
International Journal of Computer Vision 56(3), 151–177, 2004
c© 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Object Detection Using the Statistics of Parts

HENRY SCHNEIDERMAN AND TAKEO KANADE∗

Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
hws@cs.cmu.edu

tk@cs.cmu.edu

Received April 20, 2001; Revised February 15, 2002; Accepted March 6, 2002

Abstract. In this paper we describe a trainable object detector and its instantiations for detecting faces and cars
at any size, location, and pose. To cope with variation in object orientation, the detector uses multiple classifiers,
each spanning a different range of orientation. Each of these classifiers determines whether the object is present at
a specified size within a fixed-size image window. To find the object at any location and size, these classifiers scan
the image exhaustively.

Each classifier is based on the statistics of localized parts. Each part is a transform from a subset of wavelet
coefficients to a discrete set of values. Such parts are designed to capture various combinations of locality in space,
frequency, and orientation. In building each classifier, we gathered the class-conditional statistics of these part values
from representative samples of object and non-object images. We trained each classifier to minimize classification
error on the training set by using Adaboost with Confidence-Weighted Predictions (Shapire and Singer, 1999). In
detection, each classifier computes the part values within the image window and looks up their associated class-
conditional probabilities. The classifier then makes a decision by applying a likelihood ratio test. For efficiency, the
classifier evaluates this likelihood ratio in stages. At each stage, the classifier compares the partial likelihood ratio to a
threshold and makes a decision about whether to cease evaluation—labeling the input as non-object—or to continue
further evaluation. The detector orders these stages of evaluation from a low-resolution to a high-resolution search
of the image. Our trainable object detector achieves reliable and efficient detection of human faces and passenger
cars with out-of-plane rotation.

Keywords: object recognition, object detection, face detection, car detection, pattern recognition, machine learn-
ing, statistics, computer vision, wavelets, classification

1. Introduction

Object detection is a big part of people’s lives. We, as
human beings, constantly “detect” various objects such
as people, buildings, and automobiles. Yet it remains
a mystery how we detect objects accurately and with
little apparent effort. Comprehensive explanations have
defied psychologists and physiologists for more than a
century.

∗This work was supported in part by the Advanced Research and
Development Activity (ARDA) under contract number MDA904-
00-C-2109.

Our goal in this research is not to understand how
humans perceive, but to create computer methods for
automatic object detection. Automated object detec-
tion has many potential uses including image retrieval.
Digital image collections have grown dramatically in
recent years. Corbis estimates it has more than 67 mil-
lion images in its collection. The Associated Press col-
lects and archives an estimated 1,000 photographs a
day. Currently, the usability of these collections is lim-
ited by a lack of effective retrieval methods. To find a
specific image in such a collection, people must search
using text-based captions and primitive image features
such as color and texture. Automatic object detection

152 Schneiderman and Kanade

could be used to extract more information from these
images and help label and categorize them. Improved
search methods will make these databases accessible
to wider groups of users, such as law enforcement
agencies, medical practitioners, graphic and multime-
dia designers, and artists. Automatic object detection
could also be useful in photography. As camera tech-
nology changes from film to digital capture, cameras
will become part optics and part computer. Such a cam-
era could automatically focus, color balance, and zoom
on a specified object of interest, say, a human face. Also,
detectors of a specific object have specialized uses: face
detectors for face identification and car detectors for
monitoring traffic.

1.1. Challenges in Object Detection

Automatic object detection is a difficult undertaking. In
over 30 years of research in computer vision, progress
has been limited. The main challenge is the amount
of variation in visual appearance. An object detector
must cope with both the variation within the object
category and with the diversity of visual imagery that

Figure 1. Multiple classifiers are built to deal with appearance changes due to pose. (a) For faces, classifiers are trained on 2 viewpoints and
(b) for cars, classifiers are trained on 8 viewpoints.

exists in the world at large. For example, cars vary in
size, shape, coloring, and in small details such as the
headlights, grille, and tires. The lighting, surrounding
scenery, and an object’s pose affect its appearance. A
car detection algorithm must also distinguish cars from
all other visual patterns that may occur in the world,
such as similar looking rectangular objects.

1.2. Object Detection Using Classifiers

Our method for object detection factors out variation in
the pose of the object. Our object detector uses a set of
classifiers, each of which determines whether the object
is present at a specific pose in a fixed-size rectangular
image window. For faces, the detector uses classifiers
for three discrete poses: front, left profile, and right
profile. Taking advantage of facial symmetry, we only
needed to train classifiers for the frontal and right pro-
file viewpoints shown in Fig. 1(a), and we built a left
profile detector by reflecting the right profile detector.
For cars, we use 15 discrete viewpoints, and by exploit-
ing symmetry again, we only trained classifiers for the
eight viewpoints as shown in Fig. 1(b). These classifiers

Object Detection Using the Statistics of Parts 153

Figure 2. Detection by scanning classifier across image in both (a) position and (b) scale.

tolerate a small range of variation in object orientation,
size, and alignment within the image window.

To perform detection, we scan each classifier over the
original image and a series of resized versions of the
original image, as illustrated in Fig. 2, where the rect-
angular blocks indicate successive applications of the
classifier. This exhaustive scanning operation makes it
possible to find the object over variation in location
and size, and can be done with surprising efficiency,
as we will describe later in Section 4. Often, the same
entity is detected by more than one view-based detec-
tor, such as the woman in the foreground of the image
in Fig. 3. To determine the final detection outcome the
detector combines the results from various viewpoint
classifiers by using simple arbitration heuristics, in the
case of Fig. 3, selecting the frontal viewpoint.

1.3. Parts-Based Representation for Classifier

The central research issue is how to design a ba-
sic classifier that can cope with variation in appear-

ance. One hypothetical method is to build the classi-
fier as a table, enumerating the most probable classi-
fication for every combination of input variables (see
Table 1).

Such a table would give the smallest average clas-
sification error, assuming we could label each input
appropriately. Obviously, this table is not possible in
practice. Even a classifier over a 20 × 20 input win-
dow requires 256400 ≈ 10964 entries! Classifier design,
therefore, must take advantage of the constraints of the

Table 1. Ideal but infeasible classifier.

(1, 1) (1, 2) . . . (20, 20) Classification

0 0 . . . 0 Non-object

0 0 . . . 1 Non-object

.

35 45 . . . 28 Object

.

255 255 . . . 255 Non-object

154 Schneiderman and Kanade

Figure 3. Combining the results from multiple view-based detectors.

visual world in order to obtain a much more compact
representation.

In choosing a representation for the classifier, we can
differentiate between two types of approaches: global
and parts-based. Global representations, like an ideal
table, try to model the joint behavior of all input vari-
ables. Computational and storage limitations, however,
do not allow for a fully general function of the in-
put variables. As a practical solution, global models
must use limited functional forms of the input vari-
ables, such as linear, quadratic, or third order. Alterna-
tively, global models may reduce the dimensionality of
the input space using certain transforms or a reduction
in the number of input variables. A higher-order model
or even a non-parametric method can then describe the
joint behavior of this reduced set of variables.

In the parts-based approach, the input variables are
grouped into sets, where the relationships within each
set are more accurately modeled than those across sets.
We refer to each such set as a part. For example,
parts of a face, such as the eyes, nose, and mouth,
can be considered as parts and modeled separately.
However, it should be emphasized that parts need not
have a natural meaning to us (such as a nose or an
eye), but could be defined as a group of pixels, or
transform variables, that satisfy certain mathematical
properties. In addition, these parts do not have to be

composed from disjoint groups of variables; a vari-
able can be re-used in multiple parts. In this paper, we
denote parts with italics to refer to this more general
meaning.

This parts-based approach is based on an implicit
assumption that for a given object, each pixel is sta-
tistically related with some pixels more than others.
Under this assumption, a global model does not make
good use of modeling resources, as it makes no dis-
tinction whether a combination of pixels is useful or
irrelevant. A quadratic filter, for example, represents
correlation within each pair of pixels; the majority of
these pairs may have negligible statistical dependency.
A parts-based approach, in contrast, can select each
part to represent a small group of variables that are
known to be statistically dependent. Such an approach
avoids devoting representational resources to weak re-
lationships and instead allocates richer models to the
stronger relationships.

The parts-based assumption becomes more pro-
nounced if statistical dependency is measured among
transformed variables that decorrelate the imagery
rather than among the original pixels. By decorrelation,
statistical dependency will be concentrated in small sets
of variables. We chose a wavelet basis as a transform
for decorrelation because it tends to work well on im-
agery of natural scenes (Field, 1999). In particular, we

Object Detection Using the Statistics of Parts 155

Figure 4. Pair-wise mutual information between a chosen coefficient location and all other locations in the wavelet transform for frontal faces.

chose a 5/3 linear phase wavelet filterbank (Strang and
Nguyen, 1997).

