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Abstract

Active Appearance Models (AAMs) and the closely relatedospts of Morphable Models and
Active Blobs are generative models of a certain visual phegmmon. Although linear in both shape
and appearance, overall, AAMs are nonlinear parametricetsad terms of the pixel intensities.
Fitting an AAM to an image consists of minimising the erroteen the input image and the clos-
est model instance; i.e. solving a nonlinear optimisatiabfem. We propose an efficient fitting
algorithm for AAMs based on thawverse compositionamage alignment algorithm. We show
that the effects of appearance variation during fitting campiecomputed (“projected out”) using
this algorithm and how it can be extended to include a globaps normalising warp, typically a
2D similarity transformation. We evaluate our algorithmditermine which of its novel aspects
improve AAM fitting performance.

Keywords: Active Appearance Models, AAMs, Active Blobs, Morphable déts, fitting, effi-
ciency, Gauss-Newton gradient descent, inverse compoaltimage alignment.






1 Introduction

Active Appearance Models (AAMs) [7-11, 13], first proposed[14], and the closely related
concepts of Active Blobs [21,22] and Morphable Models [6248, are non-linear, generative, and
parametric models of a certain visual phenomenon. The mexgiént application of AAMs to date
has been face modelling [19]. However, AAMs may be usefublbier phenomena too [18, 22].
In a typical application, the first step is to fit the AAM to arpirt image, i.e. model parameters
are found to maximise the “match” between the model instamckthe input image. The model
parameters are then used in whatever the application is.eXamnple, the parameters could be
passed to a classifier to yield a face recognition algorithtany different classification tasks are
possible. In [19], for example, the same model was used &ar facognition, pose estimation, and
expression recognition.

Fitting an AAM to an image is a non-linear optimisation prfl. The usual approach [7,
10, 11] is to iteratively solve for incrementatlditive updates to the parameters (the shape and
appearance coefficients.) Given the current estimateseo$hiape parameters, it is possible to
warp the input image onto the model coordinate frame and ¢bempute an error image between
the current model instance and the image that the AAM is bietity In most previous algorithms,
it is simply assumed that there iscanstantlinear relationship between this error image and the
additive incremental updates to the parameters. The aursiafficients in this linear relationship
can then be found either by linear regression [7, 13, 14] arthgr numerical methods [10, 11].

Unfortunately the assumption that there is such a simpéiogiship between the error image
and the appropriate update to the model parameters is imajeneorrect. See Section 2.3.3 for a
counterexample. The result is that existing AAM fitting aitfums perform poorly, both in terms
of the number of iterations required to converge, and in $eofthe accuracy of the final fit. In
this paper we propose a new analytical AAM fitting algorithmattdoes not make this simplifying
assumption. Our algorithm is based on an extension totlegse compositionainage alignment
algorithm [2, 3]. The inverse compositional algorithm idyoapplicable to sets of warps that form

a group. Unfortunately, the set of piecewise affine warpgally used in AAMs does not form a



group. Hence, to use the inverse compositional algorithm, we ddnigt order approximations to
the group operators @ompositiorandinversion.

The inverse compositional algorithm also allows a difféte@atment of the appearance vari-
ation. Using the approach proposed in [16], we are able tojépt out” the appearance variation
in a precomputation step and thereby eliminate a great demallime computation. Another step
that we implement differently is shape normalisation. Tihedr shape variation of AAMs is often
augmented by combining it with a 2D similarity transfornoatito “normalise” the shape. This
separates the global transformation into the image frontated variation due to non-rigid shape
deformation. We show how the inverse compositional algaritan be used to simultaneously fit
the combination of the two warps: the linear AAM shape vasiatind a following global shape

transformation.

