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This paper empirically compares nine families of image dissimilarity measures that
are based on distributions of color and texture features summarizing over 1000 CPU
hours of computational experiments. Ground truth is collected via a novel random
sampling scheme for color, and by an image partitioning method for texture. Quan-
titative performance evaluations are given for classification, image retrieval, and
segmentation tasks, and for a wide variety of dissimilarity measure parameters. It
is demonstrated how the selection of a measure, based on large scale evaluation,
substantially improves the quality of classification, retrieval, and unsupervised seg-
mentation of color and texture images. c© 2001 Elsevier Science (USA)

1. INTRODUCTION

Measuring the dissimilarity between images and parts of images is of central importance
for low-level computer vision. The following vision tasks directly rely on some notion of
image dissimilarity:

• In classification [13, 16, 19, 22], a new image sample has to be assigned to the most
similar of a given number of classes. A set of labeled training examples is available. Super-
vised segmentation, i.e., the assignment of image regions to predefined classes is also a
classification task.

• In image retrieval [1, 9, 10, 18, 23, 24, 27, 30, 33] the user may search a large collection
of images for pictures that are similar to a query image. The search is based on perceptual
similarities of the attributes color, texture, shape, and composition. Image annotation is a
special case, where a prototypical image region is interactively specified and all parts of
the identical texture class in the image must be labeled. Image annotation techniques are of
central importance in applications like map generation from SAR images where completely
unsupervised methods often fail.
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• In unsupervised segmentation [11, 14, 15, 17, 29] an input image is divided into
parts that are homogeneous according to some perceptual attribute. No predefined attribute
classes are available in this case. In this context, edge detection can be considered as a
special segmentation technique aiming at precise boundary localization [2, 31].

In recent years, dissimilarity measures, based on empirical estimates of the distribu-
tion of feature, have been developed for classification [22], image retrieval [9, 27, 30,
33], unsupervised segmentation [11, 14], and edge detection [31]. Preliminary bench-
mark studies have confirmed that distribution–based dissimilarity measures exhibit ex-
cellent performance in image retrieval [18, 27], in unsupervised texture segmentation
[14], and in conjunction with a k–nearest-neighbor classifier, in color- or texture-based
object recognition [22, 33]. However, most of these empirical evaluations provide only
incomplete and partial information. They either pit one favorite dissimilarity measure
against a small number of others, or they provide merely anecdotal evidence, or they
only expose a small portion of the space of the parameters that the various dissimilar-
ity measures depend on. Some benchmark studies [18, 27] are more systematic but ap-
ply to generic measures and do not elucidate strengths and weaknesses of the various
dissimilarity measures for the specific tasks of classification, retrieval, or unsupervised
segmentation.

Classification fundamentally differs from the other two applications since with the re-
striction to a set of known classes the similarity relationship between objects and classes
can be inferred from the training data. On the other hand, unsupervised segmentation and
image retrieval are concerned with the weaker notion of image proximity, based on a generic
(not class-specific) similarity measure. The definition of a similarity measure is based on
three design decisions.

1. A feature space representation has to be chosen. For color images, the color vector
provides a simple feature vector. For texture, it should characterize the texture content in a
neighborhood of a pixel position.

2. The (local) distribution of feature values is estimated. Here, a histogram representation
is chosen as a suitable nonparametric estimate of the feature distribution.

3. A measure to compare histograms must be selected, which properly assesses the
difference in the represented distributions. Several possible choices are examined in detail.

In this paper, we report on the results of a systematic comparison of nine different families
of dissimilarity measures for color and texture. The plots summarize over 1000 hours of
CPU time, spent in an exhaustive exploration of a rather large space of parameter settings.

First, in Sections 2 and 3 we review and categorize distribution-based dissimilarity mea-
sures, discussing strengths and limitations of each with respect to the different vision tasks
mentioned above.

Second, in Section 4 we propose a methodology for the quantitative comparison of
color and texture dissimilarity measures. A major contribution here is a statistically sound
procedure for the establishment of ground truth, against which the various dissimilarity
measures can be compared. This section also explains the principles we adhered to in order
to enforce fairness in our comparisons.

Finally, Section 5 provides quantitative comparison results as a function of several pa-
rameters such as number of histogram bins, query detail, size of the response to a query, and
dimensionality of the feature space. Comparisons are tailored to the specific requirements
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of classification, retrieval, and segmentation. The results are interpreted in order to explain
which measure works best for which task. As summarized in the concluding Section 6,
there are no winners or losers, but rather different tools for different tasks.

