a system which finds the shading and reflectance
of each point in a scene by decomposing an input image into two images, one containing
the shading of each point in the scene and another image containing the reflectance of
each point. These two images are types of a representation known as intrinsic images [1]
because each image contains one intrinsic characteristic of the scene.

Most prior algorithms for finding shading and reflectance images can be broadly classi-
fied as generative or discriminative approaches. The generative approaches create possible
surfaces and reflectance patterns that explain the image, then use a model to choose the
most likely surface. Previous generative approaches include modeling worlds of painted
polyhedra [11] or constructing surfaces from patches taken out of a training set [3]. In
contrast, discriminative approaches attempt to differentiate between changes in the image
caused by shading and those caused by a reflectance change. Early algorithms, such as
Retinex [8], were based on simple assumptions, such as the assumption that the gradients
along reflectance changes have much larger magnitudes than those caused by shading. That
assumption does not hold for many real images, so recent algorithms have used more com-
plex statistics to separate shading and reflectance. Bell and Freeman [2] trained a classifier
to use local image information to classify steerable pyramid coefficients as being due to
shading or reflectance. Using steerable pyramid coefficients allowed the algorithm to clas-



sify edges at multiple orientations and scales. However, the steerable pyramid decomposi-
tion has a low-frequency residual component that cannot be classified. Without classifying
the low-frequency residual, only band-pass filtered copies of the shading and reflectance
images can be recovered. In addition, low-frequency coefficients may not have a natural
classification.

In a different direction, Weiss [13] proposed using multiple images where the reflectance
is constant, but the illumination changes. This approach was able to create full frequency
images, but required multiple input images of a fixed scene.

In this work, we present a system which uses multiple cues to recover full-frequency shad-
ing and reflectance intrinsic images from a single image. Our approach is discriminative,
using both a classifier based on color information in the image and a classifier trained to rec-
ognize local image patterns to distinguish derivatives caused by reflectance changes from
derivatives caused by shading. We also address the problem of ambiguous local evidence
by using a Markov Random Field to propagate the classifications of those areas where the
evidence is clear into ambiguous areas of the image.

2 Separating Shading and Reflectance

Our algorithm decomposes an image into shading and reflectance images by classifying
each image derivative as being caused by shading or a reflectance change. We assume that
the input image, I(x, y), can be expressed as the product of the shading image, S(x, y), and
the reflectance image, R(x, y). Considering the images in the log domain, the derivatives
of the input image are the sum of the derivatives of the shading and reflectance images. It is
unlikely that significant shading boundaries and reflectance edges occur at the same point,
thus we make the simplifying assumption that every image derivative is either caused by
shading or reflectance. This reduces the problem of specifying the shading and reflectance
derivatives to that of binary classification of the image’s x and y derivatives.

Labelling each x and y derivative produces estimates of the derivatives of the shading and
reflectance images. Each derivative represents a set of linear constraints on the image
and using both derivative images results in an over-constrained system. We recover each
intrinsic image from its derivatives by using the method introduced by Weiss in [13] to find
the pseudo-inverse of the over-constrained system of derivatives. If fx and fy are the filters
used to compute the x and y derivatives and Fx and Fy are the estimated derivatives of
shading image, then the shading image, S(x, y) is:

S(x, y) = g ? [(fx(−x,−y) ? Fx) + (fy(−x,−y) ? Fy)] (1)

where ? is convolution, f(−x,−y) is a reversed copy of f(x, y), and g is the solution of

g ? [(fx(−x,−y) ? fx(x, y)) + (fy(−x,−y) ? fx(x, y))] = δ (2)

The reflectance image is found in the same fashion. One nice property of this technique is
that the computation can be done using the FFT, making it more computationally efficient.

3 Classifying Derivatives

With an architecture for recovering intrinsic images, the next step is to create the classifiers
to separate the underlying processes in the image. Our system uses two classifiers, one
which uses color information to separate shading and reflectance derivatives and a second
classifier that uses local image patterns to classify each derivative.
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Figure 1: Example computed using only color information to classify derivatives. To fa-
cilitate printing, the intrinsic images have been computed from a gray-scale version of the
image. The color information is used solely for classifying derivatives in the gray-scale
copy of the image.

3.1 Using Color Information

Our system takes advantage of the property that changes in color between pixels indicate
a reflectance change [10]. When surfaces are diffuse, any changes in a color image due to
shading should affect all three color channels proportionally. Assume two adjacent pixels
in the image have values c1 and c2, where c1 and c2 are RGB triplets. If the change
between the two pixels is caused by shading, then only the intensity of the color changes
and c2 = αc1 for some scalar α. If c2 6= αc1, the chromaticity of the colors has changed
and the color change must have been caused by a reflectance change. A chromaticity
change in the image indicates that the reflectance must have changed at that point.

