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Abstract

We seek to discover the object categories depicted in a set of
unlabelled images. We achieve this using a model developed
in the statistical text literature: probabilistic Latent Seman-
tic Analysis (pLSA). In text analysis this is used to discover
topics in a corpus using the bag-of-words document repre-
sentation. Here we treat object categories as topics, so that
an image containing instances of several categories is mod-
eled as a mixture of topics.

The model is applied to images by using a visual ana-
logue of a word, formed by vector quantizing SIFT-like re-
gion descriptors. The topic discovery approach successfully
translates to the visual domain: for a small set of objects,
we show that both the object categories and their approx-
imate spatial layout are found without supervision. Per-
formance of this unsupervised method is compared to the
supervised approach of Fergus et al. [8] on a set of unseen
images containing only one object per image.

We also extend the bag-of-words vocabulary to include
‘doublets’ which encode spatially local co-occurring re-
gions. It is demonstrated that this extended vocabulary
gives a cleaner image segmentation. Finally, the classifi-
cation and segmentation methods are applied to a set of
images containing multiple objects per image. These re-
sults demonstrate that we can successfully build object class
models from an unsupervised analysis of images.

1. Introduction
Common approaches to object recognition involve some
form of supervision. This may range from specifying
the object’s location and segmentation, as in face detec-
tion [17, 23], to providing only auxiliary data indicating
the object’s identity [1, 2, 8, 24]. For a large dataset, any
annotation is expensive, or may introduce unforeseen bi-
ases. Results in speech recognition and machine translation
highlight the importance of huge amounts of training data.
The quantity of good, unsupervised training data – the set
of still images – is orders of magnitude larger than the vi-
sual data available with annotation. Thus, one would like

to observe many images and infer models for the classes of
visual objects contained within them without supervision.
This motivates the scientific question which, to our knowl-
edge, has not been convincingly answered before: Is it pos-
sible to learn visual object classes simply from looking at
images?

Given large quantities of training data there has been no-
table success in unsupervised topic discovery in text, and it
is this success that we wish to build on. We apply models
used in statistical natural language processing to discover
object categories and their image layout analogously to
topic discovery in text. In our setting, documents are images
and we quantize local appearance descriptors to form visual
“words” [5, 19]. The two models we have investigated are
the probabilistic Latent Semantic Analysis (pLSA) of Hof-
mann [9, 10], and the Latent Dirichlet Allocation (LDA) of
Blei et al. [4, 7, 18]. Each model consistently gave similar
results and we focus our exposition in this paper on the sim-
pler pLSA method. Both models use the ‘bag of words’ rep-
resentation, where positional relationships between features
are ignored. This greatly simplifies the analysis, since the
data are represented by an observation matrix, a tally of the
counts of each word (rows) in every document (columns).

The ‘bag of words’ model offers a rather impoverished
representation of the data because it ignores any spatial re-
lationships between the features. Nonetheless, it has been
surprisingly successful in the text domain, because of the
high discriminative power of some words and the redun-
dancy of language in general. But can it work for objects,
where the spatial layout of the features may be almost as
important as the features themselves? While it seems im-
plausible, there are several reasons for optimism: (i) as op-
posed to old corner detectors, modern feature descriptors
have become powerful enough to encode very complex vi-
sual stimuli, making them quite discriminative; (ii) because
visual features overlap in the image, some spatial informa-
tion is implicitly preserved (i.e. randomly shuffling bits of
the image around will almost certainly change the bag of
words description). In this paper, we show that this opti-
mism is not groundless.

While we ignore spatial position in our ‘bag of words’
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Figure 1: (a) pLSA graphical model, see text. Nodes inside a given
box (plate notation) indicate that they are replicated the number
of times indicated in the top left corner. Filled circles indicate
observed random variables; unfilled are unobserved. (b) In pLSA
the goal is to find the topic specific word distributions P (w|zk)
and corresponding document specific mixing proportions P (z|dj)
which make up the document specific word distribution P (w|dj).

object class models, our models are sufficiently discrimina-
tive to localize objects within each image, providing an ap-
proximate segmentation of each object topic from the others
within an image. Thus, these bag-of-features models are a
step towards top-down segmentation and spatial grouping.