2. IMAGE REPRESENTATION

In this section, we describe the color and texture feature spaces that we use in this paper
and the representations that we use for the resulting distributions in these spaces.

2.1. Color

Human color perception is based on the incidence of visible light (with wavelengths
in the 400 to 700 nm range) upon the retina. Since there are three types of color photo-
receptor cone cells in the retina, each with a different spectral response curve, all colors
can be completely described by three numbers, corresponding to the outputs of the cone
cells. In 1931, the Commission Internationale de l’Éclairage (CIE) adopted standard curves
for the color photo-receptor cone cells of a hypothetical standard observer, and defined the
CIE XYZ tristimulus values, where all visible colors can be represented using only positive
values of X, Y and Z .

Besides the CIE XYZ, other color spaces are used to specify, create and visualize color
information (see [35] for more information about color spaces). For instance, the popular
RGB color space, as used by television displays, can be visualized as a cube with red, green
and blue axes. Different applications have different needs which can be handled better
using different color spaces. For our needs it is important to be able to measure differences
between colors in a way that matches perceptual similarity as good as possible. This task
is simplified by the use of perceptually uniform color spaces. A color space is perceptually
uniform if a small change of a color will produce the same change in perception anywhere
in the color space. In this paper we use the L∗a∗b∗ (CIE Lab) color space which was
designed such that the perceived differences between single, nearby colors correspond to
the Euclidean distance of the color coordinates.

The (nonlinear) conversions from RGB to CIE Lab are given by:1
 X

Y
Z


 =


0.412453 0.357580 0.180423

0.212671 0.715160 0.072169
0.019334 0.119193 0.950227




 R

G
B




L∗ =
{

116 (Y/Yn)1/3 − 16 if Y/Yn > 0.008856
903.3(Y/Yn) otherwise

,

a∗ = 500( f (X/Xn) − f (Y/Yn)),

b∗ = 200( f (Y/Yn) − f (Z/Zn)),

where

f (t) =
{

t1/3 if Y/Yn > 0.008856
7.787t + 16/116 otherwise

.

1 Following ITU-R Recommendation BT.709, we use D65 as the reference white point so that [Xn Yn Zn] =
[0.95045 1 1.088754] (see [26]).
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2.2. Texture

Over the past decades numerous approaches for the representation of textured images
have been proposed ranging from the means and variances of a filter bank output [8, 15],
wavelet coefficients [25], wave-packets [16], fractal dimension [3], or parameters of an
explicit Markov random field model [5, 19]. Recent comparative studies on this subject
can be found in [7, 21, 22, 25]. It should be noted though that in most approaches it can
be well distinguished between image representation, i.e., the extraction of a pixel-wise
descriptor representing the local texture content and the definition of a similarity measure.
As a consequence, most textural features can be incorporated into the proposed distribution-
based scheme to define image similarity.

While color is a purely point-wise property of images, texture involves some notion of
spatial extent: a single point has no texture. If texture is defined in the frequency domain,
the texture information of a point in the image is carried by the frequency content in a local
neighborhood. Gabor filters are often used for texture analysis and have been shown to
exhibit excellent discrimination properties over a broad range of textures [14, 15, 18]. Let
u ∈ IR2 denote the position in the image or, if discretized, a pixel in the image. Gabor filters
are defined by

Gσ,f(u) = 1

2πσ 2
exp(−ut u/2σ 2) exp(if t u), u, f ∈ IR2, (1)

where σ is a localization parameter typically chosen proportionally to the wavelength or
scale 1

‖f‖ of the filter. In keeping with most of the literature on texture, the phase information
is ignored by taking only the magnitude of the Gabor responses obtained by convolution
with the input image X

xr
u = ∥∥(X ∗ Gσr ,fr

)
(u)
∥∥, (2)

where fr encodes the scale and the orientation of the r -th filter. Applying a dictionary of
Gabor filters results in a vector xu = (xr

u) of responses or feature channels for every site in
the image, where the number of entries equals the number of scales times the number of
orientations that are used.

In this paper we used the family of Gabor filter derived in [18]. Dictionaries with 4, 6,
and 8 different orientations over 3, 4, and 5 different scales, respectively, are employed,
leading to filter banks of 12, 24, and 40 filters.