Experiments support the validity of the parts-
based assumption. We measured statistical dependency
among 5/3 linear phase wavelet coefficients for several
viewpoints of faces and cars. For each viewpoint, we
collected the joint probability distribution for each pair
of wavelet coefficients by using a large set of geometri-
cally aligned images of the object. By quantizing each
coefficient to 5 discrete levels, we represented each dis-
tribution as a histogram with 25 (5×5) bins. These dis-
tributions allowed us to compute the mutual informa-
tion for each wavelet coefficient pair. Mutual informa-
tion measures the strength of the statistical dependence
between the two variables. Figure 4 illustrates some of
the results of this experiment for frontal faces. Each
“image” graphically represents the mutual information
values between one chosen coefficient (indicated by
an arrow) and all the other coefficients in the wavelet
transform. The brightness at each location indicates the
mutual information between the chosen coefficient and
coefficient at that location. Notice that each coefficient
is statistically related only with a relatively small num-
ber of the other coefficients (Naturally, since a variable
has the strongest mutual information with itself, the lo-
cation of the chosen coefficient is the brightest point.)
This phenomenon of limited statistical dependency is
typical for faces and cars.

1.4. Properties of Classifier

We used a combination of the following eight design
choices to develop a parts-based classifier.

• Decomposition into parts

Given input variables, such as wavelet coefficients,
we form a set of parts, each consisting of a group of
variables that are statistically dependent. We then treat
these parts as statistically independent. With this as-
sumption, our classifier takes the following form as a
likelihood ratio test; that is, it decides that the object is
present if the left side is greater than λ:

∏
r

Pr (partr | object)

Pr (partr | non-object)
> λ (1)

where partr is a discrete-valued variable obtained as
a function of a chosen group of wavelet coefficients
within the classification window, Pr (partr | object) rep-
resents the probability distribution over the discrete
range of partr conditioned on the presence of the object,
and similarly, Pr (partr | non-object) is conditioned on
the absence of the object.

Strictly speaking, the assumption of statistical inde-
pendence of the parts is not true. Yet, we still obtained
accurate classification results; a possible interpretation
of this will be discussed in Section 2.4.

• Probabilistic representation of parts

Usually, parts are thought of as being binary-valued
and deterministic. For example, an eye can either be
present or absent. However, in Eq. (1), we designed
each partr , to take a range of values. In our face
and car examples, the range was approximately 104.
Our classifier represents these values as probabilistic
quantities rather than deterministic quantities; that is,

156 Schneiderman and Kanade

Pr (partr | non-object) and Pr (partr | object) associate
probabilities to each value of partr .

• Parts with locality in space, frequency, and orienta-
tion

Our classifier uses a variety of parts to embody var-
ious combinations of locality in space, frequency, and
orientation. Some parts represent small regions over
high frequencies, other parts represent large regions
over low frequencies, and still other parts are spe-
cialized in horizontal and vertical information. These
choices are designed to capture common statistical de-
pendencies in appearance of an object. The wavelet
representation allowed us to directly design parts with
these locality properties.

• Maximalist collection of parts

Our classifier represents parts from all areas across
the entire extent of the object. This representation could
be considered maximalist in contrast to a minimal-
ist one that relies on a few features (e.g., eyes, nose,
mouth). More information, if used properly, will al-
ways improve the detection result. In particular, we
have found that parts with even seemingly indistinct
cues such as uniform areas are indeed discriminative.

• Geometric arrangement of parts

It should be noted that the geometrical relationships
of the parts are implicit in Eq. (1). Each part is de-
fined as a function of a specific group of wavelet coef-
ficients. All wavelet coefficients are represented with
respect to a common coordinate frame affixed to the
image window to be classified. Therefore, this repre-
sentation captures geometry by placing all parts in a
common coordinate system. In the next section, this
geometric representation will become more explicit by
an equivalent representation of Eq. (1) in terms of “lo-
cal operators.” This representation allows for a flexible
configuration of parts in the object unlike a single tem-
plate that implies a rigid configuration.

• Tables for part statistics

Our classifier represents each set of statistical dis-
tributions, Pr (partr | non-object) and Pr (partr | object),
using tables. This representation is possible because we
have chosen each part to have a discrete range of val-
ues. Retrieval of probability values thus involves only

a lookup into a table representing the likelihood ratio
Pr (partr | object)/Pr (partr | non-object). We can esti-
mate these probability distributions by simply count-
ing the occurrences of each part value over a large
set of training images. A table avoids assumptions
about the distributional structure of part statistics (e.g.,
Gaussian), while retaining good properties for estima-
tion, including satisfaction of the Cramer-Rao lower
bound, closed form solution, and no bias.

• AdaBoost to weight training examples

To build the overall classifier, we could separately
estimate Pr (partr | non-object) and Pr (partr | object),
and plug them into the likelihood ratio test, Eq. (1).
This approach would give the best possible perfor-
mance (with this functional form) if our training data
is truly representative. However, the fact that we have
only a finite set of training examples will limit the esti-
mation accuracy, particularly for the non-object class.
This limitation can be partially overcome by training
the classifier to explicitly minimize classification error
on the training set. We chose to use a unique training
method involving Adaboost with Confidence Weighted
Predictions (Shapire and Singer, 1999) that guarantees
to minimize an upper bound on the classification error
on the training set. This method also has the natural in-
terpretation of re-weighting of the training examples.
This method allowed us to count weighted occurrences
of each part value, and thereby retain the advantage of
estimating each distribution as a table.

• Coarse-to-fine search evaluation strategy

We use several strategies to make detection compu-
tationally efficient. In Fig. 2, it may appear that the
classifier completely re-evaluates each window. How-
ever, overlapping windows share much information
that does not need to be re-computed. The classifier
computes the wavelet transform and the part values
once, at most, for the entire image scale. We also avoid
repeating computations over successive octaves in the
search across scale. It is not necessary to re-compute
the entire wavelet transform, nor parts that are compu-
tationally equivalent at multiple octaves. The classifier
also does not need to evaluate the complete likelihood
ratio to make a decision in most cases. A partial eval-
uation of the likelihood ratio is often sufficient to rule
out the presence of an object. The classifier orders the
evaluation of the likelihood ratio from parts in coarse
resolution to parts in fine resolution. First, the detector

Object Detection Using the Statistics of Parts 157

evaluates the image at a coarse resolution, reduced by
a factor of 8 in both directions; that is, evaluation sites
are spaced 8 pixels apart in the original image. Then
the resolution is reduced by a factor of 4. Such pro-
gressive evaluation techniques enabled us to achieve
significant computational savings and implement a
relatively efficient algorithm with little penalty in
accuracy.

1.5. Overview of Classifier

Let us overview how our classifier based on Eq. (1)
works. The description here is primarily for illustrative
purposes, and more details can be found in Section 2.

The classification algorithm involves three steps, as
shown in Fig. 5. In the first step, N local operators,
fk(x, y), k = 1, N , evaluate the image window. The
resulting measurements are discrete-valued. Each out-
put at each location represents a separate part and the
conglomerate of the outputs from all N operators, each
sampled at all locations, represent the entire set of parts.

Figure 5. Classification algorithm overview. N local operators evaluate the image window at nm locations. Class-conditional probabilities are
retrieved for each output and combined in a likelihood ratio test.

Rewriting Eq. (1) in terms of local operators gives:

∏
r

Pr (partr | object)

Pr (partr | non-object)

=
∏

k

∏
x,y

Pk(fk(x, y), x, y | object)

Pk(fk(x, y), x, y | non-object)
(2)

where each partr corresponds to a unique combination
of k, x , and y.

The classifier then retrieves two probabilities associ-
ated with each operator output fk(x, y). It obtains these
probabilities from two pre-computed probability dis-
tributions for each operator, Pk(fk(x, y), x, y | object)
and Pk(fk(x, y), x, y | non-object). Pk(fk(x, y), x, y |
object) represents the statistical knowledge of the ob-
ject’s appearance. Figure 5 illustrates a case that the
probability of output value #5710 from operator “1” at
position (0, 0) on the object is 0.53. The other prob-
ability distribution, Pk(fk(x, y), x, y | non-object), de-
scribes the visual world other than the object.

Note that each of these distributions is a joint func-
tion of operator value fk and operator position (x, y)

158 Schneiderman and Kanade

within the classification window. This joint represen-
tation explicitly models the geometric configuration of
the parts. Recall, also, that each operator takes on a dis-
crete value, allowing us to represent each probability
distribution as a table.

Next, the classifier makes a decision by computing
a likelihood ratio test as in Eq. (2). It multiplies all the
probabilities retrieved from Pk(fk(x, y), x, y | object)
in the numerator and divides by the product of the prob-
abilities from Pk(fk(x, y), x, y | non-object). It then
compares the resulting value to a threshold. If the value
is greater than the threshold, it decides that the object
is present in the window; otherwise, it decides it is not
present.

