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Automatic Target Recognition by
Matching Oriented Edge Pixels

Clark F. Olson and Daniel P. Huttenlocher

Abstract—This paper describes techniques to perform efficient edge maps that can handle occlusion, image noise, and clutter
and accurate target recognition in difficult domains. In orderto  and that can search the space of possible object positions
accurately model small, irregularly shaped targets, the target ob- eficiantly through the use of intelligent search strategies that

jects and images are represented by their edge maps, with a local L
orientation associated with each edge pixel. Three-dimensional are able to rule out much of the search space with little work.

objects are modeled by a set of two-dimensional (2-D) views of ~One problem that edge matching techniques can have is that
the object. Translation, rotation, and scaling of the views are images with considerable clutter can lead to a significant rate

allowed to approximate full three-dimensional (3'D) motion of the Of false alarms Th|s problem can be reduced by CO”Slderlng

object. A version of the Hausdorff measure that incorporates both not onlv the location of each edae pixel but. in addition
location and orientation information is used to determine which ony . -age pixel bu, N
positions of each object model are reported as possible target tN€ir orientations when performing matching. Our analysis

locations. These positions are determined efficiently through the and experiments indicate that this greatly reduces the rate at
examination of a hierarchical cell decomposition of the trans- which false alarms are found. An additional benefit of this

formation space. This allows large volumes of the space to bejnformation is that it helps to prune the search space and thus
pruned quickly. Additional techniques are used to decrease the leads to improved running times

computation time required by the method when matching is L . .
performed against a catalog of object models. The probability We must have some decision process that determines which

that this measure will yield a false alarm and efficient methods positions of each object model are output as hypothetical
for estimating this probability at run time are considered in detail.  target locations. To this end, Section Il describes a modified
This inkformatiotn Ca‘; be Ltﬁggetg Ea;?sig(tjaionnatlhog\ilvrfﬁllsgleir?cl)?)rdmc:ﬁ)i%r Hausdorff measure that uses both the location and orientation
to ran m n . . . ..
;fa?se z;gm?.eFin%II)Xprgsults of the system recognizing objects i% of the model and image F"Xe's n determ'”'r_‘g how W(_a" a
infrared and intensity images are given. target model matches the image at each position. Section IlI
then describes an efficient search strategy for determining the
image locations that satisfy this modified Hausdorff measure
and are thus hypothetical target locations. Pruning techniques
T HIS PAPER considers methods to perform automatic tafat are implemented using a hierarchical cell decomposition
get recognition by representing target models and imaggsthe transformation space allow a large search space to be
as sets of oriented edge pixels and performing matching dRamined quickly without missing any hypotheses that satisfy
this domain. While the use of edge maps implies matchiRge matching measure. Additional techniques to reduce the
2-D models to the image, 3-D objects can be recognized B¥arch time when multiple target models are considered in the
representing each object as a set of 2-D views of the objeghme image are also discussed.
Explicitty modeling translation, rotation in the plane, and |, section IV, the probability that a false alarm will be
scaling of the object (i.e. similarity transformations), combine@ ,nq when using the new matching measure is discussed,
with considering the appearance of an object from the possiblgy a method to estimate this probability efficiently at run
viewing directio_ns, approximates the full, six-dimensional (§;me is given. This analysis allows the use of an adaptive
D), transformation space. , algorithm, where the matching threshold is set such that the
This representation provides a number of benefits. Edg4&%hapility of a false alarm is low. In very complex imagery,
are robust to changes in sensing conditions, and edge-baggd e the probability of a false alarm cannot be reduced to
techniques can be used with many imaging modalities. Thegma|| value without the risk of missing objects that we
use of the complete edge map to model targets rather than @oe, (4 find, this estimate can be used to rank the competing
proximating the target shape as straight edge segments allQWSiheses based on their likelihood of being a false alarm.
small, irregularly sh_aped tafgets to be modeled accurateglection V demonstrates the use of these techniques in infrared
Furthermore, matching techniques have been developed 5% intensity imagery. The accuracy with which we estimate
Manuscript received November 1, 1995; revised June 13, 1996. This wdhke probability of a false alarm is tested, and the performance
\;vr?ds ;;r:\lp;iréii |ig gg;tcgylzﬁsr';ﬁ#onndEFY?ggnct?23[2085%2204-93-0-005& these techniql_Jes is_ compared ggains_t a similar system that
C. F. Olson was with the Department of Computer Sc.ience, Cornéﬁ‘loes not use orientation information. Finally, a summary of
University, Ithaca, NY 14853 USA. He is now with the Jet Propulsiothe paper is given.
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described here. The interested reader can find overviewsnofm:
automatic target recognition from a variety of perspectives in _
[2], [3], [6], [9], and [22]. Alternative methods of using object By = {z | [l=]l < o}
edges or silhouettes to perform automatic target recognitionSimilarly, hy(M,I) < 6 and |M N (I & Es)| > K are
have been previously examined, for example, in [7], [20], anghuivalent, wherg - | denotes cardinality.
[21]. Portions of this work have been previously reported in One method of determining whether a match of sife
[13]-[15]. exists is to dilate the image pixels by Es and probe the
result at the location of each of the model pixelspih Each