To find chromaticity changes, we treat each RGB triplet as a vector and normalize them
to create ĉ1 and ĉ2. We then use the angle between ĉ1 and ĉ2 to find reflectance changes.
When the change is caused by shading, (ĉ1 · ĉ2) equals 1. If (ĉ1 · ĉ2) is below a threshold,
then the derivative associated with the two colors is classified as a reflectance derivative.
Using only the color information, this approach is similar to that used in [6]. The primary
difference is that our system classifies the vertical and horizontal derivatives independently.

Figure 1 shows an example of the results produced by the algorithm. The classifier marked
all of the reflectance areas correctly and the text is cleanly removed from the bottle. This
example also demonstrates the high quality reconstructions that can be obtained by classi-
fying derivatives.

3.2 Using Gray-Scale Information

While color information is useful, it is not sufficient to properly decompose images. A
change in color intensity could be caused by either shading or a reflectance change. Using
only local color information, color intensity changes cannot be classified properly. Fortu-
nately, shading patterns have a unique appearance which can be discriminated from most
common reflectance patterns. This allows us to use the local gray-scale image pattern sur-
rounding a derivative to classify it.

The basic feature of the gray-scale classifier is the absolute value of the response of a linear
filter. We refer to a feature computed in this manner as a non-linear filter. The output of a
non-linear, F , given an input patch Ip is

F = |Ip ? w| (3)

where ? is convolution and w is a linear filter. The filter, w is the same size as the image
patch, I , and we only consider the response at the center of Ip. This makes the feature
a function from a patch of image data to a scalar response. This feature could also be
viewed as the absolute value of the dot product of Ip and w. We use the responses of linear



Figure 2: Example images from the training set. The first two are examples of reflectance
changes and the last three are examples of shading

(a) Original Image (b) Shading Image (c) Reflectance Image

Figure 3: Results obtained using the gray-scale classifier.

filters as the basis for our feature, in part, because they have been used successfully for
characterizing [9] and synthesizing [7] images of textured surfaces.

The non-linear filters are used to classify derivatives with a classifier similar to that used
by Tieu and Viola in [12]. This classifier uses the AdaBoost [4] algorithm to combine a
set of weak classifiers into a single strong classifier. Each weak classifier is a threshold
test on the output of one non-linear filter. At each iteration of the AdaBoost algorithm, a
new weak classifier is chosen by choosing a non-linear filter and a threshold. The filter
and threshold are chosen greedily by finding the combination that performs best on the
re-weighted training set. The linear filter in each non-linear filter is chosen from a set of
oriented first and second derivative of Gaussian filters.

The training set consists of a mix of images of rendered fractal surfaces and images of
shaded ellipses placed randomly in the image. Examples of reflectance changes were cre-
ated using images of random lines and images of random ellipse painted onto the image.
Samples from the training set are shown in 2. In the training set, the illumination is always
coming from the right side of the image. When evaluating test images, the classifier will
assume that the test image is also lit from the right.

Figure 3 shows the results of our system using only the gray-scale classifier. The results
can be evaluated by thinking of the shading image as how the scene should appear if it
were made entirely of gray plastic. The reflectance image should appear very flat, with the
the three-dimensional depth cues placed in the shading image. Our system performs well
on the image shown in Figure 3. The shading image has a very uniform appearance, with
almost all of the effects of the reflectance changes placed in the reflectance image.

The examples shown are computed without taking the log of the input image before pro-
cessing it. The input images are uncalibrated and ordinary photographic tonescale is very
similar to a log transformation. Errors from not taking log of the input image first would



(a) (b) (c) (d)
Figure 4: An example where propagation is needed. The smile from the pillow image
in (a) has been enlarged in (b). Figures (c) and (d) contain an example of shading and a
reflectance change, respectively. Locally, the center of the mouth in (b) is as similar to the
shading example in (c) as it is to the example reflectance change in (d).

(a) Original Image (b) Shading Image (c) Reflectance Image

Figure 5: The pillow from Figure 4. This is found by combining the local evidence from
the color and gray-scale classifiers, then using Generalized Belief Propagation to propagate
local evidence.

cause one intrinsic image to modulate the local brightness of the other. However, this does
not occur in the results.

4 Propagating Evidence

While the classifier works well, there are still areas in the image where the local infor-
mation is ambiguous. An example of this is shown in Figure 4. When compared to the
example shading and reflectance change in Figure 4(c) and 4(d), the center of the mouth in
Figure 4(b) is equally well classified with either label. However, the corners of the mouth
can be classified as being caused by a reflectance change with little ambiguity. Since the
derivatives in the corner of the mouth and the center all lie on the same image contour, they
should have the same classification. A mechanism is needed to propagate information from
the corners of the mouth, where the classification is clear, into areas where the local evi-
dence is ambiguous. This will allow areas where the classification is clear to disambiguate
those areas where it is not.

In order to propagate evidence, we treat each derivative as a node in a Markov Random
Field with two possible states, indicating whether the derivative is caused by shading or
caused by a reflectance change. Setting the compatibility functions between nodes correctly
will force nodes along the same contour to have the same classification.



4.1 Model for the Potential Functions

Each node in the MRF corresponds to the classification of a derivative. We constrain the
compatibility functions for two neighboring nodes, xi and xj , to be of the form

ψ(xi, xj) =

[

β 1 − β
1 − β β

]

(4)

with 0 ≤ β ≤ 1.

