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Thispaper empirically comparesninefamiliesof imagedissimilarity measuresthat
are based on distributions of color and texture features summarizing over 1000 CPU
hours of computational experiments. Ground truth is collected via a novel random
sampling scheme for color, and by an image partitioning method for texture. Quan-
titative performance evaluations are given for classification, image retrieval, and
segmentation tasks, and for a wide variety of dissimilarity measure parameters. It
is demonstrated how the selection of a measure, based on large scale evauation,
substantially improves the quality of classification, retrieval, and unsupervised seg-
mentation of color and textureimages.  © 2001 Elsevier Science (USA)

1. INTRODUCTION

Measuring the dissimilarity between images and parts of imagesis of central importance
for low-level computer vision. The following vision tasks directly rely on some notion of
image dissimilarity:

e Inclassification [13, 16, 19, 22], a new image sample has to be assigned to the most
similar of agiven number of classes. A set of labeled training examplesis available. Super-
vised segmentation, i.e., the assignment of image regions to predefined classes is also a
classification task.

e Inimageretrieval [1, 9, 10, 18, 23, 24, 27, 30, 33] the user may search alarge collection
of images for pictures that are similar to a query image. The search is based on perceptual
similarities of the attributes color, texture, shape, and composition. Image annotation is a
special case, where a prototypical image region is interactively specified and all parts of
theidentical texture classin the image must be label ed. |mage annotation techniques are of
central importancein applicationslike map generation from SAR imageswhere compl etely
unsupervised methods often fail.
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e In unsupervised segmentation [11, 14, 15, 17, 29] an input image is divided into
parts that are homogeneous according to some perceptua attribute. No predefined attribute
classes are available in this case. In this context, edge detection can be considered as a
special segmentation technique aiming at precise boundary localization [2, 31].

In recent years, dissimilarity measures, based on empirical estimates of the distribu-
tion of feature, have been developed for classification [22], image retrieval [9, 27, 30,
33], unsupervised segmentation [11, 14], and edge detection [31]. Preliminary bench-
mark studies have confirmed that distribution—based dissimilarity measures exhibit ex-
cellent performance in image retrieval [18, 27], in unsupervised texture segmentation
[14], and in conjunction with a k—nearest-neighbor classifier, in color- or texture-based
object recognition [22, 33]. However, most of these empirical evaluations provide only
incomplete and partial information. They either pit one favorite dissimilarity measure
against a small number of others, or they provide merely anecdotal evidence, or they
only expose a small portion of the space of the parameters that the various dissimilar-
ity measures depend on. Some benchmark studies [18, 27] are more systematic but ap-
ply to generic measures and do not elucidate strengths and weaknesses of the various
dissimilarity measures for the specific tasks of classification, retrieval, or unsupervised
segmentation.

Classification fundamentally differs from the other two applications since with the re-
striction to a set of known classes the similarity relationship between objects and classes
can be inferred from the training data. On the other hand, unsupervised segmentation and
imageretrieval are concerned with the weaker notion of image proximity, based on ageneric
(not class-specific) similarity measure. The definition of a similarity measure is based on
three design decisions.

1. A feature space representation has to be chosen. For color images, the color vector
provides a simple feature vector. For texture, it should characterize the texture content in a
neighborhood of a pixel position.

2. The(local) distribution of featurevaluesisestimated. Here, ahistogram representation
is chosen as a suitable nonparametric estimate of the feature distribution.

3. A measure to compare histograms must be selected, which properly assesses the
difference in the represented distributions. Several possible choices are examined in detail.

Inthispaper, wereport on theresults of asystematic comparison of ninedifferent families
of dissimilarity measures for color and texture. The plots summarize over 1000 hours of
CPU time, spent in an exhaustive exploration of arather large space of parameter settings.

First, in Sections 2 and 3 we review and categorize distribution-based dissimilarity mea-
sures, discussing strengths and limitations of each with respect to the different vision tasks
mentioned above.

Second, in Section 4 we propose a methodology for the quantitative comparison of
color and texture dissimilarity measures. A major contribution here is a statistically sound
procedure for the establishment of ground truth, against which the various dissimilarity
measures can be compared. This section also explains the principles we adhered to in order
to enforce fairnessin our comparisons.

Finally, Section 5 provides quantitative comparison results as a function of several pa-
rameters such as number of histogram bins, query detail, size of the responseto aquery, and
dimensionality of the feature space. Comparisons are tailored to the specific requirements
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of classification, retrieval, and segmentation. The results are interpreted in order to explain
which measure works best for which task. As summarized in the concluding Section 6,
there are no winners or losers, but rather different tools for different tasks.