Il. MATCHING ORIENTED EDGE PIXELS time a probe hits a pixel in the dilated image, a match for

pixel in the object model has been found. A count on the

This section first reviews the definition of the Hausdor umber of these matches is kept. If the count surpa&ses

measure and how a generalization of this measure can be %%‘,11 a match with a size of at leakt has been found at this
to decide which object model positions are good matches ﬁ8sition of the object model

an image. This generalization of the Hausdorff measure yieIdsWhen there is a combination of a small object model and

a method _for comparing edge maps that is robust_to _ObJ%CEomplex image, this measure can yield a significant number
occlusion, image noise, and clutter. A further generalization 8¥

the Hausdorff measure that can be applied to sets of orien
points is then described.

false alarms, particularly when the transformation space
ngarge [13]. This problem can be solved, in part, by using
orientation information in addition to location information in
determining the proximity between pixels in the transformed
A. The Hausdorff Measure object model and the image.

The directed Hausdorff measure frodd to I, where M
and I are point sets, is B. The Generalization to Oriented Points

h(M,T) = in [} — i The Hausdorff measure can be generalized to incorporate
’ —3,?2%}2}1 m-t oriented pixels by considering each edge pixel in both the

] o ) ) object model and the image to be a vectodRn:
where|| - || is any norm. This yields the maximum distance of

a point in setM from its nearest point in sdt In the context

of recognition, the Hausdorff measure is used to determined B Pz
the quality of a match between an object model and an image. P= Py
If M is the set of (transformed) object model pixels anis Po

the set of image edge pixels, the directed Hausdorff measwRere(p,., p,) is the location of the point, ang, is the local
determines the distance of the worst matching object pixel ¢gientation of the point (e.g., the direction of the gradient, edge
its closest image pixel. Of course, due to occlusion, it canngérmal, or tangent). Typically, we are concerned with edge
be assumed that each object pixel appears in the image. Pagts on a pixel grid, and the andy values thus fall into
partial Hausdorff measure [11] between these sets is thus oftigcrete sets. The orientations can be mapped into a discrete
used. It is given by set in a similar manner. Let us call a set of image points that
have been extended in this fashionaiented image edge map

1,, and similarly, let us call such an extended set of points in
the object model amriented model edge majy,,.

This determines the Hausdorff measure amongifhebject e now need a measure to determine how well these
pixels that are closest to image pixels. can be set to the griented edge maps match. Among pixels with the same ori-
minimum number of object pixels that are expected to be foulhtation, we would like the measure to reduce to the previous
in the image if the object model is present &r can be set Haysdorff measure. Furthermore, the previous measure should

such that the probability of a false alarm occurring is smalhe a lower bound on the new measure. One measure that fulfills
Since this measure does not require that all of the pixels in tfase conditions is

huc (M, I) = Ky min [fm — . (1)

(3

object model match the image closely, it is robust to partial e — i P
occlusion. Furthermore, noise can be withstood by accepting., (M, I) = max min max {H [m’” _ L’”} ,#}.
models for which this measure is nonzero, and this measure is meM el vy o

robust to clutter that may appear in the image since it measure3his has the same general form as the previous Hausdorff
only the quality of the match from the model to the image amieasure, but the distance between two points is now measured
not vice versa. by taking the maximum of the distances in translation and
Typically, we are interested in whether a match with arientation. In this measurey is a normalization factor that
size of at leastK exists with Hausdorff measure belowmakes the orientation values implicitly comparable with the
some threshold. It is useful to conceptualize this as a selfbcation values. In practice, this allows the specification of a
containment problem. Lef; @ S, denote the Minkowski sum maximum deviation in translation and in orientation for two
of setsS; and .S, (or dilation of S; by S5). The statement pixels to match, and thus, a count of the number of model
h(M,I) < é is equivalent toM C (I & F;s), whereF; is a pixels that match image pixels according to both conditions
disk of radiusé centered at the origin in the approprialg can be kept. The parametatsandé can be set arbitrarily to



OLSON AND HUTTENLOCHER: AUTOMATIC TARGET RECOGNITION BY MATCHING ORIENTED EDGE PIXELS 105

adjust the required proximities. A partial measure for orientadodel. This method is able to search an entire image efficiently

points that is robust to occlusion can also be formulated similand is able to guarantee that the best match (or all matches that

to (1). surpass some threshold) according to the chamfer measure are
Our system discretizes the orientations such #hat 1 found.

and uses thd.., norm. In this case, the measure for oriented Similar techniques have been developed to perform efficient

points simplifies to matching using the generalized Hausdorff measure [11], [12],
_ . [19], which is robust to partial occlusions of the object. First,
h(M,I) Ig?gﬁlglel}lﬂm—lﬂoo- the image is dilated byFs (as described in the previous

section), and the distance transform of this dilated image
is determined. If theKth largest probe into this distance