We take this point on segmentation further by develop-
ing a second vocabulary which is sensitive to the spatial
layout of the words. This vocabulary is formed from spa-
tially neighboring word pairs, which we dub doublets. We
demonstrate that doublets provide a cleaner segmentation of
the various objects in each image. This means that both the
object category and image segmentation are determined in
an unsupervised fashion.

Sect. 2 describes the pLSA statistical model; various im-
plementation details are given in Sect. 3. To explain and
compare performance, in Sect. 4 we apply the models to
sets of images for which the ground truth labeling is known.
We also compare performance with a baseline algorithm: a
k-means clustering of word frequency vectors. Results are
presented for object detection and segmentation. We sum-
marize in Sect. 5.

2. The topic discovery model
We will describe the models here using the original terms
‘documents’ and ‘words’ as used in the text literature. Our
visual application of these (as images and visual words) is
then given in the following sections.

Suppose we have N documents containing words from
a vocabulary of size M . The corpus of text documents is
summarized in a M by N co-occurrence table N, where
n(wi, dj) stores the number of occurrences of a word wi

in document dj . This is the bag of words model. In addi-
tion, there is a hidden (latent) topic variable zk associated
with each occurrence of a word wi in a document dj .

pLSA: The joint probability P (wi, dj , zk) is assumed to
have the form of the graphical model shown in figure 1(a).

Marginalizing over topics zk determines the conditional
probability P (wi|dj):

P (wi|dj) =
K∑

k=1

P (zk|dj)P (wi|zk), (1)

where P (zk|dj) is the probability of topic zk occurring in
document dj ; and P (wi|zk) is the probability of word wi

occurring in a particular topic zk.
The model (1) expresses each document as a convex

combination of K topic vectors. This amounts to a matrix
decomposition as shown in figure 1(b) with the constraint
that both the vectors and mixture coefficients are normal-
ized to make them probability distributions. Essentially,
each document is modelled as a mixture of topics – the his-
togram for a particular document being composed from a
mixture of the histograms corresponding to each topic.

Fitting the model involves determining the topic vectors
which are common to all documents and the mixture coef-
ficients which are specific to each document. The goal is
to determine the model that gives high probability to the
words that appear in the corpus, and a maximum likelihood
estimation of the parameters is obtained by maximizing the
objective function:

L =
M∏
i=1

N∏
j=1

P (wi|dj)n(wi,dj) (2)

where P (wi|dj) is given by (1).
This is equivalent to minimizing the Kullback-Leibler

divergence between the measured empirical distribution
P̃ (w|d) and the fitted model. The model is fitted using
the Expectation Maximization (EM) algorithm as described
in [10].

3. Implementation details
Obtaining visual words: We seek a vocabulary of vi-
sual words which will be insensitive to changes in view-
point and illumination. To achieve this we use vector quan-
tized SIFT descriptors [11] computed on affine covariant
regions [12, 13, 16]. Affine covariance gives tolerance to
viewpoint changes; SIFT descriptors, based on histograms
of local orientation, gives some tolerance to illumination
change. Vector quantizing these descriptors gives tolerance
to morphology within an object category. Others have used
similar descriptors for object classification [5, 15], but in a
supervised setting.

Two types of affine covariant regions are computed for
each image. The first is constructed by elliptical shape
adaptation about an interest point. The method is described
in [13, 16]. The second is constructed using the maximally
stable procedure of Matas et al. [12] where areas are se-
lected from an intensity watershed image segmentation. For
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both of these we use the binaries provided at [22]. Both
types of regions are represented by ellipses. These are com-
puted at twice the originally detected region size in order
for the image appearance to be more discriminating.

Each ellipse is mapped to a circle by appropriate scal-
ing along its principal axes and a SIFT descriptor is com-
puted. There is no rotation of the patch, i.e. the descriptors
are rotation variant (alternatively, the SIFT descriptor could
be computed relative to the the dominant gradient orienta-
tion within a patch, making the descriptor rotation invari-
ant [11]). The SIFT descriptors are then vector quantized
into the visual ‘words’ for the vocabulary. The vector quan-
tization is carried out here by k-means clustering computed
from about 300K regions. The regions are those extracted
from a random subset (about one third of each category)
of images of airplanes, cars, faces, motorbikes and back-
grounds (see Expt. (2) in section 4). About 1K clusters are
used for each of the Shape Adapted and Maximally Stable
regions, and the resulting total vocabulary has 2,237 words.
The number of clusters, k, is clearly an important parameter.
The intention is to choose the size of k to determine words
which give some intra-class generalization. This vocabulary
is used for all the experiments throughout this paper.