The term β controls how much the two nodes should influence each other. Since derivatives
along an image contour should have the same classification, β should be close to 1 when
two neighboring derivatives are along a contour and should be 0.5 when no contour is
present.

Since β depends on the image at each point, we express it as β(Ixy), where Ixy is the
image information at some point. To ensure β(Ixy) between 0 and 1, it is modelled as
β(Ixy) = g(z(Ixy)), where g(·) is the logistic function and z(Ixy) has a large response
along image contours.

4.2 Learning the Potential Functions

The function z(Ixy) is based on two local image features, the magnitude of the image and
the difference in orientation between the gradient and the orientation of the graph edge.
These features reflect our heuristic that derivatives along an image contour should have the
same classification.

The difference in orientation between a horizontal graph edge and image contour, φ̂, is
found from the orientation of the image gradient, φ. Assuming that −π/2 ≤ φ ≤ π/2, the
angle between a horizontal edge and the image gradient,φ̂, is φ̂ = |φ|. For vertical edges,
φ̂ = |φ| − π/2.

To find the values of z(·) we maximize the probability of a set of the training examples
over the parameters of z(·). The examples are taken from the same set used to train the
gray-scale classifiers. The probability of training samples is

P =
1

Z

∏

(i,j)

ψ(xi, xj) (5)

where all (i, j) are the indices of neighboring nodes in the MRF and Z is a normalization
constant. Note that each ψ(·) is a function of z(Ixy).

The function relating the image features to ψ(·), z(·), is chosen to be a linear function and
is found by maximizing equation 5 over a set of training images similar to those used to
train the local classifier. In order to simplify the training process, we approximate the true
probability in Equation 5 by assuming that Z is constant. Doing so leads to the following
value of z(·):

z(φ̂, |∇I|) = −1.2 × φ̂+ 1.62 × |∇I| + 2.3 (6)

where |∇I| is the magnitude of the image gradient and both φ̂ and |∇I| have been nor-
malized to be between 0 and 1. These measures break down in areas with a weak gra-
dient, so we set β(Ixy) to 0.5 for regions of the image with a gradient magnitude less
than 0.05. Combined with the values learned for z(·), this effectively limits β to the range
0.5 ≤ β ≤ 1.

Larger values of z(·) correspond to a belief that the derivatives connected by the edge
should have the same value, while negative values signify that the derivatives should have



(a) Original Image (b) Shading Image (c) Reflectance Image

Figure 6: Example generated by combining color and gray-scale information, along with
using propagation.

a different value. The values in equation 6 correspond with our expected results; two
derivatives are constrained to have the same value when they are along an edge in the
image that has a similar orientation to the edge in the MRF connecting the two nodes.

4.3 Inferring the Correct Labelling

Once the compatibility functions have been learned, the label of each derivative can be
inferred. The local evidence for each node in the MRF is obtained from the results of the
color classifier and from the gray-scale classifier by assuming that the two are statistically
independent. It is necessary to use the color information because propagation cannot help
in areas where the gray-scale classifier misses an edge altogether. In Figure 5, the cheek
patches on the pillow, which are pink in the color image, are missed by the gray-scale
classifier, but caught by the color classifier. For the results shown, we used the results of
the AdaBoost classifier to classify the gray-scale images and used the method suggested by
Friedman et al. to obtain the probability of the labels [5].

We used the Generalized Belief Propagation algorithm [14] to infer the best label of each
node in the MRF because ordinary Belief Propagation performed poorly in areas with both
weak local evidence and strong compatibility constraints. The results of using color, gray-
scale information, and propagation can be seen in Figure 5. The ripples on the pillow are
correctly identified as being caused by shading, while the face is correctly identified as
having been painted on. In a second example, shown in Figure 6, the algorithm correctly
identifies the change in reflectance between the sweatshirt and the jersey and correctly iden-
tifies the folds in the clothing as being caused by shading. There are some small shading
artifacts in the reflectance image, especially around the sleeves of the sweatshirt, presum-
ably caused by particular shapes not present in the training set. All of the examples were
computed using ten non-linear filters as input for the AdaBoost gray-scale classifier.

5 Discussion

We have presented a system that is able to use multiple cues to produce shading and re-
flectance intrinsic images from a single image. This method is also able to produce sat-
isfying results for real images. The most computationally intense steps for recovering the
shading and reflectance images are computing the local evidence, which takes about six
minutes on a 700MHz Pentium for a 256 × 256 image, and running the Generalized Belief
Propagation algorithm. Belief propagation was used on both the x and y derivative images



and took around 6 minutes to run 200 iterations on each image. The pseudo-inverse process
took under 5 seconds.

The primary limitation of this method lies in the classifiers. For each type of surface, the
classifiers must incorporate knowledge about the structure of the surface and how it appears
when illuminated. The present classifiers operate at a single spatial scale, however the MRF
framework allows the integration of information from multiple scales.
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