2.3. Distribution of Features

Color and texture descriptors vary substantially over an image or image part,2 both be-
cause of inherent variations in surface appearance and as a result of changes in illumination,
shading, shadowing, foreshortening, etc. Thus, the appearance of a region is best described
by the distribution of features, rather than by individual feature vectors. Histograms can
be used as nonparametric estimators of empirical feature distributions. However, for high-
dimensional feature spaces regular binning often results in poor performance: coarse binning

2 In the following, we restrict the notation to complete images X = (xu) for convenience. However, the adaptation
to image regions and small image patches as needed for supervised and unsupervised segmentation as well as
annotation and edge detection is straightforward.



DISSIMILARITY MEASURES 29

dulls resolving power, while fine binning leads to large fluctuations due to statistically in-
significant sample sizes for most bins. A partial solution is offered by adaptive binning,
whereby the histogram bins are adapted to the distribution [22, 28, 30]. In the texture
segmentation context adaptive bins have recently been popularized as a computational op-
erationalization of Julesz’ textons [17]. The binning is induced by a set of prototypes {ci }
and is given by the corresponding Voronoi tessellation. Adaptive histograms are formally
defined by

f (i ; X ) =
∣∣∣{u : i = arg min

j

∥∥∥xu − c j

∥∥∥}∣∣∣. (3)

Here xu denotes the feature vector at image site u and | · | denotes the size of a set. The
histogram entry f (i ; X ) corresponds to the number of image pixels in bin i . A suitable
set of prototypes can be determined by a vector quantization procedure, e.g., the K -means
algorithm used in this paper. Usually, a common set of prototypes is used for a collection of
images where the prototypes are computed from the combined distribution over all images.
However, sometimes it is useful to compute the adaptive binning separately for each image.
We refer to this case as individual binning.

For small sample sizes it may be better to estimate only the marginal histograms. While
information about the joint occurrence of feature coefficients in different channels is lost,
bin contents in the marginals may be significant where those in the full distribution may be
too sparse. Formally, the marginal histograms of the coefficients in feature channel r are
given by

f r (i ; X ) = ∣∣{u : tr
i−1 < xr

u ≤ tr
i

}∣∣. (4)

Here, bin i is defined as the feature interval (tr
i−1, tr

i ] of channel r where the boundaries
of the interval can be regular or can be determined by adaptive binning. The cumulative
histogram for marginal histograms is defined as

Fr (i ; X ) = ∣∣{u : xr
u ≤ tr

i

}∣∣. (5)

3. DISSIMILARITY MEASURES

In the following, D(X, Y ) denotes a dissimilarity measure between the images X and
Y . A superscript Dr (X, Y ) indicates that the respective measure is applicable only to the
marginal distributions along dimension (channel) r . The dissimilarity values obtained for
single feature channels must be combined into a joint overall dissimilarity value. In [27]
the Minkowski norms D(X, Y ) =∑r (Dr (X, Y ))p were investigated, including the limiting
case of the maximum norm (p = ∞) utilized in [11]. Based on their results p = 1 is used
in the sequel.

3.1. Distance Measures for Histograms

We distinguish the following four categories of dissimilarity measures:

Heuristic histogram distances. A variety of heuristic histogram distances has been
proposed mostly in the context of image retrieval:
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• The Minkowski-form distance Lp is defined by

D(X, Y ) =
(∑

i

| f (i ; X ) − f (i ; Y )|p

)1/p

. (6)

Here, we chose 1 ≤ p ≤ ∞ to ensure metric properties. For example, the L1 distance has
been proposed for computing the dissimilarity scores between color images [33], and the
L∞ norm was used to measure texture dissimilarity [34]. L1 computes the sum of abso-
lute distances while L∞ measures the maximal difference. Other values of p compromise
between these two extremes. Histogram Intersection (HI) as proposed in [33] provides a
generalization of L1 to deal with partial matches. Basically, whenever the histograms are
of equal size, HI and L1 are identical, so we treat them as the same category in the sequel.

• The Weighted-Mean-Variance (WMV) has been proposed in [18]. For empirical means
µr (X ), µr (Y ) and standard deviations σr (X ), σr (Y ) this distance is defined by

Dr (X, Y ) = |µr (X ) − µr (Y )|
|σ (µr )| + |σr (X ) − σr (Y )|

|σ (σr )| , (7)

where σ (·) denotes an estimate of the standard deviation of the respective entity. In [18] it
is shown that for texture-based image retrieval, this measure based on a Gabor filter image
representation has outperformed several parametric models.