1.6. Related Work

The idea of using statistical independence assumptions
in probabilistic modeling problems has a long history
in the literature of pattern recognition, beginning pos-
sibly with Lewis (1959) and Chow and Liu (1966). In
computer vision, several researchers have used a parts-
like decomposition with an explicit statistical indepen-
dence assumption. Recent representative work includes
Burl and Perona (1996), Burl et al. (1998), Geman and
Flueret (2001), and Amit (2000), who use binary or
deterministic representations of the parts. Schiele and
Crowley (1996, 2000) use a probabilistic representa-
tion where probability is estimated over the response to
Gaussian derivative filters. However, there is no notion
of geometry in Schiele and Crowley’s representation.
They only represent the probability distribution of lo-
cal operator output, whereas our classifier represents
probability as a joint function of local operator output
and operator position.

Various parts-based methods differ from each other
in whether the parts are represented in a rigid or flex-
ible configuration like ours. Lades et al. (1993) and
Wiskott et al. (1997) allow for flexibility through a
flexible graph. Burl et al. (1996, 1998) allow for flexi-
bility through Gaussian models of part position. Prior
parts-based methods are confined to features that are
local in the spatial sense. We extend the idea of “parts”
by considering a more general concept that includes
locality in frequency and orientation.

Using tables to represent probability distributions is
not uncommon. Swain and Ballard (1991) have used
them for object recognition by color, and Schiele and
Crowley (1996, 2000) for representing the quantized
output of Gaussian derivatives. However, our classifier

design is distinctive in that we use multi-dimensional
tables that jointly represent local operator output with
operator position.

Much object detection work uses a coarse-to-fine
search heuristic to reduce computational time (Rowley
et al., 1998; Geman and Flueret, 2001; Romdhani et
al., 2001; Viola and Jones, 2001). Such methods first
evaluate the entire original image at coarse resolution
and then selectively evaluate the image at higher res-
olution based on the outcome of the lower-resolution
evaluations. Our coarse-to-fine strategy takes natural
advantage of a wavelet-base multi-resolution image
representation.

2. Derivation of Functional Form of Classifier

Based on the design choices we have made in the pre-
vious section, we will derive the actual functional form
of our classification algorithm and examine implica-
tions of its underlying assumptions. The final form
that we will obtain at the end of this section will
be:

∏
k

∏
x,y

Pk(fk(x, y), [x/M], [y/M] | object)

Pk(fk(x, y), [x/M], [y/M] | non-object)
> λ

(3)

where [v] denotes the rounded integer value of v, and
M = 4 or 8. The derivation of Eq. (3) consists of the fol-
lowing series of transformations and approximations
to the ideal, but infeasible, classifier we introduced in
Section 1.3:

• Two generalizations to the ideal classifier form
• Wavelet transform of input pixels
• Three approximations:

◦ Statistical independence of parts
◦ Quantization of part value
◦ Coarse quantization of part position

The derivation gives a complete record of all the
modeling assumptions used in the design of the clas-
sifier. The performance of the classifier then directly
depends on these assumptions and the accuracy of the
statistics gathered for object and non-object classes.
Explicit knowledge of these assumptions also helps us
decide how to collect statistics for the classifier.

Object Detection Using the Statistics of Parts 159

2.1. Ideal Form of Classifier

We introduced the hypothetical ideal classifier as a
large table in Section 1.3. This classifier would be ideal
in several ways. First, it is based on a full representation
of the input: the classifier is based on a joint function
of the entire raw input, not a selected or filtered por-
tion of it. No information is lost from or added to the
input. Second, this table minimizes the probability of
classification error, assuming each entry in the table is
labeled with the most probable classification. Finally,
the table concisely represents the output by simply list-
ing each input’s classification and nothing extraneous,
such as probability values. Of course, such a table is not
feasible. It is not possible to enumerate every possible
input in a table. Although not feasible, it provides a
useful point of comparison with any feasible classifier,
in particular the final functional form of our classifier
Eq. (3).

2.2. Generalizations to the Functional
Form of Ideal Classifier

There are several differences between the ideal clas-
sifier and the final functional form of our classifier in
Eq. (3). Our classifier represents object and non-object
properties separately, whereas the ideal table does not
separate them. The left side of Eq. (3) outputs a con-
tinuous number, whereas the ideal classifier directly
outputs a classification, object or non-object. To trans-
form the ideal table into Eq. (3), we must first make the
table more general. This generalization has important
implications for the training of the probability distri-
butions in Eq. (3).

Our first transformation is to generalize the output
of the table from a binary value (object, non-object) to
a posterior probability, P(object | image) (see Table 2).

To re-derive the ideal classification table from
the posterior probability, we can apply Bayes’ deci-

Table 2. Ideal classifier using posterior probabilities.

(1, 1) (1, 2) . . . (20, 20) P(object | image)

0 0 . . . 0 0.000001

0 0 . . . 1 0.000003

.

35 45 . . . 28 0.87521

.

255 255 . . . 255 0.00004

Table 3. Ideal classifier using separate models for object
and non-object probabilities.

P(Image | Object),
(1, 1) (1, 2) . . . (20, 20) P(Image | Non-object)

0 0 . . . 0 0.00000013, 0.013

0 0 . . . 1 0.00000032, 0.014
.

35 45 . . . 28 0.0092, 0.00045
.

255 255 . . . 255 0.00007, 0.03

sion rule: If the probability is greater than 0.5, the
classifier decides that the object is present in the
image.

To generalize the classification function further, we
use Bayes’ theorem to re-write the Bayes’ decision rule
in an equivalent form as a likelihood ratio test:

P(image | object)

P(image | non-object)
> λ = P(non-object)

P(object)
(4)

If the likelihood ratio (left side) is greater than the
threshold on the right side, the classifier decides the
object is present. With this expansion, the classification
table would include two entries for each input image
window (see Table 3).

Writing Bayes’ decision rule as a likelihood ra-
tio test has several advantages. It is easier to collect
statistics separately for the two class-conditional prob-
ability functions, P(image | object) and P(image | non-
object), since they are based on separate sets of images,
than it is to directly estimate the posterior probabil-
ity function, P(object | image). In this form, we also
factor out the contributions of the prior probabilities,
P(object) and P(non-object), and combine them in a
single threshold, λ. This threshold controls the sensi-
tivity of the classifier.

Several disadvantages arise when using a decision
rule based on class-conditional probabilities. They
come mostly from practical limitations in the num-
ber of available training examples. First, by estimat-
ing P(image | object) and P(image | non-object) sep-
arately, we may be estimating more parameters than
necessary in a direct classification function, such as
a posterior probability function, and as a result, our
estimation errors for the model parameters could be
greater than those in a more tightly constrained clas-
sification function. Second, it is difficult to obtain
a truly representative set of training images, partic-
ularly for the non-object class. Statistical estimates

160 Schneiderman and Kanade

based on these limited sets will not be as accurate
and classification accuracy will suffer. In Section 3.4,
we will explain how the technique of AdaBoost with
Confidence Weighted Predictions (Shapire and Singer,
1999) partially compensates for such deficiency by
weighting the training samples such that the resulting
classifier minimizes classification error on the training
set.

2.3. Wavelet Transform of Image Window

The classifier performs a wavelet transform on the input
window using a linear phase 5/3 perfect reconstruction
filter bank (Strang and Nguyen, 1997). This wavelet
transform is fully invertible, and thus this transform
has no consequences in terms of information content.
Yet it has two advantages. First, the wavelet transform
partially decorrelates natural imagery, so smaller sub-
sets of variables will capture greater statistical depen-
dency within the image. Second, the wavelet transform
makes it convenient to design parts with locality in
frequency and orientation, as well as locality in space.
The multi-resolution nature of wavelets also allows
us to efficiently search the image in a coarse-to-fine
manner.

Figure 6. We may define many operators, each of which samples a certain arrangement of wavelet coefficients. In this figure, operator “1”
samples a block of coefficients from within one subband and operator “2” combines spatially registered blocks from two subbands.

2.4. Three Approximations to the Generalized Ideal
Form of the Classifier

We make three approximations to the generalized ideal
form of the classifier, Eq. (4): statistical independence
of parts, quantization of local operator outputs, and
reduced resolution in parts position representation. We
also describe the design of the local operators whose
outputs form the parts.

2.4.1. Statistical Independence of Parts. Our most
significant approximation is to decompose the image
window into parts that are treated as statistically inde-
pendent. As illustrated in Fig. 5, various local operators
are evaluated at all possible positions within the image
window, and each part corresponds to a local opera-
tor output. However, Fig. 5 is a simplified illustration.
These operators actually sample a fixed arrangement
of wavelet coefficients, instead of directly sampling the
input pixels. Thus, each part represents a different, but
not necessarily disjoint, subset of wavelet coefficients.
An operator translates by moving its arrangement of
wavelet coefficients as a block in steps of one wavelet
coefficient.