2 Linear Shape and Appearance Models: AAMs

Although they are perhaps the most well-known example v&dippearance Models are just one
instance in a large class of closely relalieear shape and appearance modaisl their associated
fitting algorithms. This class includes Active Appearanceddls (AAMs) [7,11,13,14,19], Shape
AAMs [8-10], Direct Appearance Models [17], Active Blob=2[2and Morphable Models [6, 18,
24], as well as possibly others. Many of these models werpgs®ed independently in 1997—
1998 [7,18,19,21, 24]. In this paper we use the téative Appearance Modeb refer generically
to the entire class of linear shape and appearance modelsh&¥e the term Active Appearance
Model rather than Active Blob or Morphable Model only beaaitsseems to have stuck better
in the vision literature, not because the term was introdwelier or because AAMs have any
particular technical advantage. We also wanted to avoiwdiicing any new, and potentially
confusing, terminology.

Unfortunately the previous literature is already somewtuatfusing. The terminology often

refers to the combination of a model and a fitting algorithnor E&xample, Active Appearance



Model [7] strictly only refers to a specific model and an alton for fitting that model. Similarly,

Direct Appearance Models [17] refers to a different mod#ékafy algorithm pair. In order to

simplify the terminology we make a clear distinction betwesodels and algorithmsyen though

this sometimes means we will have to abuse previous terogindh particular, we use the term
AAM to refer to the model, independent of the fitting algonthWe also use AAM to refer to a
slightly larger class of models than that described in [7].

In essence there are just two types of linear shape and apweamodels, those which model
shape and appearance independently, and those which paremehape and appearance with
a single set of linear parameters. We refer to the first seidependent shape and appearance
modelsand the second ambined shape and appearance mod@e will also refer to the first

set asndependent AAMand the second ammbined AAMs

2.1 Independent AAMs
2.1.1 Shape

As the name suggests, independent AAMs model shape andrappeaeparately. Th&hape
of an independent AAM is defined by a mesh and in particulavéreex locations of the mesh.
Mathematically, we define the shap®f an AAM as the coordinates of thevertices that make

up the mesh:

5 = (x17y17x27y27'"7xU7yU)T' (l)

See Figure 1 for an example mesh that contains 68 verticedIsA#llow linear shape variation.
This means that the shapecan be expressed as a base shgpaus a linear combination of

shape vectors;:

S = sg+ Zpisi- (2)

=1
In this expression the coefficients are the shape parameters. Since we can always perform a
linear reparameterization, wherever necessary we asfqwahthe vectors; are orthonormal.

AAMs are normally computed from hand labelled training ireagThe standard approach is to
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Figure 1: The linear shape model of an independent AAM. The model stssf a triangulated base mesh
so plus a linear combination of shape vectors;. The base mesh is shown on the left, and to the right are
the first three shape vectass, so, andsz overlaid on the base mesh.

apply Principal Component Analysis (PCA) to the trainingsimes [11]. The base shaggis the
mean shape and the vectegsare then eigenvectors corresponding to thdargest eigenvalues.
Usually, the training meshes are firsirmalisedusing a Procrustes analysis [10] before PCA is
applied. This step removes variation due to a chagebal shape normalising transformatico
that the resulting PCA is only concerned with local, nonerighape deformation. See Section 4.2
for the details of how such a normalisation affects the AAMrfg algorithm described in this
paper.

An example shape model is shown in Figure 1. On the left of thed, we plot the triangulated
base mesk,. In the remainder of the figure, the base mesis overlaid with arrows corresponding

to each of the first three shape vectsrss,, andss.

2.1.2 Appearance

Theappearancef an independent AAM is defined within the base megsHh_et s, also denote the

set of pixelsx = (z,y)T that lie inside the base mesk, a convenient abuse of terminology. The
appearance of an AAM is then an imagdéx) defined over the pixels € s,. AAMs allow linear
appearance variation. This means that the appear&ncecan be expressed as a base appearance

Ap(x) plus a linear combination ofi appearance images (x):

A(x) = Ap(x) + i i Ai(x) Vx € s (3)
i=1
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Figure 2: The linear appearance variation of an independent AAM. Thdehconsists of a base appear-
ance imaged, defined on the pixels inside the base megiplus a linear combination aof, appearance
imagesA; also defined on the same set of pixels.