. transform s 0, then a match of size (at ledsthas been found.
Recent work [11]-{13], [17], [19] has shown that efficientyheryise, thekth largest probe yields the distance to the

methods can be formulated to search the space of possiigsest possible position of the object model that could produce
transformations of the model to find the position with thg aich of sizek’. We can thus rule out any transformation
minimum Hausdorff measure or all positions where the megy,; goes not move any object pixel more than this distance. To
sure is below some threshold. This section discusses how sygrgye efficiency, the transformation space is discretized, but
methods operate in general and how they can be extendeq@nsyre that no good matches are missed, this discretization is
oriented points. In addition, we describe techniques that afg. that adjacent transformations do not map any object pixel
used to reduce the running time of the system when there §gre than one pixel (Euclidean distance) apart in the image.
multiple object models that may appear in the image. Now, if d is the value of theK'th largest probe, we can rule

out at least those transformations with a city-block distance
A. Matching Edge Pixels (L, norm) less thani from the current transformation in the

Chamfer matching [1], [5] is an edge matching techniquéiscretized transformation space since such transformations are
that minimizes the sum of the distances from each obje@#aranteed to move each object pixel less tiigixels from
edge pixel to its closest image edge pixel over the spacetBe current location.
possible transformations. This technique is closely related to
minimizing the generalized Hausdorff measure, which instead ) )
minimizes theKth largest of these distances. Since the charft: USing Oriented Pixels
fer measure sums the distances over all of the object pixelsSince the oriented object and image pixels have three
it is not robust to occlusion. In the original formulation ofdegrees of freedom, a 3-D distance transform is now required.
chamfer matching, Barrowt al. [1] used a starting hypothesisBefore this can be computed, we must consider how rotations
and an optimization procedure to determine a position of tleé object models will be treated since such rotations change
model that is a local minimum with respect to the chamfeéhe orientations of the object pixels. If we wish to rule out
measure. This method requires a good starting hypothesisnemarby transformations that may change the orientations of
converge to the global minimum. object pixels, then this must be accounted for the distance

Borgefors [5] proposed a hierarchical method that examingansform, but this is problematic since the discretization of
an edge pyramid of the model and image. A number dfie rotations in the transformation space will, in general, be
initial positions are considered at some level of the pyramidery different from the discretization of the orientations of the
where a Gauss—Seidel optimization procedure is used to fimdige pixels. To avoid this problem, each rotation of an object
a local minima for each initial position. Poor local minimamodel is treated independently (essentially as a separate object
are rejected. The remaining positions are considered at thedel). This allows each orientation plane of the distance
next lower level of the pyramid, and the procedure is repeatednsform to be treated independently.
until local minima are found at the lowest level of the It must also be decided how the models will be rotated
pyramid. This technique performs a search of the image fand scaled to compare them to the image. If a CAD model
good local minima, but it still cannot guarantee that the beist available from which the edges of our targets can be
transformation is found. determined, these models can be rotated before performing the

Paglieroniet al.[16], [17] have considered methods to speeddge detection stage since different rotations of the model are
up the search over all possible transformations in chamfeeated as (essentially) separate models. On the other hand,
matching by probing a distance transform of the image Htthe original model consists only of a set of edge points,
the locations of the transformed object edge pixels. Théach point is simply rotated around the center of the model.
distance transform measures the distance of each pixel in Similarly, scaling of the model is performed by scaling each
image from an edge pixel and can be computed efficienghpint with respect to the center of the model.
using a two-pass algorithm [18], [4], [16]. If the sum of the It is now possible to use Hausdorff matching techniques
distance transform probes at each of the object pixels at sosmmilar to those for unoriented points to perform efficient
transformation is large enough, then we can rule out not omgcognition. This is accomplished by considering a hierarchical
this transformation but also many transformations close tell decomposition of the transformation space [12], [19]. The
it since we know that the close transformations will yield &ansformation space is first discretized as above and divided
similar distance transform value for each pixel in the objeaito a set of rectilinear cells on the discrete grid of trans-

I1l. SEARCH STRATEGY
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Fig. 1. Hierarchical clustering of the models is performed as the canonical positions of the models relative to each other are determined. Rowgigure s
an example of the hierarchy produced by these techniques for 12 model views. The full silhouettes are shown rather than the edge maps for visual purpose

formations. Since the orientations are treated independentBy, Considering Multiple Models

these cells have three dimensions: scale and translatian in When there are multiple object models that may appear in
andy. For each such cell, the d_iscrete_transformation that éssingle image, there are methods by which the search can be
closest to the center of the cell is considered. If the match Abde faster than examining each object model sequentially.

this transformation is poor enough that the entire cell can Bgiq section describes one such method. Note that these object
ruled out using the techniques described above, then the ce|liSqels need not come from separate objects; they may be
pruned. Otherwise, the cell is divided into subcells, and eachgfo nate views of the same object. ’

the subcells is considered recursively. If a cell is reached thatrq first step is to determine a canonical position for each

contains only one transformation, then the transformation is 4o with respect to the other models and to construct
tested explicitly. This search strategy corresponds to a dep%lhhierarchical representation of the model set. This step is

first t_ree_search of the cells in .the transformation space Wh‘:ﬁ@rformed off line, prior to recognition. For our multiple model
pruning is applied when possible. search strategy, it is desirable to maximize the number of