The local operators sample the wavelet transform
in many ways. For example, as shown in Fig. 6, one

Object Detection Using the Statistics of Parts 161

operator samples a block of wavelet coefficients within
one wavelet subband. Another operator combines two
blocks from two different subbands. In the next sub-
section we describe all the types of local operators our
classifier uses.

Under the assumption of parts independence, the
form of classifier, Eq. (4), now becomes:

∏
k

∏
x,y

Pk(fk(x, y), x, y | object)

Pk(fk(x, y), x, y | non-object)
> λ (5)

where fk(x, y) is the kth operator output at position
(x, y).

This assumption of statistical independence greatly
reduces the complexity of the classifier. We believe this
is a reasonable assumption because for faces, cars, and
many other objects, a given coefficient on the object
is strongly statistically dependent only on a few other
coefficients and is weakly related with the rest. We hope
to capture the stronger dependencies by appropriate
choices of parts and pay a limited penalty by neglecting
the weaker dependencies among the coefficients.

We can gain another perspective on this simplifi-
cation by taking the logarithm of Eq. (5) making the
classifier a sum of log probabilities:

∑
k

∑
x,y

log

(
Pk(fk(x, y), x, y | object)

Pk(fk(x, y), x, y | non-object)

)
> log λ

(6)
In this form, we can interpret the classifier as a linear
discriminator:∑

k

∑
x,y

wk(x, y)t ak(x, y) > log λ

where wk(x, y) is a vector concatenating the log like-
lihood values corresponding to each value of operator
k at position (x, y) and ak(x, y) selects the appropri-
ate log likelihood value from this vector, given by the
computed value of operator k, by assigning ‘1’ to one
of its elements and ‘0’ to the remaining elements.

We can also view Eq. (5) as a modification of the
naı̈ve Bayes classifier. The naı̈ve Bayes classifier mod-
els all variables as statistically independent, whereas
our approach models groups of variables as statisti-
cally independent. Domingos and Pazzani (1997) have
demonstrated that the naı̈ve Bayes classifier performs
surprisingly well in a number of classification prob-
lems, even when there is significant statistical depen-
dency among the independently modeled components.
Although there is not a full theoretical understanding of

why this is true, Domingos and Pazzani show that the
classifier is optimal for conjunctions and disjunctions
and other problems in which statistical independence
does not necessarily hold.

2.4.2. Design of Local Operators. At this point in
the derivation, the central question we face is how to
design local operators. Our goal is to design local op-
erators that capture common statistical dependencies.
We emphasize the notion of common for two reasons.
First, we seek to represent statistical dependencies that
exist both for the object (e.g., face) and in the rest of
the world (e.g., non-face). Second, since the local op-
erators are each scanned over the full extent of the in-
put window, we need local operators that are not just
specialized to one site but useful at all sites on the
object.

Our approach is to make educated guesses about the
types of statistical dependency we might encounter.
We would expect statistical dependencies are stronger
in localized regions, and that as pixels are farther apart,
dependency decreases. We therefore emphasize local-
ity in position when designing local operators. In par-
ticular, we want operators to be capable of capturing
the statistical dependencies that exist in small, highly
detailed structures, such as the eyes, nose, and mouth
on a human face or the headlights and grille on a car.
However, statistical dependency can exist over large re-
gions as well. In these larger regions, the dependencies
usually involve lower-frequency attributes. For exam-
ple, on a face we would expect that the eye sockets
would be darker than the forehead and cheeks. To rep-
resent dependencies over both small and large regions,
we combine spatial locality with locality in frequency.
Some operators represent large areas at coarse resolu-
tion (localized coefficients in the upper levels of the
wavelet transform) and others represent smaller areas
at high resolution (localized coefficients in the lower
levels of the transform). Locality in orientation is an-
other factor we need to combine in operator design.
Since the physical world tends to be continuous, we
would expect horizontal edges to co-occur with other
horizontal edges. Similarly, we would expect vertical
edges to co-occur with other vertical edges.

We have defined 17 local operators that comprise
various combinations of locality in space, frequency,
and/or orientation. Each operator consists of a mov-
ing arrangement of wavelet coefficients. As an opera-
tor scans across the image window, this arrangement
moves as a block.

162 Schneiderman and Kanade

Figure 7. Different local operator types.

The operators are divided into four categories1

by the composition of their arrangements of
wavelet coefficients: intra-subband, inter-orientation,
inter-frequency, and combined inter-frequency/inter-
orientation arrangement. They are illustrated in Fig. 7.
See Appendix for a description of the notation we
use for describing the components of the wavelet
transform.

The first six operators (see Table 4) out of 17 are
intra-subband operators, Opb(level, orientation). These
operators sample a contiguous block of coefficients
within one subband specified by the (level, orientation)
combination. Such operators capture features that are
jointly localized in space, frequency, and orientation.

The next four operators (see Table 5) are of
type inter-orientation, Opo(level, orientation1,
orientation2). These operators combine coefficients
from two subbands of different orientation but within
the same level (frequency) in the transform. These
capture features that have both horizontal and vertical
components but are otherwise localized in space and
frequency.

The next six operators (see Table 6) are inter-
frequency operators, Op f (level1, level2, orientation).
These jointly sample from two subbands of the same

Table 4. Intra-subband operators,
Opb(level, orientation).

Operator Level Orientation

1 3 LH

2 3 HL

3 2 LH

4 2 HL

5 1 LH

6 1 HL

Table 5. Inter-orientation operators Opo(level, orientation1,
orientation2).

Operator Orientations Level

7 LL (horizontal), 3

LL (vertical)

8 LH, HL 3

9 LH, HL 2

10 LH, HL 1

Table 6. Inter-frequency subbands Op f (level1, level2, orientation).

Operator Levels Orientation

11 3 LL (horizontal), 3 LH

12 3, 2 LH

13 2, 1 LH

14 3 LL (vertical), 3 HL

15 3, 2 HL

16 2, 1 HL

Table 7. Inter-orientation operators Opof (level1, level2,
orientation1, orientation2).

Operator Level1 Level2 Orientation1 Orientation2

17 3 2 LH HL

orientation but different levels (or frequencies). They
capture features that have broad frequency content,
such as edges.

Finally the last operator (see Table 7) combines co-
efficients across multiple subbands in both orienta-
tion and frequency, Opof (level1, level2, orientation1,
orientation2). The operator, called a combined inter-
orientation/inter-frequency operator, is useful for

Object Detection Using the Statistics of Parts 163

features that combine horizontal and vertical informa-
tion and information across frequency.

2.4.3. Quantization of Local Operator Output. The
output of each operator is a discrete value of finite range
representing the combination of wavelet coefficients. In
this section we explain why we choose a discrete rep-
resentation and describe how we quantize each subset
of wavelet coefficients to a discrete value. Our clas-
sifier uses a discrete representation of operator output
because it permits us to represent the statistics of oper-
ator output using a table.

There are alternative statistical representations to a
table-based representation. The most flexible ones are
non-parametric ones, such as nearest-neighbor, Parzen
windows, and other kernel-density models. These mod-
els, however, have a high computational cost for prob-
ability retrieval. Probability retrieval, for a given in-
put, involves a large computation requiring compari-
son of the input to every example in the entire train-
ing data. Another alternative would be to use a flex-
ible parametric distribution, such as a mixture model
or a multi-layer perceptron (artificial neural network).
Each of these has flexibility to model multi-modal dis-
tributions and acts as a universal approximator as its
resource size (i.e., hidden units or nodes) increases.
However, there are no closed form solutions for fit-
ting these models to a set of training examples; their
parameters must be estimated by iterative procedures,
such as gradient descent (backpropagation) and E-
M. These parameter estimates could become trapped
in local minima and become sub-optimal. Also, it is
questionable whether such models are appropriate for
the task of detection. For example, a multi-layer per-
ceptron forms decision boundaries that are combina-

Figure 8. Images reconstructed by inverse wavelet transform. All wavelet coeffients in LH and HL bands were quantized to three levels per
coefficient.

tions of hyperplanes to a first approximation. It is
not clear whether such decision boundaries will be
good for separating two or more classes in a high
dimensional space (Gori and Scarselli, 1998; Kung,
1993).

Table representation of a probability distribution is
almost as flexible as various non-parametric methods.
Tables have the advantage of being able to retrieve
probabilities directly by one table look-up rather than a
computation over the entire set of training data. Estima-
tion of a table is relatively straightforward. We simply
build a histogram by counting how often each value oc-
curs in the training data. This process involves just one
pass through the training images. The resulting esti-
mates are statistically optimal—maximum likelihood,
no bias, consistent, and efficient, satisfying the Cramer-
Rao lower bound. The main drawback of a table is that
we can only represent probability over a limited range
of discrete values; the amount of training data and the
size of memory impose limitations on the size of the
probability table. To get reasonably accurate estimates
for our tables, we limited ourselves to approximately
10,000 discrete values per operator. This limitation re-
stricts the number of wavelet coefficients each operator
samples and the resolution at which the operator quan-
tizes its subset of coefficients.