Nonparametric test statistics. Nonparametric test statistics provide a sound probabilistic
procedure for testing the hypothesis that two empirical distributions have been generated
from the same underlying true distribution.

• The Kolmogorov–Smirnov distance (KS) was originally proposed in [11] for image
segmentation. It is defined as the maximal discrepancy between the cumulative distributions

Dr (X, Y ) = max
i

|Fr (i ; X ) − Fr (i ; Y )| (8)

and has the desirable property to be invariant to arbitrary monotonic feature transformations.
However, it is defined only for one dimension.

• A statistic of the Cramer/von Mises type (CvM) is defined as the squared Euclidean
distance between the distributions,

Dr (X, Y ) =
∑

i

(Fr (i ; X ) − Fr (i ; Y ))2. (9)

Similarly to KS, it is defined only for one dimension.
• The χ2-statistic proposed in [27] for segmentation and image retrieval is given by

D(X, Y ) =
∑

i

( f (i ; X ) − f̂ (i))2

f̂ (i)
, (10)

where f̂ (i) = [ f (i ; X ) + f (i ; Y )]/2 is the mean histogram.
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Information-theory divergences. Information-theoretically motivated divergences pro-
vide an interesting alternative. Here we examine two special cases:

• The Kullback–Leibler divergence (KL) suggested in [22] as an image dissimilarity
measure is defined by

D(X, Y ) =
∑

i

f (i ; X ) log
f (i ; X )

f (i ; Y )
, (11)

and measures how inefficient on average it would be to code one histogram using the other
as the true distribution for coding. The KL-divergence becomes infinite if f (i ; Y ) does not
dominate f (i ; X ).

• The Jeffrey-divergence (JD) is defined by

D(X, Y ) =
∑

i

f (i ; X ) log
f (i ; X )

f̂ (i)
+ f (i ; Y ) log

f (i ; Y )

f̂ (i)
.

In contrast to the KL-divergence, JD is symmetric and numerically stable when comparing
two empirical distributions. JD is sometimes referred to as Jensen–Shannon divergence.

Ground distance measures. A ground distance is defined as a distance between individ-
ual feature vectors in the underlying feature space. Incorporating this additional information
has the potential for dissimilarity measures with improved performance. More formally, the
ground distance gi j between bins i and j is defined in terms of the distance between the
associated centroids ci and c j in the underlying feature space. To some extent, the notion
of ground distance is used by measures like the Kolmogorov–Smirnov distance and the
statistic of the Cramer/von Mises type, which are based on the cumulative histograms and
therefore take into account the relative location of the feature vectors. However, these mea-
sures are defined only in one dimension and cannot exploit the ground distance in the full
feature space.

• The Quadratic Form (QF) [12] provides a heuristic approach,

D(X, Y ) =
√

(fX − fY )T A(fX − fY ), (12)

where fX and fY are vectors that list all the entries in f (i ; X ) and f (i ; Y ) respectively. We
refer to [20] for more details including an efficient implementation. Cross-bin information
is incorporated via a similarity matrix A = (ai j ) where ai j denotes the similarity between
bins ci and c j .

• The Earth Movers Distance (EMD) [30] is based on the solution of a transportation
problem which is a linear optimization problem. If the cost for moving a single feature unit
in the feature space is defined based on the ground distance, then the distance between two
distributions is given as the minimal cost to transform one distribution to the other, where
the total cost is the sum of the costs needed to move the individual features.

D(X, Y ) =
∑

i, j gi j di j∑
i, j gi j

, (13)
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where di j denotes the dissimilarity between bins i and j , and gi j ≥ 0 is the optimal flow
between the two distributions such that the total cost

∑
i, j gi j di j is minimized, subject to

the following constraints:

∑
i

gi j ≤ f ( j ; Y ),
∑

j

gi j ≤ f (i ; X )

(14)∑
i, j

gi j = min( f ( j ; Y ), f (i ; X )),

for all i and j . The denominator in (13) is a normalization factor that allows matching parts
of distributions that have different total mass. A key advantage of the EMD is that each
image may be represented by an individual (possibly with different number of bins) binning
that is adapted to its specific distribution.

3.2. Properties of Histogram Distances

Table 1 compares the properties of the different measures. WMV is a parametric measure
relying on the means and variances of the marginal distributions. KS and CvM are defined
only for cumulative distributions and therefore can be used only with the marginal distri-
butions, while the others are applicable to multidimensional histograms. The EMD has the
additional advantage to be applicable to histograms with individual binning.