2. IMAGE REPRESENTATION

In this section, we describe the color and texture feature spaces that we use in this paper
and the representations that we use for the resulting distributions in these spaces.

2.1. Color

Human color perception is based on the incidence of visible light (with wavelengths
in the 400 to 700 nm range) upon the retina. Since there are three types of color photo-
receptor cone cells in the retina, each with a different spectral response curve, al colors
can be completely described by three numbers, corresponding to the outputs of the cone
cells. In 1931, the Commission I nternationale de |’ Eclai rage (CIE) adopted standard curves
for the color photo-receptor cone cells of ahypothetical standard observer, and defined the
CIE XY Z tristimulus values, where al visible colors can be represented using only positive
valuesof X, Y and Z.

Besides the CIE XY Z, other color spaces are used to specify, create and visualize color
information (see [35] for more information about color spaces). For instance, the popular
RGB color space, as used by television displays, can be visualized as acube with red, green
and blue axes. Different applications have different needs which can be handled better
using different color spaces. For our needs it isimportant to be able to measure differences
between colorsin a way that matches perceptual similarity as good as possible. This task
issimplified by the use of perceptually uniform color spaces. A color spaceis perceptually
uniform if asmall change of a color will produce the same change in perception anywhere
in the color space. In this paper we use the L*a*b* (CIE Lab) color space which was
designed such that the perceived differences between single, nearby colors correspond to
the Euclidean distance of the color coordinates.

The (nonlinear) conversions from RGB to CIE Lab are given by:*

Y 0.212671 0.715160 0.072169 | | G

X 0.412453 0.357580 0.180423 R
Y4 0.019334 0.119193 0.950227 B

e 116 (Y/Y,)Y® — 16 if Y/Y, > 0.008856
T 1903.3(Y/Y,) otherwise ’

a* = 500(f(X/ xn) - f(Y/Yn))7
b* = 200(f(Y/Yn) — T(Z/Zy)),

where

Ft) = t1/3 if Y/Y, > 0.008856
~ | 7.787t +16/116 otherwise ’

! Following ITU-R Recommendation BT.709, we use Dgs as the reference white point so that [ X, Y, Z,] =
[0.95045 1 1.088754] (see[26]).
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2.2. Texture

Over the past decades numerous approaches for the representation of textured images
have been proposed ranging from the means and variances of afilter bank output [8, 15],
wavelet coefficients [25], wave-packets [16], fractal dimension [3], or parameters of an
explicit Markov random field model [5, 19]. Recent comparative studies on this subject
can be found in [7, 21, 22, 25]. It should be noted though that in most approaches it can
be well distinguished between image representation, i.e., the extraction of a pixel-wise
descriptor representing the local texture content and the definition of a similarity measure.
Asaconsequence, most textural features can beincorporated into the proposed distribution-
based scheme to define image similarity.

While color is a purely point-wise property of images, texture involves some notion of
spatial extent: a single point has no texture. If texture is defined in the frequency domain,
the texture information of apoint in theimageis carried by the frequency content in alocal
neighborhood. Gabor filters are often used for texture analysis and have been shown to
exhibit excellent discrimination properties over a broad range of textures[14, 15, 18]. Let
u e IR? denote the positionin theimage or, if discretized, apixel in theimage. Gabor filters
are defined by

1
Got(u) = >3 exp(—u'u/20?) exp(iftu), u,felR2 (1)

where o is alocalization parameter typically chosen proportionally to the wavelength or
scale ﬁ of thefilter. In keeping with most of theliterature on texture, the phase information
is ignored by taking only the magnitude of the Gabor responses obtained by convolution
with the input image X

X, = || (X * Gop ) (W], )

where f, encodes the scale and the orientation of the r-th filter. Applying a dictionary of
Gabor filtersresultsin avector x, = (x{,) of responses or feature channels for every sitein
the image, where the number of entries equals the number of scales times the number of
orientations that are used.

In this paper we used the family of Gabor filter derived in [18]. Dictionaries with 4, 6,
and 8 different orientations over 3, 4, and 5 different scales, respectively, are employed,
leading to filter banks of 12, 24, and 40 filters.