_TO process a single cell, the following steps are performe&xels between the edge maps of various models that overlap
First, a discrete transformation close to the center of the Cﬁ“their canonical position in both position and orientation

is chosen, and the maximum difference in the transformedryg ot rejative position between each pair of individual

location of a model pixel t_)etvv_een the center transformatiqﬂodels according to the chamfer measure [1] is determined
?_Ed qnybothe(; t;ar;)sforrr]n ation in fthi Ce(;'. must b,e C%mpmgf'sing search techniques similar those described above. The

nis 1S bounded by the sum of t € istance In the SCaIR,mfer measure sums the distances from each pixel in one
direction (by counting the number of discrete scales) betwef?ﬂage to their closest neighbors in the other. This measure
the transformations and the maximum of the distances im:thqs asymmetric since the chamfer measure from some model
andy directions since we use tie., norm in the image space. ; to anotherl/; is not necessarily the same as the reverse
The distance transform is then probed at the locations of (i€, .« \.e fromas: to M.. A symmetric version is used that

J i

model pixels after transforming them by the transformatiotccllkes the maximum of the two measures. This measure is used

at the center of th_e cell. If thecth Iargest_probe into the as a score indicating how well each pair of models match.
distance transform is greater than the maximum distance aNYhe method builds a tree of models using hierarchical

other transformation in the cell can move an object pixel fro'austering techniques [8]. At each step, the two closest models

its current position, then the entire cell can be pruned. Thé?e determined and clustered. This yields a canonical position

is determined simply by counting the number of probes thf”'otr these models with respect to each other and a new set
yield a greater value than the computed distance. Otherwig

DI . . . F'model points replacing the two previous models. The new
th_e ce_II is divided into either two subcells k_)y cutting at themodel" is then compared with the remaining models as above
m'dpo'f‘t Of the range of scales in the_ cell or into four SlJbCeIIgnd the process is repeated until all of the models belong to
by cqttlng n .bOth the;; andy translations t_Jased on whethera single hierarchically constructed model tree. At this point,
Fhe distance in scale is greater than the distance in tr"’ms‘l"’uf:ct%{l.’mnical positions for each model with respect to the others
in both x anq Y- . . ._have been computed, and a model hierarchy represented by a

The examination of a single cell in the transformatio

) . .Binary tree has been determined, where the leaves of the tree
space can be performed very quickly if some preprocessin

is performed. The index into the array storing the distana individual models, and the remaining nodes correspond to

. : ?ﬁe set of models below them in the tree. Fig. 1 shows a small
transform for each pixel of each model at every rotation a%xample

scale can be cqmputed iq advance. For a particular translationl,t should be noted that this procedure can be time consuming
these pointers into the distance transform array need only P ere are a large number of models since the clustering pro-

offset by a constant amount, and these indexes can be use . o1 . ; CT
directly to probe at the locations of pixels of the object mod edure reqU|reQ(M log M) time with & §|gn|f|cqnt con;tant
actor, whereM is the number of model views. Since this step
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For some pixel in the object chain, we will say that it results
in a hit if the transformed object pixel matches an image pixel
in both location and orientation according to our measure, and
otherwise, we will say that it results in a miss. If the object
chain is mapped to a sequence of such hits and misses, then
this yields a stochastic process.

Note that if some pixel in the object chain maps to a hit, this
means that locally, the object chain aligns with an image chain
very closely in both location and orientation. It is thus very
likely that the next pixel will also map to a hit since the chains
are expected to continue in the direction specified by the local
orientation with little change in this orientation. L&t be a
random variable describing whether tite object pixel is a
hit or a miss, and let; be the value taken by this variable for
a specific object chain. If the probability of being in each state
at each pixel is dependent only erand the previous state

PHS; = s(Si—1 = si—1) A ... A (So = so)]

S=hit S=miss = P1S; = s|Si_1 = s;-1]

Fig. 2. Markov chain that counts the number of object pixels that matd¢hen the process is said to b&larkov processlf, furthermore,
image pixels. the probability does not depend anthen the process is a

Markov chain To determine the probability distribution of the

is performed off line, it is usually acceptable to expend a Igf;mper of hits over the entire object model, the number of hits

of computation here. For very large model sets, there ar&g tar in our chainj must be counted explicitly. A separate
number of heuristics that can be used to reduce the time tQalis in the chain is thus used for each member of

this process requires.

For each node in the tree, the model points that overlap at {hit,miss} x {7 | 0< j <m}
the canonical positions of all of the models below the node in
the tree are stored, except for those that are stored at ancedti@re m is the number of object pixels. If we are only
of the node. The amount of repeated computation among fAterested in whether a false alarm of s¥eoccurs, a Markov
object models can now be reduced using the computed mogléin with2K + 1 states can be used (see Fig. 2). If the final
hierarchy. At each transformation considered, the hierarchysite of this chain is reached due to matches with random edge
searched starting at the top, and the probes are performedd@®ins in the image, then a false alarm has occurred.
the model points that are stored at each node. A count on thé-€t us number the states in the Markov chain as follows:
number of probes that yield a distance greater than the distance 0: (Si=h)A(j=0)

to the edge of the cell in the transformation space is kept for 1 (Si=m)A(j =0)
each node, and this count is propagated to the children of the 9. (Si=h)A(j=1)
node. If this count reaches a large enough value, the subtree of RE (Si=m)A(=1)

the model hierarchy for this cell of the transformation space :

and all of its subcells can be pruned. This is continued until : ]

all of the object models have been pruned or it is determined 2k—=2: (Si=h)A( = K —1)
that not all of the object models can be pruned, and thus, the 2k —1: (Si =m)A(j =K -1)
cell must be subdivided. If a cell that contains only a single 2k (2 K).