Our compromise is to quantize the output of each
operator to 38 discrete values. We do so by having each
operator sample the arrangements of 8 coefficients and
quantize each coefficient to three levels. Note that the
quantization threshold may differ from operator to op-
erator, so different operators may sample the same co-
efficient but quantize it differently. The 3-level quan-
tization is fairly coarse but still retains the informa-
tion content of the image. Figure 8 shows several pairs

164 Schneiderman and Kanade

of original and reconstructed images where the recon-
struction is done by an inverse wavelet transform of the
quantized wavelet values. Objects in the reconstructed
images are still easily identifiable as faces and cars.

2.4.4. Reduced Resolution in Part Position. Our
last approximation reduces resolution in representing
part position (x , y). Instead of representing Pk(fk

(x, y), x, y | object) and Pk(fk(x, y), x, y | non-object)
at each position (x , y) in the original resolution, we
reduce resolution by a factor of M. A given position
(x , y) is represented at reduced resolution by ([x/M],
[y/M]) where [v] denotes the rounded integer of v.
This approximation reduces the size of each probabil-
ity table by a factor of M2. With this simplification, the
final form of the classifier is (repeat of (3)):

∏
k

∏
x,y

Pk(fk(x, y), [x/M], [y/M] | object)

Pk(fk(x, y), [x/M], [y/M] | non-object)
> λ

(7)
Or alternatively, in terms of log likelihood functions:

∑
k

∑
x,y

Lk(fk(x, y), [x/M], [y/M]) > log λ

Lk(fk(x, y), [x/M], [y/M]) (8)

= log
P(fk(x, y), [x/M], [y/M] | object)

P(fk(x, y), [x/M], [y/M] | non-object)
.

As the reduction, we use either M = 4 or 8 depend-
ing on the part; for level 1 and 2 operators, we re-
duce M = 4 (a factor of table reduction =16), and for
level 3 parts, M = 8 (a factor of table reduction =64).
We found that reducing the resolution does not drasti-
cally compromise the geometric representation of the
classifier. Interestingly, the resolution reduction seems
to implicitly accommodate small variations in the ar-
rangement of parts as an unintended but positive side
effect.

3. Collecting Statistics

This section describes how we gathered the statis-
tics that go into each set of tables Pk(fk(x, y),
[x/M], [y/M] | object) and Pk(fk(x, y), [x/M],
[y/M] | non-object) where k = 1 . . . 17 in Eq. (7).
We estimate each of these tables by using a large
set of labeled and pre-processed training images.
For the probabilities tables conditioned on the ob-
ject, Pk(fk(x, y), [x/M], [y/M] | object), we use
images of the object, and for Pk(fk(x, y), [x/M],

[y/M] | non-object), images that do not contain the
object. Preparing the training set for the “object”
class is relatively straightforward, but preparing the
training set for the “non-object” class requires some
consideration. We will discuss both a basic training
algorithm by which we estimated each table separately
and an alternative training procedure that minimizes
a classification error criterion using AdaBoost with
Confidence Weighted Predictions (Shapire and Singer,
1999).

3.1. Pre-Processing Images of the Object

Each training image is geometrically normalized and
aligned, corrected for lighting, and perturbed to create
many synthetic variations.

3.1.1. Size Normalization and Spatial Alignment.
To standardize training images, we aligned all the im-
ages with respect to a prototype using pre-defined,
hand-labeled landmark points on the object. For ex-
ample, for frontal faces, we used the locations of the
eyes, the bridge of the nose, and the center and sides of
the mouth. Using these landmark points, we applied the
translation, scaling, and rotation (Arun et al., 1987) that
brought each image into alignment with the prototype.

3.1.2. Intensity Normalization. We normalized the
image intensity as well. This normalization procedure
is object-dependent.

For faces, we normalized the left and right sides of
each training image separately, by scaling all the inten-
sity values with specified correction factors, αleft and
αright:

I ′(x, y) = αleft I (x, y)
(9)

I ′(x, y) = αright I (x, y)

For a local operator that uses inputs from both sides
of the face, we normalize the entire sample using the
value ofα of the center pixel. In training, we chose these
correction factors by hand for each training example by
visually comparing them to a group of prototypes.

When the face detector searches for a face, the clas-
sifier evaluates both sides of each candidate window
over a set of 5 discrete values for α. For each side, the
classifier compares the responses (sum of the log like-
lihoods) for each value of α and chooses the largest
response. It then sums the two chosen responses to ob-
tain the total log likelihood for the candidate.

Object Detection Using the Statistics of Parts 165

For cars we did not normalize the training images in
intensity, because cars differ greatly in color, making
normalization difficult to compute.

3.1.3. Creating Synthetic Variants of Training Im-
ages. We generated additional training data by arti-
ficially creating variations to the original training im-
ages. The purpose in doing so was to increase the ac-
curacy of our probability estimates.

For each image, we generated between 1,600 and
6,400 synthetic variations through small, controlled
variations in position (both by positional pertur-
bation and overcomplete evaluation of the wavelet
transform), orientation, size, aspect ratio, background
scenery, lighting intensity, and frequency content.
We applied these variations after we first aligned
the image geometrically and corrected for the light-
ing as described above. For substitution of differ-
ent background scenery, we segmented the objects
from the background in many of the training im-
ages. We segmented these images either by hand and
by automatic methods when possible. Also, we mod-
ified frequency content by using various low-pass
filters.

3.2. Non-Object Images

We collected non-object images from various photog-
raphy collections2 and from the World Wide Web, par-
ticularly the Washington University archive.3 We tried
to get a balance of indoor, outdoor, urban, industrial,
and rural scenes. We used more than 2,000 such non-
object images.

To select non-object samples, we used the bootstrap-
ping technique.4 The goal of bootstrapping is to se-
lect non-object training examples that resemble the ob-
ject. By doing so, the training data will emphasize the
distinctions between the object and non-object classes
and performance will be improved. Bootstrapping is a
two-stage process. We first trained a preliminary detec-
tor using non-object image windows drawn randomly
from the non-object image collection. We then ran this
preliminary detector over the entire collection of non-
object images, selecting additional non-object training
examples where the detector gave a high response. For
some detectors we repeated this process several times,
gathering more and more non-object samples. We then
used the combined set of samples for training the final
detector.

3.3. Training Method (I)—Probabilistic
Approximation

The most direct way to build our classifier was to
separately estimate each of its constituent probability
distributions, Pk(fk(x, y), [x/M], [y/M] | object) and
Pk(fk(x, y), [x/M], [y/M] | non-object). To estimate
these distributions, we simply counted how often each
value of local operator output value occurs at each po-
sition in the appropriate set of training examples. For a
local operator, k, this process involves building a his-
togram, Hk(i, j, f) over a combination of operator out-
put values, f , and positions, i and j :

Initialize all bins in histogram, Hk(i, j, f), to zero
For all training images, Ip

For each local operator, fk, k = 1 . . . N
For each position, (x, y)

i ← [x/M]

j ← [y/M]

f ← fk(x, y, Ip)

Hk(i, j, f) ← Hk(i, j, f) + 1

Occasionally a bin in the histogram may receive zero
count. Since it may not be desirable to actually assign
zero probability, we simply added one to each bin in
the histogram:

Hk(i, j, f) ← Hk(i, j, f) + 1 for all k, i, j, f

3.4. Training Method (II)—Minimization
of Classification Error Using AdaBoost

Training class-conditional distributions separately, as
described above, will give the best possible perfor-
mance (with this functional form) if our training data
is truly representative. However, a finite set of training
data will have limitations, particularly in representing
the non-object class. To achieve better results, we can
explicitly train our classifier to minimize classification
error over the training set. For this purpose, we use the
algorithm of AdaBoost with Confidence Weighted Pre-
dictions, a modification of standard AdaBoost (Freund
and Shapire, 1997). This modification of standard Ad-
aBoost allows for the base classifier to output a con-
tinuous value, proportional to confidence, rather than a
binary classification as in the standard formulation.

AdaBoost, in general, works by sequentially training
multiple instances h1(x), h2(x), . . . , hT (x) of a base

166 Schneiderman and Kanade

classifier h(x). In our case, the base classifier takes the
following form (modified from Eq. (8)):

h(I) =
∑

k

∑
x,y

Lk(fk(x, y), [x/M], [y/M]) − log λ

Lk(fk(x, y), [x/M], [y/M]) (10)

= log
P(fk(x, y), [x/M], [y/M] | object)

P(fk(x, y), [x/M], [y/M] | non-object)

Where the input to our classifier is an image window
denoted by I .