The validity of the triangle inequality is another important property which distinguishes
different measures. The triangle inequality entails lower bounds which can be often exploited
to substantially alleviate the computational burden in retrieval tasks [4]. For χ2, KL and
JD the triangle inequality does not hold, for the QF it only holds for specific families of
its ground distance, and for the EMD it only holds if the ground distance is metric. All the
evaluated measures are symmetric except the KL divergence.

A useful feature for image retrieval is the ability to obtain partial matches, i.e., to compute
the dissimilarity score only with respect to the most similar image part. Only the HI and the
EMD directly enable partial matches. The ability of partial matching is of minor importance
for the other applications.

Computational complexity is an important consideration in many applications. For classi-
fication and retrieval applications, it is important to differentiate between online and offline
complexity. Especially for the WMV the standard deviations can be computed in advance

TABLE 1

Characteristics and Advantages of the Different Distribution-Based Similarity Measures

Lp WMV KS/CvM χ 2 KL JD QF EMD

Symmetrical + + + + − + + +
Triangle inequality + + + − − − + +
Comp. complexity medium low medium medium medium medium high high
Ground distance − − + − − − + +
Multivariate + − − + + + + +
Individual binning − + − − − − − +
Partial matches − − − − − − − +
Nonparametric + − + + + + + +
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and the similarity scores for a new query can be evaluated efficiently. In contrast to all other
advantages, the computational complexity of the EMD is the highest among the evaluated
measures since for each dissimilarity score it is necessary to solve a combinatorial opti-
mization problem. However, while using the EMD on large histograms is prohibitive for
certain applications, its ability to represent different images by a different binning often
enable good results even with a small number of bins, and consequently less computation.
In the experiments, the number of bins used for the EMD has been limited to 32 bins, while
for the other dissimilarity measures up to 256 bins have been used. Still, the computational
complexity of the EMD has turned out to be prohibitive for texture segmentation.

4. BENCHMARK METHODOLOGY

Any systematic comparison of dissimilarity measures should be conform at least to the
following guidelines:

1. A meaningful quality measure must be defined. Different tasks usually entail different
quality measures. The subdivision into classification, retrieval, and segmentation makes it
possible to define general-purpose quality criteria for each task. The presented results may
thus serve as a useful guide in many practical situations.

2. Performance comparisons should account for the variety of parameters that can affect
the behavior of each measure. These parameters include the size of the images, queries
and statistical samples; the number of neighbors in a k-nearest-neighbor classifier and
the number of bins in a histogram; the shape of the bins and their detailed definition;
and, for texture, the dimensionality of feature space. A fair comparison in the face of this
variability can be achieved by giving every measure the best possible chance to perform
well. However, it has to be emphasized that multiple free algorithmic parameters have to be
considered as a deficit of a method, since each additional parameter value must be estimated
from experimental data, e.g., by cross-validation techniques which may cause tremendous
experimental effort. Thus, the degrees of freedom is an important factor for choosing an
appropriate method.

3. Processing steps that affect performance independently ought to be evaluated sep-
arately in order to both sharpen insight and reduce complexity. For instance the effect
of different image representations can be understood separately from those of different
dissimilarity measures. Also, for segmentation, the grouping procedure can be evaluated
separately [14].

4. Ground truth should be available. This is a set of data for which the correct solution
for a particular problem is known. Collecting ground truth is arguably the hardest problem
in benchmarking, because the data should represent a broad range of possible applications,
the “correct solution” ought to be uncontroversial, and the ground-truth data set should be
large enough to allow a statistically significant performance evaluation. In the following,
we summarize our choice of ground truth for color and texture.

4.1. Color

Defining ground truth to measure color similarity over a set of color images is difficult.
Our approach was to create disjoint sets of randomly sampled pixels from an image and to
consider these sets as belonging to the same class. While for large sets of pixels within a
class the color distributions of their pixels will be very similar, for small sets the variations
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are larger, mimicking the situation in image retrieval where images of moderate similarity
have to be identified. From a data base of 20,000 color images comprising the Corel Stock
Photo Library, we randomly chose 94 images. This is the same number of images as in the
texture case, so that we can compare the results. We defined set sizes of 4, 8, 16, 32, 64
pixels, and for each image we obtained 16 disjoint sets of random samples in all sample
sizes, resulting in a ground truth data set of 1504 samples with 94 different classes, one
class per image. For the QF and the EMD that employ a ground distance, we use

ai j = exp(−α‖ci − c j‖) and di j = 1 − ai j (15)

as the measure of similarity and dissimilarity of bins i and j , where ‖ci − c j‖ is the
L2 distance between the bin centers in the CIE L∗a∗b∗ color space (see Section 2). The
exponential map limits the effect of large distances that otherwise dominate the result. Here
we set α to half the standard deviation of all the feature values in the data base. This ground
distance makes closeness a relative notion, agrees with results from psychophysics [32],
and was found empirically to give good results.