2.3. Distribution of Features

Color and texture descriptors vary substantially over an image or image part,? both be-
cause of inherent variationsin surface appearance and asaresult of changesinillumination,
shading, shadowing, foreshortening, etc. Thus, the appearance of aregion is best described
by the distribution of features, rather than by individual feature vectors. Histograms can
be used as nonparametric estimators of empirical feature distributions. However, for high-
dimensional feature spacesregular binning often resultsin poor performance: coarsebinning

2 Inthefollowing, werestrict the notation to completeimages X = (x,) for convenience. However, the adaptation
to image regions and small image patches as needed for supervised and unsupervised segmentation as well as
annotation and edge detection is straightforward.
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dulls resolving power, while fine binning leads to large fluctuations due to statistically in-
significant sample sizes for most bins. A partial solution is offered by adaptive binning,
whereby the histogram bins are adapted to the distribution [22, 28, 30]. In the texture
segmentation context adaptive bins have recently been popularized as a computational op-
erationalization of Julesz’ textons[17]. The binning isinduced by a set of prototypes {c; }
and is given by the corresponding Voronoi tessellation. Adaptive histograms are formally
defined by

f(i; X) = Hu:i =argmjin‘

o} ®

Here x,, denotes the feature vector at image site u and | - | denotes the size of a set. The
histogram entry f(i; X) corresponds to the number of image pixelsin bini. A suitable
set of prototypes can be determined by a vector quantization procedure, e.g., the K-means
algorithm used in this paper. Usually, acommon set of prototypesis used for acollection of
images where the prototypes are computed from the combined distribution over all images.
However, sometimesit is useful to compute the adaptive binning separately for each image.
We refer to this case as individual binning.

For small sample sizesit may be better to estimate only the marginal histograms. While
information about the joint occurrence of feature coefficients in different channelsislost,
bin contentsin the marginals may be significant where those in the full distribution may be
too sparse. Formally, the marginal histograms of the coefficients in feature channel r are
given by

fri; X)=|[{u:t_; <x; <t} (4

Here, bini is defined as the feature interval (t/_,, t] of channel r where the boundaries
of the interval can be regular or can be determined by adaptive binning. The cumulative
histogram for marginal histograms is defined as

Fri;X)=[{u:x; <t} (5)

3. DISSIMILARITY MEASURES

In the following, D(X, Y) denotes a dissimilarity measure between the images X and
Y. A superscript D" (X, Y) indicates that the respective measure is applicable only to the
marginal distributions along dimension (channel) r. The dissimilarity values obtained for
single feature channels must be combined into ajoint overall dissimilarity value. In [27]
theMinkowski normsD(X, Y) = >~ (D" (X, Y))P wereinvestigated, including thelimiting
case of the maximum norm (p = oo) utilized in [11]. Based on their results p=1is used
in the sequel.

3.1. Distance Measures for Histograms
We distinguish the following four categories of dissimilarity measures:

Heuristic histogram distances. A variety of heuristic histogram distances has been
proposed mostly in the context of image retrieval:
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e The Minkowski-form distance L, is defined by

1/p
D(X.Y) = (Zu(i;X)— f(i;vw’) : (6)

Here, wechose 1 < p < oo to ensure metric properties. For example, the £, distance has
been proposed for computing the dissimilarity scores between color images [33], and the
L norm was used to measure texture dissimilarity [34]. £1 computes the sum of abso-
lute distances while L., measures the maximal difference. Other values of p compromise
between these two extremes. Histogram Intersection (HI) as proposed in [33] provides a
generalization of £; to deal with partial matches. Basically, whenever the histograms are
of equa size, HI and £; are identical, so we treat them as the same category in the sequel.

e TheWeighted-Mean-Variance (WMV) hasbeen proposed in[18]. For empirical means
wr (X), ur (Y) and standard deviations oy (X), o; (Y) this distance is defined by

e (X) = (Y)] |or (X) — o (Y)]
o (par )| o ()]

D'(X,Y) = , (7

where o (-) denotes an estimate of the standard deviation of the respective entity. In [18] it
is shown that for texture-based image retrieval, this measure based on a Gabor filter image
representation has outperformed several parametric models.

Nonparametrictest statistics. Nonparametrictest statisticsprovideasound probabilistic
procedure for testing the hypothesis that two empirical distributions have been generated
from the same underlying true distribution.

e The Kolmogorov—Smirnov distance (KS) was originaly proposed in [11] for image
segmentation. It isdefined asthe maximal discrepancy between the cumulative distributions

D'(X,Y) = max |F(i; X) — F'(i;Y)] ©)

and hasthedesirabl e property to beinvariant to arbitrary monotonic featuretransformations.
However, it is defined only for one dimension.

o A dtatistic of the Cramer/von Mises type (CvM) is defined as the squared Euclidean
distance between the distributions,

D'(X,Y) = Z(Ff(i P X) = F(i; V)2 9)

Similarly to KS, it is defined only for one dimension.
e The x?-statistic proposed in [27] for segmentation and image retrieval is given by

D(X,Y) = Z w (10)

where f(i)=[f(i; X) + f(i;Y)]/2isthe mean histogram.
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Information-theory divergences. Information-theoretically motivated divergences pro-
vide an interesting aternative. Here we examine two special cases:

e The Kullback-Leibler divergence (KL) suggested in [22] as an image dissimilarity
measure is defined by
f(i;X)
f@i;Y)’