transformation cannot be pruned, then a hypothetical targetappreviate P(S; = h|Si_1 = m) as Pny,. We now have

location is output. the following state transition matrix for the Markov chain in
V. PROBABILITY OF A FALSE ALARM Fig. 2:

This section discusses the probability that a false alarm will | 0 0 0 0 0 0 07
occur when matching is performed using the matching measure Phm Lm0 0 0 0 0
described in Section II. Methods by which this probability can Pure Pn - 0 0 0 0 0
be estimated efficiently during run time and how this estimat% _ 0 U O 0 0 0
can be used to improve the performance of the recognition 0 0 Pun B, 0 0 0
system are examined in detail. :

0 0 0 0 Phrn Prnrn 0
A. A Simple Model for Matching Oriented Pixels L 0 0 0 0 Pnp Pop 11

Let us consider matching a single connected chain ofLet py be a vector containing the probability of the chain
oriented object pixels to the image at some specified locatiatarting in each state. The probability distribution among the
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Fig. 3. Automatic target recognition example. (a) FLIR image after histogram equalization. (b) Edges found in the image. (c) Smoothed edges of a tank
model. (d) Detected position of the tank. (e) False alarm.

states after examining the entire object chain is Furthermore, not all hits should be treated the same. In the
Hausdorff measure, an image pixel may match more than one
Pre =T pg. pixel in an object chain since the image is dilated prior to

matching. This causes an effect such that after a pixel in the

The last element gf,, is the probability that a false alarm c)fobject chain first hits a pixel in the oriented image edge map,

size K will occur at this position of the model. The probabilitythe following pixels in the object chain are likely to hit the

that a false alarm of any other siz¢ < K will occur can be S&me image pixel, especially if there is no orientation change

determined by summing the appropriate elements,of between the object pixels. This effect dies off after a few
pixels, but it means that the probability of an object pixel

B. An Accurate Model for Matching resulting in a hit is not dependent on only the previous state. A

To model the matching process accurately, it is not correct%"rkov process can still be used if the necessary_information
treat the state transition probabilities as independent of whithéncoded in the states of the process. Whes 1 is used
pixel in the chain is examined. Consider the probability of @vhich is sufficient for most applications), the following states
hit following another hit for two cases. In the first case, théan be used:
two object pixels have the same orientation and lie along thes m: The object pixel did not hit an image pixel.
line perpendicular to the gradient. In the second case, there n: The object pixel hit a new pixel in the oriented image
is a significant change in the orientation and/or the segment edge map.
between the pixels is not perpendicular to the gradient. Thes o: The object pixel hit the same pixel in the oriented
first case has a significantly higher probability of the second image edge map as the previous object pixel.
pixel being a hit given that the first pixel was a hit since the « p: The object pixel hit the same pixel in the oriented
chain of image pixels is expected to continue in the direction image edge map as the previous two object pixels.
perpendicular to the gradient with approximately the same; js possible for an object pixel to hit both a new pixel
gradient direction. _ _ ~and an old pixel. In this case, statetakes precedence. To

This means that the stochastic process of pixel hits agdiermine the probability distribution of the number of hits,

misses is not a Markov chain, but it is still a Markov procesg; \1arkov process that consists of the cross product of these
Let 7; be the state transition matrix for thith object pixel in - gia105 with the count of the number of hits so far is used:
such a process. The state probability vegigris now given by . .

{m,n,0,pp x{j|0<j < K}

m—1
P = <H TZ> Po. (2) Experiments indicate that this model of the matching
i=0 process is sufficient to achieve accurate results in determining
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Fig. 4.
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Image sequence example. (a) Object model. (b) Part of the image frame from which the model was extracted. (c) Image frame in which we are

searching for the model. (d) Position of the model located using orientation information. No false alarms were found for this case. (e) Seviarahdalse a
that were found when orientation information was not used. These each yielded a higher score than the correct position of the model.

the probability of a false alarm at a single specified position of 1) Probabilities that are linear functions passing through

the object in the image if accurate estimates for the transition
probabilities are used.

C. State Transition Probabilities

The state transition probabilities must now be determined.
These probabilities will be different in locations of the image
that have different densities of edge pixels. Consider, for
example, the probability of hitting a new pixel following a
miss. The probability will be much higher if the window is
dense with edge pixels rather than having few edge pixels.
To model this, let us consider the window of the image that
the object model overlays at some position. This is simply
the rectangular subimage covered by the object model at this
position. Each of these windows in the image will enclose
some numbek! of image pixels. We call this the density of
the image window. The state transition probabilities are closely
approximated by linear functions of the number of edge pixels
present in the image window and belong to one of two classes:

the origin (i.e., Pr= k;d): The probability that an
object model pixel hits a new image pixel, when the
previous object model pixel did not hit a new pixel, is
approximated by such a linear function of the density of
image edge pixels in the image window. The following
state transition probabilities are thus modeled in this
manner:P,,,,(¢), P., (i) and F,,(¢). Note that each has
a different constant;.