Each classifier, ht (x), is trained by assigning dif-
ferent weights to the training examples. For the first
classifier, h1(x), all training examples are given equal
weight. For the subsequent classifiers ht (x), t > 1, the
algorithm assigns more weight to training examples
that have been incorrectly classified by the previous
classifier, ht-1(x) and, conversely, less weight to train-
ing examples that were correctly classified. AdaBoost
then takes a weighted sum of these classifiers as the
final classifier H (x):

H (x) = sign

(
T∑

t=1

αt ht (x)

)
(11)

Both the standard AdaBoost algorithm and the Ad-
aBoost with Confidence Weighted Predictions algo-
rithm determine each αt as a function of the accuracy
of ht (x) on the training data, but differ in how they do
this. In AdaBoost with Confidence Weighted, αt can be
determined by a binary search that minimizes a func-
tion of the margin.5 Both algorithms guarantee that the
final classifier satisfies a bound on the classification
error on the training set. With such a bound the clas-
sification error can be driven toward zero after a few
iterations, and thereafter the margin between the two
classes can be increased.

In practice, for each ht (x), we estimate the
distributions Pk(fk(x, y), [x/M], [y/M] | object) and
Pk(fk(x, y), [x/M], [y/M] | non-object) by Training
Method (I), but instead of incrementing each histogram
bin by 1, we increment by the weight assigned to the
training example. We scale and round the training im-
age weights to integers for this purpose.

A disadvantage of Adaboost is the increased compu-
tational cost of applying all instances of the classifier
in the sum of Eq. (11). However, in our case, this sum
of classifiers does not actually increase the complexity
of our overall classifier, Eq. (10). Since our classifier
is linear, the linear sum in Eq. (11) actually reduces to

the complexity of the base classifier. We can see this
by directly substituting Eq. (10) in Eq. (11), giving:

H (I) =
T∑

t=1

∑
k

∑
x,y

αt Lt,k(fk(x, y), i(x), j(y)) − log λ

Lt,k(fk(x, y), i(x), j(y))

= log
Pk,t (fk(x, y), i(x), j(y) | object)

Pk,t (fk(x, y), i(x), j(y) | non-object)

And by changing the order of the summations,

H (I) =
∑

k

∑
x,y

Lk(fk(x, y), [x/M], [y/M]) − log λ

Lk(fk(x, y), [x/M], [y/M]) (12)

=
T∑

t=1

αt Lt,k(fk(x, y), [x/M], [y/M])

Adaboost assigns appropriate weights for individual
training images. Intuitively, it is not optimal to give all
the training images equal weight, particularly among
the non-object class. Some of the non-object exam-
ples are more important than others for determining
the decision boundary. This re-weighting of the train-
ing examples is analogous to the way support vector
machines identify the training examples that directly
affect the placement of the decision boundary (Cortes
and Vapnik, 1995).

One of the issues in using AdaBoost is when to stop
the iteration. It is not well understood if AdaBoost is
susceptible to overfitting as the number of iterations
increase. Our approach was to monitor the performance
of the classifier using a cross-validation image set and
to stop the algorithm when performance seemed to stop
improving.

4. Implementation and Efficient Processing
for Detection

Our strategy for implementing a fast detector was to
re-use multi-resolution information wherever possible
and to use a coarse-to-fine search strategy together with
various other heuristics to prune out unpromising ob-
ject candidates.

4.1. Exhaustive Search

Each classifier is specialized for a specific orientation,
size, alignment, and intensity of the object within an

Object Detection Using the Statistics of Parts 167

image window. Detecting an object at any position in
an image requires exhaustively scanning the classifier
in position, size, and intensity, as illustrated in Fig. 2.

In searching across scale, the detector searches in 4
scales per octave, that is, in scale increments of 21/4 in
both x and y dimensions. We chose an integer root of
2 so we could reuse information at each octave in this
search through scale.

Given an input image, it is ideal to perform inten-
sity correction for each candidate. However, doing so
would require the classifiers to re-compute all sub-
sequent operations separately for each candidate. We
can reduce computation cost by sharing computation
among the candidates. Our normalization, therefore,
pre-computes the operator values for 5 discrete levels
of intensity correction, α (see Section 3.1.2). For each
candidate, the classifier then evaluates the sum of the
log likelihood for each half of the candidate at each of
these five different intensity corrections, and for each
half, selects the α value giving the largest sum of log
likelihood.

The detector repeats this exhaustive search for each
view-based classifier and combines their results. If
there are multiple detections at the same or adjacent lo-
cations and/or scales, the detector chooses the strongest
detection.

4.2. Coarse-to-Fine Evaluation Strategy

Let us consider the computation process within one
resized image in the search across scale illustrated in
Fig. 2. We organize this process so that as much compu-
tation as possible is shared among overlapping candi-
date windows. First, rather than computing the wavelet
transform separately for each image window, the de-
tector computes it once for the entire image. Since the
wavelet transform is not shift invariant, we compute an
overcomplete transform for each level of the wavelet
transform by expanding the (even, even) phase from the
previous level. We also compute local operator output
for each value of intensity correction, α, at every can-
didate location. The detector classifies each candidate
by accessing the appropriate local operator values and
retrieving and summing their log likelihoods according
to Eq. (8).

In practice, however, the detector rarely needs to
evaluate the entire log likelihood ratio. Since the left
side of Eq. (8) is a summation, the classifier can ex-
amine its value after any partial evaluation and rule
out the presence of the object if the value is not high

enough. We apply this strategy after each local operator
is applied. We set these thresholds conservatively in or-
der to avoid discarding actual object candidates while
quickly removing many of the non-object candidates.
The detector orders the local operators, evaluating first
the coarse resolution ones (those involving coefficients
from the top level of the wavelet transform). That is, in
the first stages of evaluation, the detector evaluates the
image over a coarse grid in which candidate windows
are spaced 8 pixels apart. The remaining stages reduce
resolution by a factor of 4. Through this strategy we
found that we could reduce our computational require-
ments by 1 to 2 orders of magnitude with little loss in
accuracy.

The candidate windows whose likelihood ratio ex-
ceeds the final threshold are initially marked as detec-
tions. Each real object in the image tends to produce
a cluster of detections. Figure 9 shows the raw output
from Eq. (8) (before thresholding) over 4 scales. The
value shown at each pixel corresponds to the log likeli-
hood sum associated with the window centered at that
position. The responses to one face form a cluster of de-
tections across position and scale. We now merge these
detections using the following strategy. We determine
the detection that has the highest response in the entire
image and it classifies it as “object.” The detector then
discards all detections within a radius of the object and
within one half to twice the object size. The detector
then continues to search among the remaining detec-
tions, finds the one with the next-highest response, and
continues this process until all the candidates have ei-
ther been classified as “object” or discarded.

4.3. Re-Using Wavelet Transform in Search
Across Scale

In searching for the object across scale, the detector
iteratively searches resized versions of the input image
where the image is reduced in size by a factor of 21/4

in each dimension. This scaling process continues until
the scaled image is smaller than the window sent as an
input for the classifier. Recomputing the entire wavelet
transform is not necessary for obtaining the wavelet
transform for each successive scale. This is illustrated
in Fig. 10. All 3 levels of the wavelet transform must
to be computed for each of the first 4 scales, which
comprise the first octave of the search across scale.
After these first 4 scales, our detector re-uses portions
of the wavelet transform computed at previous scales.
In particular, we obtain the wavelet transform at scale

168 Schneiderman and Kanade

Figure 9. Four consecutive scales and the corresponding output before thresholding from the detector.

Figure 10. Re-using the wavelet transform at successive scalings.

Object Detection Using the Statistics of Parts 169

Table 8. Face detection results on Kodak test set.

(Rowley, 1999) Schneiderman and Kanade (using AdaBoost)

Detection False γ Detection Detection False
(%) detections (all faces) (%) (profiles only) (%) detections

58.7 1347 0.5 80.4 86.1 105

41.3 617 1.0 70.0 69.4 7

32.6 136 1.5 63.0 61.1 1

i from the wavelet transform at scale i-4 by shifting
it by one level; that is, level 3 becomes level 2, and
level 2 becomes level 1. Therefore, only level 1 has to
be recomputed at scale i .

4.4. Color Heuristics

The detector we have described is designed for gray-
scale images. When color images are available, color

Figure 11. Face detection results.

pre-processing is sometimes useful for pruning out un-
promising candidates. This pre-processor uses 8×8×8
probability tables (8 levels of quantization for each
color band) to represent the color distribution of skin-
color and non-skin color in RGB space and combines
them into a likelihood ratio test for evaluating each
candidate location. This pre-processing improves per-
formance speed by a factor of 2 to 4, and discarded a
few candidates that would have otherwise been false

170 Schneiderman and Kanade

detections. However, a disadvantage of using color is
that the detector removes many actual faces if the im-
ages are poorly color balanced.