D(X.Y) =) f(i;X)log (12)

and measures how inefficient on average it would be to code one histogram using the other
asthe true distribution for coding. The KL-divergence becomesinfiniteif f(i;Y) does not
dominate f(i; X).

e The Jeffrey-divergence (JD) is defined by

f(i;Y)
f(i)

+ f(i;Y)log

: f(i;X)
D(X,Y) = f(i; X)log —
(X.Y) .Z (i X)log — 0
In contrast to the KL-divergence, JD is symmetric and numerically stable when comparing
two empirical distributions. JD is sometimes referred to as Jensen—Shannon divergence.

Ground distance measures. A ground distanceis defined as a distance between individ-
ual featurevectorsinthe underlying feature space. | ncorporating this additional information
hasthe potential for dissimilarity measureswith improved performance. Moreformally, the
ground distance g;; between binsi and j is defined in terms of the distance between the
associated centroids ¢; and c; in the underlying feature space. To some extent, the notion
of ground distance is used by measures like the Kolmogorov—Smirnov distance and the
statistic of the Cramer/von Mises type, which are based on the cumulative histograms and
therefore take into account the relative location of the feature vectors. However, these mea-
sures are defined only in one dimension and cannot exploit the ground distance in the full
feature space.

e The Quadratic Form (QF) [12] provides a heuristic approach,

D(X,Y) = /(fx — fv)T Afx — fy), (12)

where fy and fy are vectorsthat list al the entriesin f(i; X) and f(i;Y) respectively. We
refer to [20] for more details including an efficient implementation. Cross-bin information
is incorporated via a similarity matrix A = (&) where &; denotes the similarity between
binsc; and c;.

e The Earth Movers Distance (EMD) [30] is based on the solution of a transportation
problem whichisalinear optimization problem. If the cost for moving a single feature unit
in the feature space is defined based on the ground distance, then the distance between two
distributions is given as the minimal cost to transform one distribution to the other, where
the total cost isthe sum of the costs needed to move the individual features.

Zi,j gijdij

D(X,Y) = T
i,j Yij

(13)



32 RUBNERET AL.

where d;; denotes the dissimilarity between binsi and j, and g;; > 0 is the optimal flow
between the two distributions such that the total cost }; ; gijdi; is minimized, subject to
the following constraints:

Zgusf(j;v), Zgijsf(i;X)
| J (14)
> gy =min(f(j;Y). f(i; X)),

0]

forali and j. The denominator in (13) isanormalization factor that allows matching parts
of distributions that have different total mass. A key advantage of the EMD is that each
image may be represented by an individual (possibly with different number of bins) binning
that is adapted to its specific distribution.

3.2. Properties of Histogram Distances

Table 1 comparesthe properties of the different measures. WMV isaparametric measure
relying on the means and variances of the marginal distributions. KS and CvM are defined
only for cumulative distributions and therefore can be used only with the marginal distri-
butions, while the others are applicable to multidimensional histograms. The EMD hasthe
additional advantage to be applicable to histograms with individual binning.

The validity of the triangle inequality is another important property which distinguishes
different measures. Thetriangleinequality entail slower boundswhich can be often exploited
to substantially alleviate the computational burden in retrieval tasks [4]. For x2, KL and
JD the triangle inequality does not hold, for the QF it only holds for specific families of
its ground distance, and for the EMD it only holdsif the ground distance is metric. All the
evaluated measures are symmetric except the KL divergence.

A useful featurefor imageretrieval istheability to obtain partial matches, i.e., to compute
the dissimilarity score only with respect to the most similar image part. Only the HI and the
EMD directly enable partial matches. The ability of partial matching isof minor importance
for the other applications.

Computational complexity isanimportant considerationin many applications. For classi-
fication and retrieval applications, it isimportant to differentiate between online and offline
complexity. Especially for the WMV the standard deviations can be computed in advance

TABLE 1
Characteristics and Advantages of the Different Distribution-Based Similarity Measures

Ly WMV  KS/CvM x2 KL JD QF EMD
Symmetrical + + + + _ + + +
Triangle inequality + + + - - _ + +
Comp. complexity ~ medium low medium  medium medium medium high  high
Ground distance - - + — — _ + +
Multivariate + - - + + + + +
Individual binning - + — — - _ +
Partial matches - - — — — — +
Nonparametric + - + + + + + +
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and the similarity scoresfor anew query can be evaluated efficiently. In contrast to all other
advantages, the computational complexity of the EMD is the highest among the evaluated
measures since for each dissimilarity score it is necessary to solve a combinatorial opti-
mization problem. However, while using the EMD on large histograms is prohibitive for
certain applications, its ability to represent different images by a different binning often
enable good results even with a small number of bins, and consequently less computation.
In the experiments, the number of bins used for the EMD has been limited to 32 bins, while
for the other dissimilarity measures up to 256 bins have been used. Still, the computational
complexity of the EMD has turned out to be prohibitive for texture segmentation.