2) Probabilities that are constant (i.e., Br ¢;): When

the previous object model pixel hit an image pixel, the
probability that the current object model pixel will hit
the same image pixel is essentially constant. In addition,
when the object model chain is following an image
chain (i.e., the previous object model pixel hit a new
image pixel), the probability that the object model chain
continues to follow the image chain is approximately
constant. The state transitions that are modeled in this
manner are thus’,, (i), Pro(7), and Py, (1).



110 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 1, JANUARY 1997

These probabilities are determined by sampling possibdéndows. Letd; be the number of image windows containing
positions of the object model and comparing the object modekdge pixels for0 < ¢ < W, whereW is the size of the
to the image at these positions. This is performed by examinimgndow in pixels. The probability of a false alarm in two image
the pixels of the object model chain, in order, and determiningindows containing the same number of image pixels is the
whether each object model pixel hits an image pixel or nsame in this estimation model. L& (¢) be the probability of
and, if so, whether the previous object model pixel(s) hit theefalse alarm of sizé{ in a window containing edge pixels.
same image pixel. In addition, for each case, the next stdtke probability of a false alarm is now given by

is recorded. The appropriate constant, givenchy=Pr(i) or -

ki = @ is then averaged over each of the sampled positions 1_ H(l — Pr(i))%. (3)
to estimate the correct value. =0

The remaining probabilities can be determined as a function

of these probabilities as follows: To estimate the probability of a false alarm when scaled

and rotated versions of the target models are allowed in

Pop(i) =1 = Ppo(t) — Ppp(t) the matching process, the discretization of the transformation
P (i) =1 — Pop(4) — Pop(t) space must be considered. Rotating and scaling the object
Pym(i) = 1 = Pyy(i) model does not move every pixel a uniform distance as

) translation does, but discrete rotations and scales can be
P (1) = 1 = Prun (4). considered such that two adjacent transformations move the
If the state ati = 0 is considered to ben, this will yield farthest moving object pixel by no more than one pixel in the
the correct result for the first pixel in the object chain (i.eimage (Euclidean distance), as in the search strategy. If these
i = 1). In this case, there are no previous object model pixdisinsformations are treated as being independent, an estimate
to compare against, and the probability of an object pixef the probability of a false alarm can be obtained over
resulting in a hit at random is desired. Similarly, if the objedliscretized space of similarity transformations by sampling
model consists of more than one chain of pixels, the statedger the possible translations, scales, and rotations of the
reset toom when a new chain is started. object model and following the above equations.
The overall steps in the estimation of the probability of a
D. Probability of a False Alarm Over a Set of Transformationalse alarm are as follows. First, possible locations of the object
géodel in the image are sampled to estimate the probabilities

Let us now consider the probability that there exists a fal the state transition matric function of the densit
alarm at any translation of the object model. As with the searth . . 'gs as afunction ot the density
é the image window. A histogram of the number of edge

strategy, only translations on the integer grid are consideréd. > ) . . . i
9y y gerg ixels the image windows is also determined using dynamic

While this may miss the optimal translation for our matchin . . -
measure, this can increase the size of the minimum HausddP9"amming. For each density, the probability that a false

measure over the space of possible translations by at @os?lar;m (tjizcurzs aé a V\;'inﬂog ‘iN'th tkéa: der;isrlr:ytlstsstlrrr\age%”liaty
when using thel., norm. computing (2). Equation (3) is used to estimate the probability

%f a false alarm occurring over the entire image. To improve

While the probability that a false alarm occurs at som eed of this proce e consider onlv everv 10th densit
translation is not independent of whether a false alarm occﬁ % SPe VIS process, w nsider only every ensity
ue in the histogram and perform interpolation to estimate

at a close translation, previous work [10] has indicated th g

approximating these events as independent yields accw1 %r:emilnln? c\j/ilufnsﬁ  of fal larm n also b timated
results. These events will thus be treated as if they are € expected numboer ot false alarms can aiso be estimated,

independent here, and the performance of the model will edeswed, as follows:

checked on real data to ensure that this assumption is realistic. w
We do not assume that a target model will always appear E(Np) = ZdiPK(i).
either brighter or darker than the background in an image, but i=0

we do assume that individual targets will be either entirely In addition, thea priori probability that any particular image

brighter or entirely darker than the background, althougfy,qow yields a false alarm can be estimated by examining

this restriction can be easily removed. This means that ea[ﬁlé result of (2) for the density of that image window
translation must be considered twice: once for the case when '

the target is brighter than the background and once for the c%s
when the target is darker since the orientation of the point i
these two cases will be shifted by If P (t) is the probability =~ Now that we have a method to estimate the probability of
of a false alarm of sizeé( at translatior¢, the probability of @ false alarm for any particular matching threshold, we can
a false alarm existing over all translations can be determingge the estimate to improve the performance of a recognition

eUsing the False Alarm Rate Estimate

by computing system that matches oriented edge pixels.
One method by which we could use the estimate is to set the
1- H(l — P (2)). matching threshold such that the probability of a false alarm is
t below some predetermined probability. However, this can be