In text analysis, a word with two different meanings is
called polysemous (e.g. ‘bank’ as in (i) a money keeping
institution, or (ii) a river side). We observe the analogue of
polysemy in our visual words, however, the topic discovery
models can cope with these. A polysemous word would
have a high probability in two different topics. The hidden
topic variable associated with each word occurrence in a
particular document can assign such a word to a particular
topic depending on the context of the document. We return
to this point in section 4.3.

Doublet visual words: For the task of segmentation, we
seek to increase the spatial specificity of object description
while at the same time allowing for configurational changes.
We thus augment our vocabulary of words with “doublets”
– pairs of visual words which co-occur within a local spa-
tial neighborhood. As candidate doublet words, we consider
only the 100 words (or less) with high probability in each
topic after an initial run of pLSA. To avoid trivial doublets
(those with both words in the same location), we discard
those pairs of ellipses with significant overlap. We then
form doublets from all pairs of the remaining words that
are within five nearest neighbors of each other. However,
there is a preference for ellipses of similar sizes, and this
is achieved by using a distance function (for computing the
neighbors) that multiplies the actual distance (in pixels) be-
tween candidate ellipses by the ratio of the larger to smaller
major axis of the two ellipses. Figure 2 illustrates the ge-
ometry and formation of the doublets. Figure 7d,e shows
examples of doublets on a real image.

Figure 2: The doublet formation process. We search for the k
nearest neighbors of the word ellipse marked in black, giving one
doublet for each valid neighbor. We illustrate the process here
with k = 2. The large red ellipse significantly overlaps the the
black one and is discarded. After size-dependent distance scaling,
the small red ellipse is further from the black center than the two
green ellipses and is also discarded. The black word is thus paired
with each of the two green ellipse words to form two doublets.

Model learning: For pLSA, the EM algorithm is initial-
ized randomly and typically converges in 40–100 iterations.
One iteration takes about 2.3 seconds on 4K images with
7 fitted topics and ∼300 non-zero word counts per image
(Matlab implementation on a 2GHz PC).

Baseline method – k-means (KM): To understand the
contributions of the topic discovery model to the system
performance, we also implemented an algorithm using the
same features of word frequency vectors for each image,
but without the final statistical machinery. The standard k-
means procedure is used to determine k clusters from the
word frequency vectors, i.e. the pLSA clustering on KL di-
vergence is replaced by Euclidean distance and each docu-
ment is hard-assigned to exactly one cluster.

4. Experiments
Given a collection of unlabelled images, our goal is to auto-
matically discover/classify the visual categories present in
the data and localize them in the image. To understand how
the algorithms perform, we train on image collections for
which we know the desired visual topics.

We investigate three areas: (i) topic discovery – where
categories are discovered by pLSA clustering on all avail-
able images, (ii) classification of unseen images – where
topics corresponding to object categories are learnt on one
set of images, and then used to determine the object cat-
egories present in another set, and (iii) object detection –
where we also wish to determine the location and approxi-
mate segmentation of object(s) in each image.

We use two datasets of objects, one from Caltech [6, 8]
and the other from MIT [21]. The Caltech datasets depict
one object per image. The MIT dataset depicts multiple
object classes per image. We report results for the three
areas first on the Caltech images, and then in section 4.4
show their application to the MIT images.

Caltech image data sets. Our data set consists of im-
ages of five categories from the Caltech 101 datasets (as
previously used by Fergus et al. [8] for supervised classi-
fication). The categories and their number of images are:
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Ex Categories K pLSA KM baseline
% # % #

(1) 4 4 98 70 72 908
(2) 4 + bg 5 78 931 56 1820

(2)* 4 + bg 6 76 1072 – –
(2)* 4 + bg 7 83 768 – –
(2)* 4 + bg-fxd 7 93 238 – –

Table 1: Summary of the experiments. Column ‘%’ shows the
classification accuracy measured by the average of the diagonal
of the confusion matrix. Column ‘#’ shows the total number of
misclassifications. See text for a more detailed description of the
experimental results. In the case of (2)* the two/three background
topics are allocated to one category. Evidently the baseline method
performs poorly, showing the power of the pLSA clustering.

faces, 435; motorbikes, 800; airplanes, 800; cars rear, 1155;
background, 900. The reason for picking these particular
categories is pragmatic: they are the ones with the greatest
number of images per category. All images have been con-
verted to grayscale before processing. Otherwise they have
not been altered in any way, with one notable exception: a
large number of images in the motorbike category and air-
plane category have a white border around the image which
we have removed since it was providing an artifactual cue
for object class.