4. BENCHMARK METHODOLOGY

Any systematic comparison of dissimilarity measures should be conform at least to the
following guidelines:

1. A meaningful quality measure must be defined. Different tasksusually entail different
quality measures. The subdivision into classification, retrieval, and segmentation makes it
possible to define general -purpose quality criteriafor each task. The presented results may
thus serve as a useful guide in many practical situations.

2. Performance comparisons should account for the variety of parametersthat can affect
the behavior of each measure. These parameters include the size of the images, queries
and statistical samples; the number of neighbors in a k-nearest-neighbor classifier and
the number of bins in a histogram; the shape of the bins and their detailed definition;
and, for texture, the dimensionality of feature space. A fair comparison in the face of this
variability can be achieved by giving every measure the best possible chance to perform
well. However, it hasto be emphasized that multiple free algorithmic parameters have to be
considered asadeficit of amethod, since each additional parameter value must be estimated
from experimental data, e.g., by cross-validation techniques which may cause tremendous
experimental effort. Thus, the degrees of freedom is an important factor for choosing an
appropriate method.

3. Processing steps that affect performance independently ought to be evaluated sep-
arately in order to both sharpen insight and reduce complexity. For instance the effect
of different image representations can be understood separately from those of different
dissimilarity measures. Also, for segmentation, the grouping procedure can be evaluated
separately [14].

4. Ground truth should be available. Thisis a set of data for which the correct solution
for a particular problem is known. Collecting ground truth is arguably the hardest problem
in benchmarking, because the data should represent a broad range of possible applications,
the “correct solution” ought to be uncontroversial, and the ground-truth data set should be
large enough to allow a statistically significant performance evaluation. In the following,
we summarize our choice of ground truth for color and texture.

4.1. Color

Defining ground truth to measure color similarity over a set of color images is difficult.
Our approach was to create digoint sets of randomly sampled pixels from an image and to
consider these sets as belonging to the same class. While for large sets of pixels within a
classthe color distributions of their pixelswill be very similar, for small setsthe variations
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are larger, mimicking the situation in image retrieval where images of moderate similarity
have to beidentified. From a data base of 20,000 color images comprising the Corel Stock
Photo Library, we randomly chose 94 images. Thisis the same number of images asin the
texture case, so that we can compare the results. We defined set sizes of 4, 8, 16, 32, 64
pixels, and for each image we obtained 16 disjoint sets of random samplesin al sample
sizes, resulting in a ground truth data set of 1504 samples with 94 different classes, one
class per image. For the QF and the EMD that employ a ground distance, we use

aj = exp(—aliG —cjl) and dij=1-—a; (15)

as the measure of similarity and dissimilerity of binsi and j, where ||c; — cj|l is the
L, distance between the bin centers in the CIE L*a*b* color space (see Section 2). The
exponential map limitsthe effect of large distances that otherwise dominate the result. Here
we set « to half the standard deviation of all the feature valuesin the data base. This ground
distance makes closeness a relative notion, agrees with results from psychophysics [32],
and was found empirically to give good results.

4.2. Texture

In the benchmark study we concentrated on textured images from the Brodatz album
as they are widely accepted within the texture research community and provide a joint
database which is commonly available. To define ground truth each image is considered as
asingle, separate class. Thisis questionable in a few cases, which are circumvented by a
preselection of images. We a priori selected 94 Brodatz textures by visual inspection. We
excluded the textures d25, d30—d31, d39-d45, d48, d59, d61, d88-d89, d91, d94, d97 due
to missing micropattern properties. That is, those textures are excluded where the texture
property is lost when considering small image blocks. From each of the Brodatz images
we extracted sets of 16 random, nonoverlapping blocks sizes 8%, 162, . . ., 256 pixels.® For
each sample size this resulted in a ground truth data set of 1504 samples with 94 different
classes, just as for color. For the QF and the EMD we again employ (15), with the only
differencethat ||c; — c; || isdefined asthe £, distance between the Gabor responses. Unlike
with color where the £, distance has a solid psychophysical justification, for texture it is
not clear how to relate the different (normalized) channels, so we simply sum them.

4.3. Performance Evaluation

Next, we describe the quality measures which we used for classification, retrieval, and
segmentation. For classification, ak-NN classifier is used, with different values for k. As
a performance measure we use the average misclassification rate in percent estimated by a
|eave-one-out estimation procedure.