4.2. Texture

In the benchmark study we concentrated on textured images from the Brodatz album
as they are widely accepted within the texture research community and provide a joint
database which is commonly available. To define ground truth each image is considered as
a single, separate class. This is questionable in a few cases, which are circumvented by a
preselection of images. We a priori selected 94 Brodatz textures by visual inspection. We
excluded the textures d25, d30–d31, d39–d45, d48, d59, d61, d88–d89, d91, d94, d97 due
to missing micropattern properties. That is, those textures are excluded where the texture
property is lost when considering small image blocks. From each of the Brodatz images
we extracted sets of 16 random, nonoverlapping blocks sizes 82, 162, . . . , 2562 pixels.3 For
each sample size this resulted in a ground truth data set of 1504 samples with 94 different
classes, just as for color. For the QF and the EMD we again employ (15), with the only
difference that ‖ci − c j‖ is defined as the L1 distance between the Gabor responses. Unlike
with color where the L2 distance has a solid psychophysical justification, for texture it is
not clear how to relate the different (normalized) channels, so we simply sum them.

4.3. Performance Evaluation

Next, we describe the quality measures which we used for classification, retrieval, and
segmentation. For classification, a k-NN classifier is used, with different values for k. As
a performance measure we use the average misclassification rate in percent estimated by a
leave-one-out estimation procedure.

For image retrieval, performance is usually measured by precision, which is the number
of relevant images retrieved relative to the total number of relevant images in the data base,
and recall, which is the number of relevant images retrieved, relative to the total number
of retrieved images. Since our goal is to compare the different methods and not measure
performance of a retrieval system, we only plot the precision vs the number of retrieved
images.

3 For a sample size of 2562 we only extracted 4 samples per class due to the limited size of the original image.
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For unsupervised texture segmentation we followed the approach of [14] and used a
database of random mixtures (5122 pixels each) containing 100 entities of five Brodatz
textures each (such as depicted in Fig. 8). Segmentations are computed on a regular subgrid
of size 1282 by assigning each site to one out of K segments. For each site, a local histogram is
extracted to estimate the local feature distribution. We compute marginal histograms which
are proportional to the Gabor filter wavelength [15]. For the multivariate histograms, the
binning has been adapted to the specific image. Each local histogram is then compared with
80 randomly selected image sites using the dissimilarity measure. To compute an optimal
segmentation we implemented the approach of [14] which groups image sites with a high
average similarity to obtain a segmentation. As a performance measure we then report the
median classification error evaluated over 100 images, where each site is labeled according
to the majority rule of corresponding pixels. In addition, we report the percentage of images
with more than 20% errors. We consider these as structural segmentation errors, in which
typically entire textures are misclassified.

5. RESULTS AND INTERPRETATION

5.1. Classification

The classification performance has been estimated in a leave-one-out procedure for all
combinations of the parameter k ∈ {1, 3, 5, 7} and the number of bins ∈ {4, 8, 16, 32, 64,

128, 256}.4 Only odd values are used for k to reduce the chances of ties. It can be shown
that the odd values dominate the even values [6, Section 5.6], i.e., a k-NN classifier with
odd k performs at least as good as the even (k + 1)-NN classifier in the limit of infinite
training data. In the texture case, we tried three different filter banks with 12, 24, and 40
filters. The experiments resulted in an enormous amount of information, computed in over
1000 CPU hours. Due to limitations in space, we only plot a few informative cuts from the
high-dimensional parameter space. The classification results are summarized in Fig. 1 for
the color case and Fig. 2 for the texture case. In the figures, we plot the classification error of
the dissimilarity measures as a function of the sample size both for the full distribution and
for the marginals cases. The results are further separated into two cases: small histograms
(using 8 bins), and large histograms (using 256 bins). An exception to these histogram sizes
is the EMD which uses individual adapted histograms that contain more information than
the regular global histograms (see Section 3). For the EMD we use 4 bins (instead of 8) for
the small histogram case, and 32 bins (instead of 256) for the large histogram.