In this expression the coefficienks are the appearance parameters. Since we can always perform

a linear reparameterization, wherever necessary we aghatne imagesl!; are orthonormal.

As with the shape component, the base appeardp@nd the appearance imagésare nor-
mally computed by applying PCA to a set siiape normalisedraining images. Each training
image is shape normalised by warping the (hand labelled)itigamesh onto the base mesh
Usually the mesh is triangulated and a piecewise affine wagefined between corresponding
triangles in the training and base meshes [11] (althougtetare ways to avoid triangulating the
mesh using, for example, thin plate splines rather thanepiese affine warping [10].) The base
appearance is set to be the mean image and the imhdede them eigenimages corresponding
to them largest eigenvalues. The fact that the training imagestapesnormalised before PCA
is applied normally results in a far more compact appearaigenspace than would otherwise be
obtained.

The appearance of an example independent AAM is shown in&R@uOn the left of the figure

we plot the base appearandg. On the right we plot the first three appearance imagjesAs.

2.1.3 Model Instantiation

Equations (2) and (3) describe the AAM shape and appearamizion. However, they do not de-
scribe how to generate a model instance. Given the AAM shampeterp = (p, pa, ..., pn)*
we can use Equation (2) to generate the shape of the AABimilarly, given the AAM appear-
ance parameters = (A1, \o, ..., \,,) T, We can generate the AAM appearante) defined in the

interior of the base mesfy. The AAM model instance with shape parametgrand appearance
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Figure 3: An example of AAM instantiation. The shape parameters- (py,ps,...,p,)" are used to
compute the model shapeand the appearance paramet®&rs (A, Xz, ..., \,)" are used to compute the
model appearancd. The model appearance is defined in the base mgsihe pair of meshes, ands
define a (piecewise affine) warp frosg to s which we denotéW (x; p). The final AAM model instance,
denotedM (W (x; p)), is computed by forwards warping the appearaddeom s to s usingW (x; p).

parameters\ is then created by warping the appearadcom the base mesé, to the model
shapes. This process is illustrated in Figure 3 for concrete valfgs and .

In particular, the pair of mesheg ands define a piecewise affine warp fraspto s. For each
triangle ins, there is a corresponding triangle sn Any pair of triangles define a unique affine
warp from one to the other such that the vertices of the firshgle map to the vertices of the
second triangle. See Section 4.1.1 for more details. Thegmemwarp is then computed: (1) for
any pixelx in sy find out which triangle it lies in, and then (2) waxpwith the affine warp for that
triangle. We denote this piecewise affine wAM)x; p). The final AAM model instance is then
computed by warping the appearantérom s, to s with warp W (x; p). This process is defined
by the following equation:

M(W(x;p)) = A(x) (4)

where)M is a 2D image of the appropriate size and shape that conteensmddel instance. This

equation, describes a forwards warping that should bepreted as follows. Given a pixal in



so, the destination of this pixel under the warpws(x; p). The AAM modelM at pixel W (x; p)

in s is set to the appearancé(x). Implementing this forwards warping to generate the model
instanceM without holes (see Figure 3) is actually somewhat tricky anbdest performed by
backwards warping with the inverse warp frerno s,. Fortunately, in the AAM fitting algorithms,
only backwards warping frors onto the base mesfy is needed. Finally, note that the piecewise
affine warping described in this section could be replacet amy other method of interpolating

between the mesh vertices. For example, thin plate splimas e used instead [10].

2.2 Combined AAMs

While independent AAMs have separate shppnd appearanck parameters;ombinedAAMs

just use a single set of parameters: (¢, co, ..., ;)" to parameterize shape:
l
S = Sp+ Z C;S; (5)
=1

and appearance:

A(x) = Ao(x) + Z c;iAi(x). (6)

The shape and appearance parts of the model are therefgrledohis coupling has a number
of disadvantages. For example, it means that we can no l@sseme the vectoks and 4;(x)
are respectively orthonormal. It also restricts the choid#ting algorithm. See the discussion at
the end of this paper. On the other hand, combined AAMs havwengber of advantages. First,
the combined formulation is more general and is a strict mgbef the independent formulation.
To see this, set = (p1, P, - .-, Pus A1s A2, - - -, Am) T @nd choose; and A; appropriately. Second,
combined AAMs often need less parameters to represent the gigual phenomenon to the same
degree of accuracy; i.e. in practicel m + n. Therefore fitting may be more efficient.