4.5. Performance Time

Using the full set of heuristics described above, one
classifier can evaluate a 240 × 256 image over a full
range of scalings in 5 seconds, on average, using a
Pentium II at 450 MHz.

5. Face Detection

In this section we describe specific design choices
that comprise our face detector and discuss its accu-
racy on several sets of test images. Our face detec-
tor is available on-line at http: // www.vasc.ri.cmu.edu/
cgi-bin/demos/findface.cgi and it allows internet users
to submit their own images and see the detection results.

5.1. Local Operators, Training Images,
and Training

The face detector uses the 17 local operators described
in Section 2.4.1.

We gathered a large number of face images for train-
ing from a number of sources: FERET,6 NIST mug shot
database,7 Harvard’s face database,8 and CMU’s face
collection.9 We also used many images we collected
from the World Wide Web. Overall, we gathered about
2,000 images of frontal faces and 2,000 images of pro-
file faces. We normalized the two sides of the face in the
training images to compensate for situations in which
the face was illuminated unevenly.

We trained the face classifiers using Training Method
II (the AdaBoost method) described in Section 3.4.

5.2. Results in Face Detection

Table 8 compares the performance of our face detector
with that reported by Rowley (1999) for the task of both
frontal and profile face detection using images selected
from proprietary images Kodak provided to Carnegie
Mellon University. The test set consists of 17 images
with 46 faces, of which 36 are in profile view (between
3/4 view and full profile view). These images contain
some of the typical problems of amateur photographs
including poor lighting, contrast, or focus.

Each row of Table 8 shows the result by a different
setting of γ , which determines λ for each classifier as
follows:

λfront = dfront + efrontγ

λprofile = dprofile + eprofileγ

where the d’s and e’s were tuned by hand.

Table 9. Face detection results on Schneiderman & Kanade test set.

With AdaBoost Without AdaBoost

Detections Detection Detection
(all faces) (profiles) False (all faces) False

γ (%) (%) detections (%) detections

0.0 92.7 92.8 700 82 137

1.5 85.5 86.4 91 74 27

2.5 75.2 78.6 12 60 3

Table 10. Frontal face detection on Sung & Poggio and Rowley &
Baluja & Kanade combined test seta.

Detection rate False
rate (%) detections

Schneiderman and Kanadeb (eigenvector) 94.4 65
(95.8)

(Roth et al., 1999)c (94.8) 78

Schneiderman and Kanade (wavelet)c 90.2 110
(91.8)

(Rowley et al., 1998) 86.0 31

(Viola and Jones, 2001) 93.7 167

aAt least 10 additional human faces are not labeled in the ground
truth for this test set. We report our results in two ways. The figures
not in parentheses indicate results on just the 483 labeled faces. Any
additional detected faces were counted neither as detections nor false
detections. To be consistent with Roth et al. (1999), we also indicate,
in parentheses, the ratio between the total number of faces found by
computer (labeled and unlabeled) divided by the number labeled by
hand (483).
bIndicates the detection results on 125 images with ground truth of
483 labeled faces. The original MIT/CMU test set included 5 addi-
tional images of line-drawn faces.
cIndicates that 5 images of line-drawn faces were excluded, leav-
ing 125 images with 483 hand-labeled faces. However, at least 10
additional human faces are not labeled in the ground truth for this
test set. The figures in parentheses indicate results on just the 483
labeled faces. These numbers do not include the additional faces we
detected, counting them neither as detections nor false detections.
However, to be consistent with Roth et al. (1999), we also indicate,
in parentheses, the ratio between the total number of faces found by
computer and the number labeled by hand.

Object Detection Using the Statistics of Parts 171

Table 11. Car detection results.

False
γ Detections Misses detections

1.05 177 (83%) 36 (17%) 7

1.0 183 (86%) 30 (14%) 10

0.9 197 (92%) 16 (8%) 71

To further evaluate accuracy on faces with out-
of-plane rotation we collected a larger test set con-
sisting of 208 images with 441 faces that vary in
pose from full frontal to side view. This test set
is available on-line at http://www.ri.cmu.edu/projects/
project 419.html. Of these images, approximately 347
are profiles (between 3/4 view and full profile view).
We gathered these images from a variety of sites on
the World Wide Web, mainly news sites such as Ya-
hoo! and the New York Times. Most of these images
were unconstrained in terms of content, background
scenery, and lighting, but were taken by professional

Figure 12. Car detection results.

photographers and are generally of better quality than
the Kodak images in terms of composition, contrast,
and focus. Table 9 shows the performance at different
values of γ controlling the sensitivity of the detectors.
The table also compares the performance of the de-
tectors trained with AdaBoost and without AdaBoost.
Figure 11 shows some typical results on this image set
when our detector was trained with AdaBoost and used
γ = 1.0.

The distinguishing characteristic of our face detec-
tor is that it works for both frontal and out-of-plane
rotational views. To date, several researchers (Rowley
et al., 1998; Sung and Poggio, 1998; Osuna et al., 1998;
Roth et al., 1999; Viola and Jones, 2001) have had suc-
cess developing algorithms that work for frontal views
of faces, but none, to our knowledge, have had success
with profile (side) views except Rowley (1999) which
we compare our algorithm to in Table 8.

Profile-view faces are more difficult to detect than
frontal views for several reasons. The salient features
on the face (eyes, nose, and mouth) are not as prominent

172 Schneiderman and Kanade

when viewed from the side as they are when viewed
frontally. Also, for frontal views, these features are in-
terior to the object, whereas on a profile, many of the
features form the silhouette with respect to the back-
ground. Since the background can be almost any visual
pattern, a profile detector must accommodate much
more variation in the appearance of these features than
a frontal detector needs to accommodate for interior
features.

(a)

Figure 13. (a) Positional response of the classifier. Green areas are “face-like” and red areas are not “face-like.” (b) Positional decomposition
of classifier response to particular profile faces. Green areas are “face-like” and red areas are not “face-like.”

(Continued on next page.)

Table 10 compares the accuracy of our detectors with
those of other researchers on the MIT/CMU test set of
frontal face images combining test images from Sung
and Poggio (1998) and Rowley et al. (1998).

In these experiments, we noticed some differences
in performance between the detector described in this
paper and an improved version of the detector we de-
scribed in Schneiderman and Kanade (1998). Both
detectors use similar probabilistic structures, but the

Object Detection Using the Statistics of Parts 173

(b)

Figure 13. (Continued.)

detector in Schneiderman and Kanade (1998) uses local
operators based on localized eigenimages rather than
wavelet coefficients. The wavelet-based detector de-
scribed in this paper performs much better for profile-
view faces. However, the localized eigenimage-based
detector in Schneiderman and Kanade (1998) seems to
be slightly more accurate on frontal faces.

6. Car Detection

We also trained a detector for finding passenger cars in
an image.

6.1. Local Operators, Training Images,
and Training

We used 13 of the 17 operators described in
Section 2.4.1 by excluding the four operators that in-
volved the level 3 LL subband. We excluded these op-
erators because they represent average intensities over
large areas. Since cars come in all colors and intensities,
we expected these coefficients not to be informative.

We collected car images with our own camera and
from the World Wide Web, mostly from car sales and
car enthusiast sites. The latter sites provided many

174 Schneiderman and Kanade

photographs of older cars. We gathered between 250
and 500 images per viewpoint with a total of over 2,000
images.

The car detector used Training Method (I) described
in Section 3.3.

6.2. Results in Car Detection

To test the accuracy of the car detector, we collected,
separately from the training set, a set of 104 images that
contain 213 cars, spanning a wide variety of models,
sizes, orientations, background scenery, lighting con-
ditions and some partial occlusions. We gathered these
images using several cameras and from sites on the
World Wide Web. This image set is publicly avail-
able at http://vasc.ri.cmu.edu/idb/html/car/index.html.
Table 11 displays our performance.

The sensitivity of the detectors is controlled by
γ which linearly scales the detection thresholds.
Figure 12 shows some typical results on this image
set, evaluated at γ = 1.0.

7. Analysis of Positional Response of Classifier

Since the classifier uses parts across the full extent of
the object, it is worth analyzing which parts or areas
tended to be most influential. For example, are the eyes,

Figure 14. Positional decomposition of classifier response to particular cars. Green areas are “car-like” and red areas are not “car-like.”

nose, and mouth regions really the most important areas
to detect faces? To study the behavior of the classifier,
we computed the amount of contribution at each pixel
(x , y) to the total log likelihood, Eq. (8). In other words,
C(x, y) is the partial sum of the total log likelihood due
to the parts centered at (x , y).

C(x, y) =
∑

k

Lk(fk(x, y), [x/M], [y/M])

=
∑

k

log
P(fk(x, y), [x/M], [y/M] | object)

P(fk(x, y)[x/M], [y/M] | non-object)

(13)

Figure 13 shows C(x, y) as a color overlay on
a continuum from red to green, with green indi-
cating positive values and red indicating negative
values.