For image retrieval, performance is usually measured by precision, which is the number
of relevant images retrieved relative to the total number of relevant images in the data base,
and recall, which is the number of relevant images retrieved, relative to the total number
of retrieved images. Since our goal is to compare the different methods and not measure
performance of a retrieval system, we only plot the precision vs the number of retrieved
images.

3 For asample size of 256 we only extracted 4 samples per class due to the limited size of the original image.
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For unsupervised texture segmentation we followed the approach of [14] and used a
database of random mixtures (5122 pixels each) containing 100 entities of five Brodatz
textures each (such as depicted in Fig. 8). Segmentations are computed on aregular subgrid
of size128? by assigning each siteto oneout of K segments. For each site, alocal histogramis
extracted to estimate the local feature distribution. We compute marginal histogramswhich
are proportional to the Gabor filter wavelength [15]. For the multivariate histograms, the
binning has been adapted to the specific image. Each local histogram isthen compared with
80 randomly selected image sites using the dissimilarity measure. To compute an optimal
segmentation we implemented the approach of [14] which groups image sites with a high
average similarity to obtain a segmentation. As a performance measure we then report the
median classification error evaluated over 100 images, where each siteislabeled according
to the magjority rule of corresponding pixels. In addition, we report the percentage of images
with more than 20% errors. We consider these as structural segmentation errors, in which
typically entire textures are misclassified.

5. RESULTSAND INTERPRETATION

5.1. Classification

The classification performance has been estimated in a leave-one-out procedure for al
combinations of the parameter k € {1, 3, 5, 7} and the number of bins € {4, 8, 16, 32, 64,
128, 256}.# Only odd values are used for k to reduce the chances of ties. It can be shown
that the odd values dominate the even values [6, Section 5.6], i.e., a k-NN classifier with
odd k performs at least as good as the even (k + 1)-NN classifier in the limit of infinite
training data. In the texture case, we tried three different filter banks with 12, 24, and 40
filters. The experiments resulted in an enormous amount of information, computed in over
1000 CPU hours. Dueto limitationsin space, we only plot afew informative cuts from the
high-dimensional parameter space. The classification results are summarized in Fig. 1 for
the color case and Fig. 2 for thetexture case. Inthefigures, we plot the classification error of
the dissimilarity measures as a function of the sample size both for the full distribution and
for the marginals cases. The results are further separated into two cases. small histograms
(using 8 bins), and large histograms (using 256 bins). An exception to these histogram sizes
isthe EMD which uses individual adapted histograms that contain more information than
the regular global histograms (see Section 3). For the EMD we use 4 bins (instead of 8) for
the small histogram case, and 32 bins (instead of 256) for the large histogram.

The following main conclusions can be drawn from the results:

1. Two regimes can be distinguished based on the sample size.

For small sampl e sizes, the measureswhich are based on cumulativedistributions (K Sand
CvM) and which thusincorporate ground distance information perform well using marginal
distributions. The EMD performed exceptionally well with full distributions, even for the
hard case of small histogramswhere other measures performed poorly. Thisisexplained by
the local binning that provides additional information, not available to the other measures.
For very small sample sizes the WMV measure performs best in the texture case. Thisis
explained by the fact that WMV only estimates the means and variances of the marginal

4 For the EMD, because of computational reasons and the additional information carried by the individual
binning, we limited the number of bins to a maximum of 32.
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Classification Results for Color, Full Histograms, 8 Bins Classification Results for Color, Full Histograms, 256 Bins
T T T T T T

100

Classification Error |%)]

4 8 16 32 64 4 8 16 32 64
Classification Results for Color, Marginal Histograms, 8 Bins/dim Classification Results for Color, Marginal listograms, 256 Bins/dim
T T v T T T

Classification Error [%]

16
Sample size

16
Sample size

FIG. 1. Classification resultsfor the color data base for different sample sizes and different binning. For each
result, an optimal value k € {1, 3, 5, 7} for the k—nearest neighbor classifier has chosen. To assess the statistical
significance of the results one should note that the standard deviation can be estimated by o = /e~ (1 — €)/1504,
where e denotes the error probability. Thisyields standard deviations of 2.29, 0.77, 0.56, and 0.36% for an error
rate of 50, 10, 5, and 2%, respectively. The corresponding error bars have been omitted from the plot for increased
readability.

distributions. These aggregate measurementsarel ess sensitiveto sampling noise. The WMV
competes|ess satisfactorily on color since histograms can be morereliably estimated in this
case.