4.1. Topic discovery
We carry out a sequence of increasingly demanding experi-
ments. In each experiment images are pooled from a num-
ber of original datasets, and the pLSA and baseline models
are fitted to the ensemble of images (with no knowledge of
the image’s labels) for a specified number of topics, K. For
example, in Expt. (1) the images are pooled from four cat-
egories (airplanes, cars, faces and motorbikes) and models
with K = 4 objects (topics) are fitted. In the case of pLSA,
the model determines the mixture coefficients P (zk|dj) for
each image (document) dj (where z ∈ {z1, z2, z3, z4} for
the four topics). An image dj is then classified as contain-
ing object k according to the maximum of P (zk|dj) over k.
This is essentially a one against many (the other categories)
test. Since here we know the object instances in each im-
age, we use this information as a performance measure. A
confusion matrix is then computed for each experiment.

Expt. (1) Images of four object categories with cluttered
backgrounds. The four Caltech categories have cluttered
backgrounds and significant scale variations (in the case of
cars rear). We investigate clustering as the number of top-
ics is varied. In the case of K = 4, we discover the four
different categories in the dataset with very high accuracy
(see table 1). In the case of K = 5, the car dataset splits
into two subtopics. This is because the data contains sets of
many repeated images of the same car. Increasing K to 6
splits the motorbike data into sets with a plain background

(a)

(b)

(c)

(d)

Figure 3: The most likely words (shown by 5 examples in a row)
for four learnt topics in Expt. (1): (a) Faces, (b) Motorbikes, (c)
Airplanes, (d) Cars.
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Figure 4: Confusion tables for Expt. (2) for increasing number of
topics (K=5,6,7) and with 7 topics and fixed background respec-
tively. Brightness indicates number. The ideal is bright down the
diagonal. Note how the background (category 5) splits into 2 and
3 topics (for K=6 and 7 respectively) and that some amount of the
confusion between categories and background is removed.

and cluttered background. Increasing K further to 7 and
8 ‘discovers’ two more sub-groups of car data containing
again other repeated images of the same/similar cars.

It is also interesting to see the visual words which are
most probable for an object by selecting those with high
topic specific probability P (wi|zk). These are shown for
the case of K = 4 in figure 3.

Thus, for these four object categories, topic discovery
analysis cleanly separates the images into object classes,
with reasonable behavior as the number of topics increases
beyond the number of objects. The most likely words for a
topic appear to be semantically meaningful regions.

Expt. (2) Images of four object categories plus “back-
ground” category. Here we add images of an explicit
“background” category (indoor and outdoor scenes around
Caltech campus) to the above Expt. (1). The reason for
adding these additional images is to give the methods the
opportunity of discovering background “objects”.

The confusion tables as K is varied are shown as images
in figure 4. It is evident, for example, that the first topic
confuses faces and backgrounds to some extent. The re-
sults are summarized in table 1. The case of K = 7 with
three topics allocated to the background gives the best per-
formance. Examples of the most likely visual words for the
three discovered background topics are shown in figure 5.

In the case of many of the Caltech images there is a
strong correlation of the foreground and backgrounds (e.g.
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(a)

(b)

(c)

Figure 5: The most likely words (shown by 5 examples in a row)
for the three background topics learned in Expt. (2): (a) Back-
ground I, mainly local feature-like structure (b) Background II,
mainly corners and edges coming from the office/building scenes,
(c) Background III, mainly textured regions like grass and trees.