This can be computed more efficiently if we have a higroblematic in very cluttered images since it can cause correct
togram of the number of edge pixels contained in the imaggstances of targets that are sought to be missed.
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Fig. 5. One of the synthetic images used to generate ROC curves. 0.0 0.2 0.4 0.6 0.8 1.0
PROBABILITY OF A FALSE ALARM
Alternatively, the matching threshold can be set such that @
it is expected that most or all of the correct target instances
that are present in the image are detected. The techniques that
have been described here yield an estimate on the probability Lo 2% OCCLUSION _
that a false alarm will be found for this threshold as well / / !
as an estimate on the expected number of such false alarms, ! 5% OCCLUSION
which will be useful when the probability is not small. More 0.8 | / /
importantly, the likelihood that each hypothesis that we find | / /
is a false alarm can be determined by consideringatpeori | /
probability that the image window of the hypothesis yields a o.sf“ ‘ )
10% OCCLUSION

false alarm of the appropriate size as described above. TheB%%BFf%I?EIE;ITTIg\Y
likelihoods can be used to rank the hypotheses by Iikelihooé’ R
and the hypotheses for which the likelihood of being a false 04 11/
alarm is too high can be eliminated. | ]

/M OCCLUSION

V. PERFORMANCE olz—“s‘;"// /
Fig. 3 shows an example of the use of these techniques. The ‘/
image is a low contrast infrared image of an outdoor terrain 00 !
scene. After histogram equalization, a tank can be seen in the 0.0 02 o! 06 0_‘8 Lo
left-center of the image, although due to the low contrast, the PROBABILITY OF A FALSE ALARM
edges of the tank are not clearly detected. Despite the mediocre b)

edge image and the fact that the object model does not well 6 Recei " haracteristic (ROC) ed usi
. . . o. eceiver operating characteristic curves generatea using
fit th? Image target, a Iarge match was found at the ?Orr{ thetic data. (a) ROC curves when using orientation information. (b) ROC
location of the tank. It should be noted, however, that this wagrves when not using orientation information.

not the only match reported. Fig. 3 also shows a false alarm

that was found. Note that the image window for this false ] o ]

alarm is more dense with edge pixels than the correct location.] "€S€ techniques are not limited to automatic target recog-
The false alarm rate estimation techniques can be used to r@Hien- Fig. 4 shows an example of the use of these techniques
these hypotheses based on their likelihood of being a fal8e@ complex indoor scene. In this case, the object model was
alarm, although, in this case, the false alarm is a sufficienfitracted from a frame in an image sequence, and itis matched

good match that these techniques indicate that it is less likdéf/a later frame in the sequence (as in tracking applications).
to be a false alarm than the correct location of the target. Since little time has passed between these frames, it is assumed

The current implementation of these techniques uses #®t the model has not undergone much rotation out of the im-
discrete orientations antl= « = 1 (each discrete orientationage plane, and thus, a four-dimensional (4-D) transformation
thus corresponds t§ rad, but matches are also allowed wittspace is used, consisting of translation, rotation in the plane,
neighboring orientations). In these experiments, the allowalsled scale. The position of the object was correctly located
orientation and scale change of the object views was limit@hen orientation information was used. No false alarms were
to +75 and+10%, respectively, since we expect to have priofound for this case. When orientation information was not
knowledge of the approximate range and orientation of thesed, several positions of the object were found that yielded a
target. better score than the correct position of the object.
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TABLE |
1.077 / PERFORMANCE COMPARISON. Pointsls THE NUMBER OF POINTS IN THE MODEL.
Threshls THE THRESHOLD USED TO DETERMINE HYPOTHESES.Probesls THE
/ NUMBER OF TRANSFORMATIONS OF THEOBJECT MODEL THAT WERE PROBED IN
THE DISTANCE TRANSFORMS AND IS IN THOUSANDS. THE TIME GIVEN IS FOR
0.8 / MATCHING A SINGLE OBJECT MODEL AND NEGLECTS THEIMAGE PREPROCESSING
- TiME. Biggestls THE Size OF THE LARGEST FALSE ALARM FOUND

0.6 Using orientations No orientations
. Points  Thresh | Probes Time Biggest | Probes Time Biggest
STT;BE]‘SIX\Q%BITY Sample 67 53 122K 1.1s 63 2263K  11.0s 67
FLIR 67 60 49K 0.5s 62 1367TK 5.9s 67
0.4 — images 95 60 318K 4.5 65 4396K  34.6s 95
: 95 76 83K 11s  F losssk 173s 95
Int. Image | 123 98 78K 1.3s 99 1832K  17.2s 120
¥ No match was found surpassing the threshold for this case.
0.2

00 The computation time required by the system is low. The
’ ‘ B ‘ preprocessing stage requires approximately 7 s on a Sparc-5
0.0 0.2 0.4 0.6 0.8 1.0 . . .
PREDICTED PROBABILITY for a 256 256 image. This stage performs the edge detection
on the image, creates and dilates the oriented image edge
Fig. 7. Predicted probability of a false alarm versus observed probability ﬁflap and computes the distance transform on each orientation
a false alarm in trials using real images. ' . . . .
plane of the oriented image edge map. This step is performed
only once per image. The running time per object view varies

. ) with the size of the object model and the matching threshold
We have generated ROC curves for this system using S\[¥aq byt we have observed times ranging from 0.5 to 4.5 s.

thetic edge images. Each synthetic edge image was gener&gd tapje | for example times and counts on the number of
with 10% of the pixels filled with random image clutter,nstormations that were probed in each case. The prediction

(curved chaips of connected pixels). An instance of a targﬁﬁge required approximately an additional 1.0 s per model to
was placed in each image with varying levels of occlusiofsimate the false alarm rate.