For large sample sizes (>322), the classical x? test statistic and the divergence measures
perform best. Jeffrey’ sdivergence behavesmore stably than the KL -divergence, asexpected.
The x?-statistic and JD yield nearly identical results in all experiments. We discarded JD
from some plots since the curves become visually indistinguishable. The £, does best from
the class of heuristic measures. £, and L, turned out to be consistently inferior in all
experiments and should thus not be considered as competitive measures.

2. For texture classification, marginal distributions do better than the multidimensional
distributions except for very large sample sizes (256°). This is explained by the fact that
the binning is not well adapted to the data, since it has to be fixed for all sample images
over all 94 texture classes. The EMD with its local adaptation does much better in this
case. For color, due to the lower dimensionality multivariate adaptive histograms perform
better than marginalswith the EMD performing best, since histograms can be morereliably
estimated even for small sample sizes. We conclude that marginal distributions or well-
adapted measures should be used for large feature spaces.

3. More hins help in the multivariate case. The maximally allowed number of bins
performs best for multidimensional histograms as shown in Fig. 3. Spending even more
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Classification Results for Texture, Multivariate Histograms, 8 Bins . Classification Results for Texture, Multivariate Histograms, 256 Bins

Classification error [%]

8 164 32 64° 128 256° 8 16 32 64 128 256"

Classification ertor [%]

64 128 256

64 128 256 8 167

§ 16 32 Sample size 32 Sample size

FIG.2. Classificationresultsfor texture classification for different sample sizesand different binning. In each
case, the best possible k and the best number of filters has been chosen. The slight deterioration in quality for the
sample size of 256 is explained by the fact that only 4 samplesinstead of 16 have been available for each class.
Concerning the statistical significance of the results, see the discussion in the caption of Fig. 1.

bins might result in an increased performance, up to a point where close features fall in
separate bins, but also results in a prohibitive run-time behavior. Only for the EMD, the
local adaptation allows to represent the distribution with a small number of bins which is
an advantage if storage complexity is an issue.

For marginal histograms, the binning details often play a negligible role as seen from
Fig. 3. However, for small sample sizes as in the color experiments in Fig. 3 too many
bins may result in a severe degradation of classification performance. Thusin thefollowing
experiments we used 16 binsfor marginal histograms and 256 binsfor full histograms. Itis
interesting to note that cumul ative histograms with many bins do not suffer from overfitting
for small sample sizes, see again Fig. 3. This reflects the fact that it is much easier to
estimate a distribution function than a density [6]. In fact, cumulative distributions could
be efficiently and robustly estimated with an infinite number of bins.

4. The optimal number k used for the k-NN classifier depends on the noise level of
the data. In the small sample regime with a high estimation variance a large value for
k is helpful, while for large histogram sample sizes the choice of k plays a negligible
role, see Fig. 4. Note that only 15 histograms for each class have been in the data base.
For a larger number of samples per class, one would expect a larger number k to work
better [6].

5. For the texture case, usually 12 Gabor filters have been sufficient and even outper-
form a larger number of filters as seen from Fig. 5. However, for very small sample sizes
additional filtersimplicitly provide more samples which resultsin abetter performance. We
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Classification Results for Color, Multivariate Histograms, Sample size 16 Classification Results for Color, Marginal Histograms, Sample Size 16

Classification crror [%]

4 8 16 Numbejrzofbins 64 128 256 4 & 16 .\Tumhc;%)[.bins 64 128 256

oClassification Results for Texture, Multivariate Histograms. Sample size 6- 3

20 [Classification Results for Texture, Marginal Histograms, Sample size 64°

tion crror [%]

4 8 16

6
128 256 4 8 16

32 32 i 64 128 256
Number of bins Numberof bins

FIG.3. Classification resultsdepending on the number of binsused. IntheexperimentsaK = 1 NN classifier
has been used. For the color experiments, a sample size of 16 was used. For the texture experiments, asample size
of 642 and 12 filters were employed.

concludethat asmall number of featuresis sufficient to distinguish alarge number of texture

classes.

5.2. Image Retrieval

Aswe saw in the results for classification, the EMD, WMV, CvM, and KS usually per-
formed well for the small sample sizes, while JD, x?2, and KL usually performed better for

Classification Results for Color Classification Results for Texture
T v
—~
15 1
~-i.._£, Marginals R T1V T S -
13 15|
% NN N Z Full
gu \ ~_ - 13}
o N\ AR
5 N o Full e
=4 AN L. Full
] - 11 e
¥ o o
& ¥’ Marginals | FEIITT
© ¥ Fuil ™
L e 9
EMD | LT T T e Marginals
5 . .
1 3 K 5 701 3 K 5 7