True Class → Faces Moto Airp Cars Backg
Topic 1 - Faces 94.02 0.00 0.38 0.00 1.00
Topic 2 - Motorb 0.00 83.62 0.12 0.00 1.25
Topic 3 - Airplan 0.00 0.50 95.25 0.52 0.50
Topic 4 - Cars rear 0.46 0.88 0.38 98.10 3.75
Topic 5 - Bg I 1.84 0.38 0.88 0.26 41.75
Topic 6 - Bg II 3.68 12.88 0.88 0.00 23.00
Topic 7 - Bg III 0.00 1.75 2.12 1.13 28.75

Table 2: Confusion table for Expt. (2) with three background top-
ics fixed (these data are shown as an image on the far-right of Fig-
ure 4). The mean of the diagonal (counting the three background
topics as one) is 92.9%. The total number of miss-classified im-
ages is 238. The discovered topics correspond well to object
classes.

the faces are generally against an office background). This
means that in the absence of other information the learnt
topic (for faces for example) also includes words for the
background. In classification, then, some background im-
ages are erroneously classified as faces. If the background
distributions were to be fixed, then when determining the
new topics the foreground/backgrounds are decorrelated be-
cause the backgrounds are entirely explained by the fixed
topics, and the foreground words would then need to be ex-
plained by a new topic.

Motivated by the above, we now carry out a variation
in the learning where we first learn three topics on a sepa-
rate set of 400 background images alone. This background
set is disjoint from the one used earlier in this experiment.
These topics are then frozen, and a pLSA decomposition
with seven topics (four to be learnt, three fixed) are again
determined. The confusion table classification results are
given in table 2. It is evident that the performance is im-
proved over not fixing the background topics above.

Discussion: In the experiments it was necessary to spec-
ify the number of topics K, however Bayesian [20] or mini-
mum complexity methods [3] can be used to infer the num-
ber of topics implied by a corpus. It should be noted that the
baseline k-means method achieves nowhere near the level

True Class → Faces Motorb Airplan Cars rear
Topic 1 - Faces 99.54 0.25 1.75 0.75
Topic 2 - Motorb 0.00 96.50 0.25 0.00
Topic 3 - Airplan 0.00 1.50 97.50 0.00
Topic 4 - Cars rear 0.46 1.75 0.50 99.25

Table 3: Confusion table for unseen test images in Expt. (3) –
classification against images containing four object categories, but
no background images. Note there is very little confusion between
different categories. See text.

of performance of the pLSA method. This demonstrates the
power of using the proper statistical modelling here.

4.2. Classifying new images
The learned topics can also be used for classifying new im-
ages, a task similar to the one in Fergus et al. [8]. In the
case of pLSA, the topic specific distributions P (w|z) are
learned from a separate set of ‘training’ images. When
observing a new unseen ‘test’ image, the document spe-
cific mixing coefficients P (z|dtest) are computed using the
‘fold-in’ heuristic described in [9]. In particular, the un-
seen image is ‘projected’ on the simplex spanned by the
learned P (w|z), i.e. the mixing coefficients P (zk|dtest)
are sought such that the Kullback-Leibler divergence be-
tween the measured empirical distribution P̃ (w|dtest) and
P (w|dtest) =

∑K
k=1 P (zk|dtest)P (w|zk) is minimized.

This is achieved by running EM in a similar manner to that
used in learning, but now only the coefficients P (zk|dtest)
are updated in each M-step. The learned P (w|z) are kept
fixed.

Expt. (3) Training images of four object categories plus
“background” category. To compare performance with
Fergus et al. [8], Expt. (2) was modified such that only the
‘training’ subsets for each category (and all background im-
ages) from [8] were used to fit the pLSA model with 7 top-
ics (four object topics and three background topics). The
‘test’ images from [8] were than ‘folded in’ as described
above. For example in the case of motorbikes the 800
images are divided into 400 training and 400 test images.
There are test images for the four object categories, but no
background images. Each test image is assigned to object
topic k with maximum P (zk|dtest) (background topics are
ignored here). The confusion table is shown in table 3.