It is interesting to notice that no particular region in
a face seemed to be consistently more influential than
the others, and the regions of particular positive influ-
ence were not sharply localized but tend to be spread
out. Occluded areas usually contributed a negative in-
fluence. Also, characteristics that were uncommon in
the training set, such as the mottled beard on the man
in the lower right corner of Fig. 13(b), gave negative
response.

We performed a similar analysis for car detection.
Figure 14 shows the influence of the parts as a function

Object Detection Using the Statistics of Parts 175

Figure 15. Doorknob detection results.

of position on the car. The areas of positive and neg-
ative response seem to vary somewhat from example
to example, but the window posts, the grille, tires, and
silhouette often gave positive response, and the back-
ground and reflections of the surrounding scenery on
the shiny surfaces often gave negative responses.

8. Conclusion

We have described an algorithm for object detection us-
ing a set of viewpoint specific classifiers each of which
is trainable using a large set of sample images. Each
classifier forms a log likelihood ratio as the product of
the log likelihoods of a large set of parts. Each part
represents various local properties in space, frequency,
and orientation.

This algorithm is generic and easily adaptable to new
objects with little re-programming. We demonstrated
its use for detecting faces and passenger cars. The same
algorithm was also trained to detect doorknobs for in-
door robot navigation (Fig. 15).

Our goal is to develop a system that detects and rec-
ognizes of many kinds of objects in photographs and
video including everyday office objects, text captions
in video, and various structures in biomedical imagery.

Appendix: Wavelet Transform

A wavelet transform is computed by passing an im-
age through a cascade of filter bank stages. Figure 16
shows one such stage. This stage filters the image in the
vertical direction using the filter pair given by c(y) and
d(y). c(y) and d(y) are finite extent filters where c(y) is
low-pass and d(y) is high-pass. These filter outputs are
down-sampled by a factor of 2 in the vertical direction.
The resulting outputs are filtered in the horizontal direc-
tion by an identical pairs of filters oriented horizontally,
c(x) and d(x), and then down-sampled by a factor of 2
horizontally. The result is a decomposition of the im-
age into 4 subbands denoted by LL, LH, HL, HH. Each
of these represents information from a different ori-
entation. LH represents vertical information (low-pass
filtering in horizontal direction, high-pass filtering in
vertical direction), HL represents horizontal informa-
tion (low-pass filtering in vertical direction, high-pass
filtering in horizontal direction), HH represents diago-
nal information (high-pass filtering in both directions),
and LL (low-pass filtering in both directions) repre-
sents the original image at a lower resolution. Figure 17
shows the common representation for these subbands in
an image form. These four subbands could be thought
of as one frequency band or one level in a wavelet

176 Schneiderman and Kanade

Figure 16. One stage in a filter-bank wavelet decomposition.

Figure 17. Representation of a one-level and two level wavelet
transform.

transform. To expand the decomposition in frequency,
we can iterate on the LL band; that is, we decompose
the LL band as we decomposed the original image by
passing it through another stage identical to the first.
If the filter pair is chosen properly, the original image
can be reconstructed from its transform with no loss of
information. Such filter banks are called perfect recon-
struction filter banks. Several books describe their de-
sign (Strang and Nguyen, 1997; Vetterli and Kovacevic,
1995).

Notes

1. These relationships (intra-subband, inter-subband, inter-
frequency) were initially defined in Cosman et al. (1996).

2. John Krumm and Henry Rowley each provided image collections.
3. http://www.wuarchive.wustl.edu.
4. Introduced by Sung and Poggio (1998) for image classification

and also used by Rowley et al. (1998).
5. See Shapire and Singer (1999) for a complete description of the

algorithm.
6. Provided by Jonathon Phillips.
7. See http://www.nist.gov/srd/nistsd18.htm.
8. Provided by Woodward Yang.

9. Collected by Henry Rowley, Shumeet Baluja, Henry
Schneiderman, and Takeo Kanade.

References

Amit, Y. 2000. A neural network architecture for visual selection.
Neural Computation, 12:1059–1089.

Arun, K.S., Huang, T.S., and Blostein, S.D. 1987. Least-Squares fit-
ting of two 3-D point sets. IEEE Transactions on Pattern Recog-
nition and Machine Intelligence, (9):698–700.

Burl, M.C. and Perona, P. 1996. Recognition of planar object classes.
In IEEE Conference on Computer Vision and Pattern Recognition,
pp. 223–230.

Burl, M.C., Weber, M., and Perona, P. 1998. A probabilistic approach
to object recognition using local photometry and global geometry.
In Proc. of the 5th European Conf. on Computer Vision.

Chow, C.K. and Liu, C.N. 1966. Approximating discrete probability
distributions with dependence trees. IEEE Transactions on Infor-
mation Theory, IT-14(3).

Cortes, C. and Vapnik, V. 1995. Support-vector networks. Machine
Learning, 20:273–297.

Cosman, P.C., Gray, R.M., and Vetterli, M. 1996. Vector quantiza-
tion of image subbands: A survey. IEEE Transactions on Image
Processing, 5(2):202–225.

Domingos, P. and Pazzani, M. 1997. On the optimality of the sim-
ple Bayesian classifier under zero-one loss. Machine Learning,
29:103–130.

Field, D.J. 1999. Wavelets, vision and the statistics of natural scenes.
Philosophical Transactions of the Royal Society: Mathematical,
Physical and Engineering Sciences, 357(1760):2527–2542.

Freund, Y. and Shapire, R.E. 1997. A decision-theoretic generaliza-
tion of on-line learning and an application to boosting. Journal of
Computer and System Sciences, 55(1):119–139.

Geman, D. and Flueret, F. 2001. Coarse-to-fine face detection. Inter-
national Journal of Computer Vision, 41:85–107.

Gori, M. and Scarselli, F. 1998. Are mulilayer perceptrons adequate
for pattern recognition and verification. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 20(11):1121–1132.

Kung, Y. 1993. Digital Neural Networks. Prentice-Hall.
Lades, M., Vorbruggen, J.C., Buhmann, J., Lange, J., Malsburg,

C.v.d., Wurtz, R.P., and Konen, W. 1993. Distortion invariant ob-
ject recognition in the dynamic link architecture. IEEE Transac-
tions on Computers, 42(3):300–311.

Lewis II, P.M. 1959. Approximating probability distributions to
reduce storage requirements. Information and Control, 2:214–
225.

Osuna, E., Freund, R., and Girosi, F. 1997. Training support vector
machines: An application to face detection. In IEEE Conference
on Computer Vision and Pattern Recognition, pp. 130–136.

Romdhani, S., Torr, P., Scholkopf, B., and Blake, A. 2001. Compu-
tationally efficient face detection. In International Conference on
Computer Vision, pp. 695–700.

Roth, D., Yang, M.-H., and Ahuja, N. 1999. A SNoW-based face
detector. NPPS-12.

Rowley, H.A., Baluja, S., and Kanade, T. 1998. Neural network-
based face detection. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 20(1):23–38.

Rowley, H. 1999. Neural network-based face detection. Ph.D thesis.
CMU-CS-99-117.

Object Detection Using the Statistics of Parts 177

Schiele, B. and Crowley, J.L. 1996. Probabilistic object recogni-
tion using multidimensional receptive field histograms. In Inter-
national Conference on Pattern Recognition.

Schiele, B. and Crowley, J.L. 2000. Recognition without correspon-
dence using multidimensional receptive field histograms. Interna-
tional Journal of Computer Vision, 36(1):31–50.

Schneiderman, H. and Kanade, T. 1998. Probabilistic modeling of
local appearance and spatial relationships for object recognition.
In IEEE Conference on Computer Vision and Pattern Recognition.

Shapire, R.E. and Singer, Y. 1999. Improving boosting algorithms us-
ing confidence-rated predictions. Machine Learning, 37(3):297–
336.

Strang, G. and Nguyen, T. 1997. Wavelets and Filter Banks.
Wellesley, Cambridge Press: Wellesley, MA.

Sung, K.-K. and Poggio, T. 1998. Example-based learning for view-
based human face detection. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 20(1):39–51.

Swain, M.J. and Ballard, D.H. 1991. Color indexing. International
Journal of Computer Vision, 7(1):11–32.

Vetterli, M. and Kovacevic, J. 1995. Wavelets and Subband Coding.
Prentice-Hall.

Viola, P. and Jones, M. 2001. Rapid object detection using a boosted
cascade of simple features. In IEEE Conference on Computer Vi-
sion and Pattern Recognition.

Wiskott, L., Fellous, J.-M., Kruger, N., Malsburg, C.v.d. 1997. Face
recognition by elastic bunch graph matching. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 19(7):775–
779.