FIG.4. Classificationresultsdependingon K of the K-NN classifier. Intheexperiments 16 binshave been used
with the marginal histograms and 256 bins have been used full histograms. With the EMD, 16/32 locally adapted
bins have been employed. For the color experiments, we used a sample size of 16. For the texture experiments, a
sample size of 64? and 12 filters were used.
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- Classification Results for Texture
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FIG.5. Texture classification results depending on the number of filters. In the experiments, a sample size of
642 and 256 bins were used.

the larger sample sizes. Thisis confirmed by the retrieval results depicted in Fig. 6. Exper-
iments with small sample size are closer to image retrieval, since they mimic the situation
where similar images can have large variability, but should still be retrieved. Therefore, for
better recall of alarge number of similar images (fewer false negatives), the first class of
measures performs better, while for better precision with afew, very similar images (fewer
false positives), the second class of measures will probably perform better in real image
retrieval systems with a heterogeneous content.

Figure 7 shows an example for color-based image retrieval on a real data base of
20,000 images from the Corel Photo Collection. The color content of the leftmost
image of a red car was used as the query, and the eight images with the most simi-
lar color contents were returned and displayed in order of increasing distance for dif-
ferent dissimilarity measures. Every image in the data base was represented by a
256-bin multivariate adaptive histogram. Note that this experiment solely meant to illus-
trate the differences that can be observed using different dissimilarity measures for color.

100 Retrieval Results for Color Tmages, Sample Size 16 Retrieval Result for Textured Images, Sumple Size 8x8

Precision
Precision

20

80 100 o 20 40 60 80 00

a0 60
Number of retrieved images Number of retrieved images

FIG.6. Precisioncurvesin[%)] for selected similarity measures. (Ieft) Color imageretrieval for asample size
of 16; (right) textured image retrieval for a sample size of 82.
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4)0.21
197037 jpe B1005.jpg

x? statistics

FIG.7. Theeight closestimagesfor each of thered car imagesinthefirst column. The querieswere processed
by acolor-based image retrieval system using different histogram dissimilarity measures.

It does not provide a full image retrieval system which should take image structure into
account.

5.3. Unsupervised Segmentation

A major technical advantage of image segmentation compared to the other applications
isthe fact that the binning can be adapted specifically to theimage at hand. Thisleadsto an
increased accuracy in representing multidimensional distributions. Consequently, adaptive
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TABLE 2
Errorshby Comparison with Ground Truth over 100 Ran-
domly Generated Imageswith K = 5 Textures, 5122 Pixels,

and 1282 Sites
Median 20% quantile

x2 full 6.6% 10%
JD full 6.8% 10%
Ly full 6.8% 9%
x2 margina 8.1% 13%
JD marginal 8.1% 12%
L, marginal 8.2% 12%
KS margina 10.8% 20%
CvM margina 10.9% 22%

multivariate binning significantly outperforms marginal histograms in the unsupervised
segmentation task. Thisisillustrated in Fig. 8 for an example image and confirmed by the
benchmark results on the database with 100 images presented in Table 2. x2, JD, and £;
exhibit very similar performance both with marginal and multidimensional histograms. The
best performance was achieved by x? on adaptive multivariate histograms with a median
error of 6.6% as compared to 10.8% for the Kolmogorov—Smirnoff test, which was utilized
in [11]. Thus, employing the benchmark results to select a proper dissimilarity measure
may substantially improve the quality of unsupervised segmentation. For segmentation, the
EMD suffers from its high computational complexity and has, therefore, been excluded

from the experiments.

e
. ;
; @ ™,
L b
¥

L

LS

\\Q
i

s
-

JD - adaptive

L, - marginal JD - marginal

FIG. 8. Examples of segmentation results with K = 5 clusters for the different similarity measures under
consideration. Misclassified image sites are depicted in black.
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6. CONCLUSION

In this paper, a thorough quantitative performance evaluation has been presented for
distribution-based image dissimilarity measures. As seen from theresult section, thereisno
measure with best overall performance, but the selection rather depends on the specific task.
While marginal histograms and aggregate measures are best for large feature spaces and
small samples, multivariate histograms perform very well for large sample sizes. Multivari-
ate histograms are especialy effective if the number of classes to be distinguished is small
or the binning can be efficiently adapted to the distribution. As aconsequence, multivariate
histograms performed best for color classification and color retrieval aswell astexture seg-
mentation. If disk spaceis an important issue, the EMD is especially attractive asit allows
superior classification and retrieval performance with amuch more compact representation.

As afina reminder, the reader should interpret the absolute performance numbers pre-
sented in this work with care, since they are highly data dependent. In contrast, most of
the conclusion drawn about relative performance of measures have an underlying statistical
explanation and are thus more likely to generalize to new problem instances.
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