Expt. (4) Binary classification of category against back-
ground. Up to this point the classification test has been
one against many. In this test we examine performance in
classifying (unseen) images against (unseen) background
images. The pLSA model is fitted to training subsets of
each category and only 400 (out of 900) background im-
ages. Testing images of each category and background im-
ages are ‘folded-in’. The mixing proportion P (zk|dtest) for
topic k across the testing images dtest (i.e. a row in the land-
scape matrix P (z|d) in figure 1b) is then used to produce a
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Object categ. pLSA (a) pLSA (b) Fergus et al. [8]
Faces 5.3 3.3 3.6
Motorbikes 15.4 8.0 6.7
Airplanes 3.4 1.6 7.0
Cars rear* 21.4 / 11.9 16.7 / 7.0 9.7

Table 4: Equal error rates for image classification task for pLSA
and the method of [8]. Test images of a particular category were
classified against (a) testing background images (test performed
in [8]) and (b) testing background images and testing images of all
other categories. The improved performance in (b) is because our
method exhibits very little confusion between different categories.
(*) The two performance figures correspond to training on 400 /
900 background images respectively. In both cases, classification
is performed against an unseen test set of road backgrounds (as
in [8]), which was folded-in. See text for explanation.

ROC curve for the topic k. Equal error rates for the four
object topics are reported in table 4.

Note that for Airplanes and Faces our performance is
similar to that of [8] despite the fact that our ‘training’ is
unsupervised in the sense that the identity of the object in
an image is not known. This is in contrast to [8], where each
image is labelled with an identity of the object it contains,
i.e. about 5×400 items of supervisory data vs. one label
(the number of topics) in our case.

In the case of motorbikes we perform worse than [8]
mainly due to confusion between motorbike images con-
taining a textured background and the textured background
topic. The performance on Cars rear is poor because Car
images are split between two topics in training (a similar
effect happens in Expt. (1) for K=6). This splitting can be
avoided by including more background images. In order
to make results comparable with [8], Cars rear images were
classified against a completely new background dataset con-
taining mainly empty roads. This dataset was not seen in
the learning stage and had to be ‘folded-in’ which makes
the comparison on Cars rear slightly unfair to the topic dis-
covery approach.

4.3. Segmentation
In this section we evaluate the image’s spatial segmenta-
tion discovered by the model fitting. As a first thought, it
is absurd that a bag of words model could possibly have
anything useful to say about image segmentation, since all
spatial information has been thrown away. However, the
pLSA model delivers the posteriors

P (zk|wi, dj) =
P (wi|zk)P (zk|dj)∑K
l=1 P (wi|zl)P (zl|dj)

, (3)

and consequently for a word occurrence in a particular doc-
ument we can examine the probability of different topics.

Figure 6 shows an example of ‘topic segmentation’ in-
duced by P (zk|wi, dj) for the case of Expt. (2) with 7
topics. In particular, we show only visual words with

(a) (b)
Topic P (topic|image) # regions
1 Faces (yellow) 0.48 128
2 Motorbikes (green) 0.07 1
3 Airplanes (black) 0.00 0
4 Cars rear (red) 0.03 0
5 Backg I (magenta) 0.09 1
6 Backg II (cyan) 0.17 12
7 Backg III (blue) 0.15 23

(c)
Figure 6: Image as a mixture of visual topics (Expt. (2)) using 7
learned topics). (a) Original frame. (b) Image as a mixture of a
face topic (yellow) and background topics (blue, cyan). Only el-
liptical regions with topic posterior P (z|w, d) greater than 0.8 are
shown. In total 7 topics were learnt for this dataset which con-
tained faces, motorbikes, airplanes, cars, and background images.
The other topics are not significantly present in the image since
they mostly represent the other categories and other types of back-
ground. (c) The table shows the mixture coefficients P (z|d) for
this particular image. In total there are 693 elliptical regions in this
image of which 165 (102 unique visual words) have P (z|w, d)
above 0.8 (those shown in (b)). The topics assigned to visual
words, dependent on the other words in the analyzed image, cor-
respond well to object categories.

P (zk|wi, dj) greater than 0.8. There is an impressive align-
ment of the words with the corresponding object areas of
the image. Note the words shown are not simply those most
likely for that topic. Rather, from Equation (3), they have
high probability of that topic in this image. This is an exam-
ple of overcoming polysemy – the probability of the partic-
ular word depends not only on the probability that it occurs
within that topic (face, say) but also on the probability that
the face topic has for that image, i.e. the evidence for the
face topic from other regions in the image.