generated by removing a connected segment of the targef, aqgition to reducing the false alarm rate, the use of

boundary. Random Gaussian noise was added to the locatigngiation information has significantly improved the speed
of the pixels corresponding to the target. An example o maiching. Table | indicates that in a small sample of the

such a synthetic image can be found in Fig. 5. Fig. 6 shoys, s the search time is reduced by approximately a factor of

ROC curves generatgd for cases when orientation informatipg \\hen everything else is held constant. The techniques to
was used and when it was not. These ROC curves show R ,ce the search time when multiple models were considered
probability that the tar_get was located versus the probabl_hﬁ;( a single image also helped to speed the search. When 27
that a false alarm of this target model was reported for varyinggarant object models were considered in the same image
levels of the matching threshold. When orientation informatqurging the multimodel techniques, 0.86 s were necessary per
was used, the performang:e of the system was very goQfhqe| to perform the matching when 80% of the model edge

in these images up to 25% occlusion of the target. On thg a5 were required to match the image closely, and 0.34 s

other hand, when orientation information was not used, tk}\?ere necessary per model with when 90% of the model edge
performance degraded significantly before 10% occlusion &fxels were required to match closely.

the object was reached.

The false alarm rate (FAR) estimation techniques were
tested on real imagery. In these tests, the largest threshold VI SUMMARY
at which a false alarm was found was determined for eachThis paper has discussed techniques to perform automatic
object model and image in a test set. In addition, the FAfarget recognition by matching sets of oriented edge pixels.
estimation techniques were used to determine the probabilltygeneralization of the Hausdorff measure that allows the
that a false alarm of at least this size would be determineddetermination of good matches between an oriented model
each case. From this information, we can obtain the obsenedte map and an oriented image edge map was first proposed.
probability of a false alarm when the matching threshold & search strategy that allowed the full space of possible
set to yield any predicted false alarm rate by determining tiansformations to be examined quickly in practice using a
fraction of tests that yielded a false alarm with the matchingerarchical cell decomposition of the transformation space
threshold set to yield the predicted rate (see Fig. 7). In the ide@hs then given. This method allows large volumes of the
case, this would yield a straight line between (0.0,0.0) amichnsformation space to be efficiently eliminated from consid-
(1.0,1.0). Since the plot that was produced by these tests lggation. Additional techniques for reducing the overall time
slightly below this line for the most part, the FAR estimatiomecessary when any of several target models may appear
techniques described here predict false alarms that are sliglitlyan image were also described. The probability that this
larger than those observed in these tests, but the predictinathod would yield false alarms due to random chains of
performance is otherwise quite good. edge pixels in the image was discussed in detail, and a method
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to estimate the probability of a false alarm efficiently at rufLe] D. w. Paglieroni, “Distance transforms: Properties and machine vision

time was given. This allows automatic target recognition to be i‘p'i,”p‘:aggniﬂf,lP;S;Sp““:a' Models Image Processingl. 54, no.
performed adaptively by maintaining the false alarm rate atig) p. 'w. paglieroni, G. E. Ford, and E. M. Tsujimoto, “The position-

specified value or to rank the competing hypotheses that are orientation masking approach to parametric search for template match-

found on their likelihood of being a false alarm. Experiments iJ”ugl;' 'l'ggf Trans. Pattern Anal. Machine Intgllvol. 16, pp. 740-747,
confirmed that the use of orientation information at each edgi@) A. Rosenfeld and J. Pfaltz, “Sequential operations in digital picture

pixel, in addition to the pixel locations, considerably reduces processing,J. Assoc. Comput. Machvol. 13, pp. 471-494, 1966.

. ; ] W. J. Rucklidge, “Locating objects using the Hausdorff distance,” in
the size and number of false alarms found. The experimefts Proc. Int. Conf. Comput. Visionl995, pp. 457—464.

also indicated that the use of orientation information resultggb] F. Sadjadi, “Object recognition using coding schem@gpt. Eng, vol.
in faster recognition. 31, no. 12, pp. 2580-2583, Dec. 1992.
h hni d ibed h ield | th[(%(lll J. G. Verly, R. L. Delanoy, and D. E. Dudgeon, “Model-based system for
The techniques describe ere yield a very general me automatic target recognition from forward-looking laser-radar imagery,”
to perform automatic target recognition that is robust to  Opt. Eng, vol. 31, no. 12, pp. 2540-2552, Dec. 1992.

han in liahtin n ntr lusion. and im noiggl E. G. Zelnio, “ATR paradigm comparison with emphasis on model-
changes ghting a d contrast, occlusion, and age O@é based vision,” inProc. SPIE, Model-Based Vision Development Tools

and that can be applied to a wide range of imaging modalities. o 1609, 1992, pp. 2—15.
Since efficient techniques exist to determine good matches,
even when a large space of transformations are considered, and
to determine the likelihood that a false alarm will be found or
that any particular hypothesis is a false alarm, these methods

’ L . U Clark F. Olson received the B.S. degree in com-
are useful and practical in identifying targets in images.

puter engineering and the M.S. degree in electrical
engineering from the University of Washington,
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the Ph.D. degree in computer science from the
University of California, Berkeley, in 1994.
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