The following main conclusions can be drawn from the results:

1. Two regimes can be distinguished based on the sample size.
For small sample sizes, the measures which are based on cumulative distributions (KS and

CvM) and which thus incorporate ground distance information perform well using marginal
distributions. The EMD performed exceptionally well with full distributions, even for the
hard case of small histograms where other measures performed poorly. This is explained by
the local binning that provides additional information, not available to the other measures.
For very small sample sizes the WMV measure performs best in the texture case. This is
explained by the fact that WMV only estimates the means and variances of the marginal

4 For the EMD, because of computational reasons and the additional information carried by the individual
binning, we limited the number of bins to a maximum of 32.
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FIG. 1. Classification results for the color data base for different sample sizes and different binning. For each
result, an optimal value k ∈ {1, 3, 5, 7} for the k–nearest neighbor classifier has chosen. To assess the statistical
significance of the results one should note that the standard deviation can be estimated by σ = √

e · (1 − e)/1504,
where e denotes the error probability. This yields standard deviations of 2.29, 0.77, 0.56, and 0.36% for an error
rate of 50, 10, 5, and 2%, respectively. The corresponding error bars have been omitted from the plot for increased
readability.

distributions. These aggregate measurements are less sensitive to sampling noise. The WMV
competes less satisfactorily on color since histograms can be more reliably estimated in this
case.
For large sample sizes (≥322), the classical χ2 test statistic and the divergence measures
perform best. Jeffrey’s divergence behaves more stably than the KL-divergence, as expected.
The χ2-statistic and JD yield nearly identical results in all experiments. We discarded JD
from some plots since the curves become visually indistinguishable. The L1 does best from
the class of heuristic measures. L2 and L∞ turned out to be consistently inferior in all
experiments and should thus not be considered as competitive measures.

2. For texture classification, marginal distributions do better than the multidimensional
distributions except for very large sample sizes (2562). This is explained by the fact that
the binning is not well adapted to the data, since it has to be fixed for all sample images
over all 94 texture classes. The EMD with its local adaptation does much better in this
case. For color, due to the lower dimensionality multivariate adaptive histograms perform
better than marginals with the EMD performing best, since histograms can be more reliably
estimated even for small sample sizes. We conclude that marginal distributions or well-
adapted measures should be used for large feature spaces.

3. More bins help in the multivariate case. The maximally allowed number of bins
performs best for multidimensional histograms as shown in Fig. 3. Spending even more
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FIG. 2. Classification results for texture classification for different sample sizes and different binning. In each
case, the best possible k and the best number of filters has been chosen. The slight deterioration in quality for the
sample size of 2562 is explained by the fact that only 4 samples instead of 16 have been available for each class.
Concerning the statistical significance of the results, see the discussion in the caption of Fig. 1.

bins might result in an increased performance, up to a point where close features fall in
separate bins, but also results in a prohibitive run-time behavior. Only for the EMD, the
local adaptation allows to represent the distribution with a small number of bins which is
an advantage if storage complexity is an issue.

For marginal histograms, the binning details often play a negligible role as seen from
Fig. 3. However, for small sample sizes as in the color experiments in Fig. 3 too many
bins may result in a severe degradation of classification performance. Thus in the following
experiments we used 16 bins for marginal histograms and 256 bins for full histograms. It is
interesting to note that cumulative histograms with many bins do not suffer from overfitting
for small sample sizes, see again Fig. 3. This reflects the fact that it is much easier to
estimate a distribution function than a density [6]. In fact, cumulative distributions could
be efficiently and robustly estimated with an infinite number of bins.

4. The optimal number k used for the k-NN classifier depends on the noise level of
the data. In the small sample regime with a high estimation variance a large value for
k is helpful, while for large histogram sample sizes the choice of k plays a negligible
role, see Fig. 4. Note that only 15 histograms for each class have been in the data base.
For a larger number of samples per class, one would expect a larger number k to work
better [6].

5. For the texture case, usually 12 Gabor filters have been sufficient and even outper-
form a larger number of filters as seen from Fig. 5. However, for very small sample sizes
additional filters implicitly provide more samples which results in a better performance. We
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FIG. 3. Classification results depending on the number of bins used. In the experiments a K = 1 NN classifier
has been used. For the color experiments, a sample size of 16 was used. For the texture experiments, a sample size
of 642 and 12 filters were employed.

conclude that a small number of features is sufficient to distinguish a large number of texture
classes.