Expt. (5) Image segmentation for faces. We now inves-
tigate how doublets (i.e. an additional vocabulary formed
from the local co-occurrences of visual words) can improve
image segmentation (cf single visual words – singlets). To
illustrate this clearly, we start with a two class image dataset
consisting of half the faces (218 images) and backgrounds
(217 images). The procedure for learning the doublets is as
follows: a four topic pLSA decomposition is learnt for all
training faces and training backgrounds with 3 fixed back-
ground topics, i.e. one (face) topic is learnt in addition to the
three fixed background topics (learned by fitting 3 topics to
a separate set of 400 training background images, cf Expt.
(2)). A doublet vocabulary is then formed from the top 100
visual words of the face topic. A second four topic pLSA
decomposition is then learnt for the combined vocabulary
of singlets and doublets with the background topics fixed.
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Figure 7: Improving object segmentation. (a) The original frame
with ground truth bounding box. (b) All 601 detected elliptical
regions superimposed on the image. (c) Segmentation obtained by
pLSA on single regions. (d) and (e) show examples of ‘doublets’
—locally co-occurring regions. (f) Segmentation obtained using
doublets. Note the extra regions on the right-hand side background
of (c) are removed in (f).

The fixed background topics for the new combined vocabu-
lary are again pre-learnt on the separate set of 400 training
backgrounds. The reason for running the first level single-
ton pLSA is to reduce the doublet vocabulary to a manage-
able size. Figure 7 compares segmentation on one example
image of a face using singlets and doublets.

The accuracy of the resulting segmentations is assessed
by comparing to ground truth bounding boxes (shown in
Figure 7a) for the 218 face images. Let GT and Rf be re-
spectively the set of pixels in the ground truth bounding box
and in the union of all the ellipse regions labelled as face.
The performance score ρ measures the area correctly seg-
mented by the word ellipses. It is the ratio of the intersection
of GT and Rf to the union of GT and Rf , i.e. ρ = GT∩Rf

GT∪Rf
.

This score is averaged over all face images to produce a sin-
gle number performance measure. The singleton segmenta-
tion score is 0.49, and the doublet segmentation improves
this score to 0.61. A score of unity is not reached in prac-
tice because regions are not detected on textureless parts of
the image (so there are always ‘holes’ in the intersection of
the numerator). We have also investigated using doublets
composed from the top 40 visual words across all topics
(including background topics). In this case the segmenta-
tion score drops slightly to 0.59. So there is some benefit in
topic specific doublets.

Note the level of supervision to achieve this segmenta-
tion: the images are an unordered mix of faces and back-
grounds. It is not necessary to label which is which, yet
both the face objects and their segmentation are learnt. The
supervision provided is the number of topics K and the sep-
arate set of background images to pre-learn the background
topics.

4.4. MIT image dataset results
MIT image data sets: The MIT dataset contains 2,873
images of indoor and outdoor scenes, with partial annota-

tions. Again all images have been converted to grayscale
before processing.

Topic discovery and segmentation: We fit pLSA with
K = 10 topics to the entire dataset. The top 40 visual
words from each topic are then used to form a doublet vo-
cabulary of size 59,685. The pLSA is then relearned for a
new vocabulary consisting of all singlets and all doublets.
Figures 8 and 9 show examples of segmentations induced
by 5 of the 10 learned topics. These topics, more so than the
rest, have a clear semantic interpretation, and cover objects
such as computers, buildings, trees etc. Note that the results
clearly demonstrate that: (i) images can be accessed by the
multiple objects they contain (in contrast to GIST [14], for
example, which classifies an entire image); (ii) the topics in-
duce segmentations of multiple instances of objects in each
image.

5. Conclusions
We have demonstrated that it is possible to learn visual ob-
ject classes simply by looking: we identify the object cat-
egories for each image with the high reliabilities shown in
table 1, using a corpus of unlabelled images. Furthermore,
using these learnt topics for classification, we reproduce the
experiments (training/testing) of [8], and obtain very com-
petitive performance – despite the fact that [8] had to pro-
vide about (400× number of classes) supervisory labels,
and we provide one label (number of topics).

Visual words with the highest posterior probabilities for
each object correspond fairly well to the spatial locations
of each object. This is rather remarkable considering our
use of the bag of words model. By introducing a second
vocabulary built on spatial co-occurrences of word pairs,
cleaner and more accurate segmentations are achieved.

The ability to learn topic probabilities for local appear-
ances lets us apply the power and flexibility of unsupervised
datasets to the task of visual interpretation.
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