5.2. Image Retrieval

As we saw in the results for classification, the EMD, WMV, CvM, and KS usually per-
formed well for the small sample sizes, while JD, χ2, and KL usually performed better for

FIG. 4. Classification results depending on K of the K -NN classifier. In the experiments 16 bins have been used
with the marginal histograms and 256 bins have been used full histograms. With the EMD, 16/32 locally adapted
bins have been employed. For the color experiments, we used a sample size of 16. For the texture experiments, a
sample size of 642 and 12 filters were used.
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FIG. 5. Texture classification results depending on the number of filters. In the experiments, a sample size of
642 and 256 bins were used.

the larger sample sizes. This is confirmed by the retrieval results depicted in Fig. 6. Exper-
iments with small sample size are closer to image retrieval, since they mimic the situation
where similar images can have large variability, but should still be retrieved. Therefore, for
better recall of a large number of similar images (fewer false negatives), the first class of
measures performs better, while for better precision with a few, very similar images (fewer
false positives), the second class of measures will probably perform better in real image
retrieval systems with a heterogeneous content.

Figure 7 shows an example for color-based image retrieval on a real data base of
20,000 images from the Corel Photo Collection. The color content of the leftmost
image of a red car was used as the query, and the eight images with the most simi-
lar color contents were returned and displayed in order of increasing distance for dif-
ferent dissimilarity measures. Every image in the data base was represented by a
256-bin multivariate adaptive histogram. Note that this experiment solely meant to illus-
trate the differences that can be observed using different dissimilarity measures for color.

FIG. 6. Precision curves in [%] for selected similarity measures. (left) Color image retrieval for a sample size
of 16; (right) textured image retrieval for a sample size of 82.
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FIG. 7. The eight closest images for each of the red car images in the first column. The queries were processed
by a color-based image retrieval system using different histogram dissimilarity measures.

It does not provide a full image retrieval system which should take image structure into
account.

5.3. Unsupervised Segmentation

A major technical advantage of image segmentation compared to the other applications
is the fact that the binning can be adapted specifically to the image at hand. This leads to an
increased accuracy in representing multidimensional distributions. Consequently, adaptive
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TABLE 2

Errors by Comparison with Ground Truth over 100 Ran-

domly Generated Images with K = 5 Textures, 5122 Pixels,

and 1282 Sites

Median 20% quantile

χ 2 full 6.6% 10%
JD full 6.8% 10%
L1 full 6.8% 9%
χ 2 marginal 8.1% 13%
JD marginal 8.1% 12%
L1 marginal 8.2% 12%
KS marginal 10.8% 20%
CvM marginal 10.9% 22%

multivariate binning significantly outperforms marginal histograms in the unsupervised
segmentation task. This is illustrated in Fig. 8 for an example image and confirmed by the
benchmark results on the database with 100 images presented in Table 2. χ2, JD, and L1

exhibit very similar performance both with marginal and multidimensional histograms. The
best performance was achieved by χ2 on adaptive multivariate histograms with a median
error of 6.6% as compared to 10.8% for the Kolmogorov–Smirnoff test, which was utilized
in [11]. Thus, employing the benchmark results to select a proper dissimilarity measure
may substantially improve the quality of unsupervised segmentation. For segmentation, the
EMD suffers from its high computational complexity and has, therefore, been excluded
from the experiments.

FIG. 8. Examples of segmentation results with K = 5 clusters for the different similarity measures under
consideration. Misclassified image sites are depicted in black.
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6. CONCLUSION

In this paper, a thorough quantitative performance evaluation has been presented for
distribution-based image dissimilarity measures. As seen from the result section, there is no
measure with best overall performance, but the selection rather depends on the specific task.
While marginal histograms and aggregate measures are best for large feature spaces and
small samples, multivariate histograms perform very well for large sample sizes. Multivari-
ate histograms are especially effective if the number of classes to be distinguished is small
or the binning can be efficiently adapted to the distribution. As a consequence, multivariate
histograms performed best for color classification and color retrieval as well as texture seg-
mentation. If disk space is an important issue, the EMD is especially attractive as it allows
superior classification and retrieval performance with a much more compact representation.

As a final reminder, the reader should interpret the absolute performance numbers pre-
sented in this work with care, since they are highly data dependent. In contrast, most of
the conclusion drawn about relative performance of measures have an underlying statistical
explanation and are thus more likely to generalize to new problem instances.
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