This second advantage is actually not very significant. &Sime will “project out” the appear-
ance variation, as discussed in Section 4.1.5, the com@uoightost of our new algorithm is mainly

dependent on the number of shape parametarsl does not depend significantly on the number of



appearance parametens The computational reduction by usihgarameters rather than-m pa-
rameters is therefore non-existent. For the same reped8amdl accuracy, > max(n, m). Hence,
our algorithm which uses independent AAMs and runs in tiiie) is actually more efficient than
any for combined AAMs and which runs in tind&).

Combined AAMs are normally computed by taking an indepehd@&M and performing (a
third) Principal Component Analysis on the appropriateBigihted training shapp and appear-
ance\ parameters. The shape and appearance parameters arendeely lreparameterized in
terms of the new eigenvectors of the combined PCA. See [Yl1hidetails, although note that

the presentation there is somewhat different from the éisdlgrequivalent presentation here.

2.3 Fitting AAMs
2.3.1 Fitting Goal

Suppose we are given an input imaffe) that we wish to fit an AAM to and that we know the
optimal shape and appearancd parameters for the fit. This means that the imége) and
the model instancé/(W (x;p)) = A(x) must be similar. In order to define the fitting process,
we must formally define the criterion to be optimised. Natyrave want to minimise the error
between!/ (x) and M (W (x;p)) = A(x). There are two coordinate frames in which this error
can be computed, the coordinate frame of the imaged the coordinate frame of the AAM. The
better choice in terms of deriving an efficient fitting algm is to use the coordinate frame of the
AAM,; i.e. the base meshk,. If x is a pixel insg, then the corresponding pixel in the input image
Iis W(x;p). At pixel x the AAM has the appearanc(x) = Ag(x) + 27, \iA;(x). At pixel

W (x; p), the input image has the intensityW (x; p)). We want to minimise the sum of squares

of the difference between these two quantities:

2

Z Ap(x) + i: NiA;(x) — I(W(x;p)) (7

XESo



where the sum is performed over all pixel$n the base mesé,. The goal of AAM fitting is then
to minimise the expression in Equation (7) simultaneousti1 wespect to the shape parametgrs
and the appearance paramet®rén general the optimisation is nonlinear in the shape patara
p, although linear in the appearance paramekers

For notational convenience, we define #reor imagein the coordinate frame of the AAM and
denote it as:

B0 = Au() + - NAix) — T(W(xi)) ®

The error image can be computed as follows. For each gixelthe base mess,, we compute
the corresponding pix@lV (x; p) in the input image by warping with the piecewise affine warp
W. The input imagd is then sampled at the pix®V (x; p); typically it is bilinearly interpolated
at this pixel. The resulting value is then subtracted fromahpearanced,(x) + 37, A\ A;(x) at
that pixel and the result stored il In other words, the input imageis backwards warped onto

the base mesiy with warpW and then subtracted from the current AAM appearance.

2.3.2 Inefficient Gradient Descent Algorithms

Perhaps the most natural way of minimising the expressi&ugumation (7) is to use a standard gra-
dient descent optimisation algorithm. Various researchave tried this. For example, Levenberg-
Marquardt was used in [21] and a stochastic gradient desdgaotithm was used in [6,18]. The

advantage of these algorithms is that they use a principleaytical algorithm, the convergence
properties of which are well understood. The disadvantddkese gradient descent algorithms
is that they are very slow. The partial derivatives, Hesssam gradient direction all need to be

recomputed for each iteration.

2.3.3 Efficient Ad-Hoc Fitting Algorithms

Because standard gradient descent algorithms are so stowsalerable amount of effort has been
devoted to developing alternative fitting algorithms thataore efficient [7,11,21]. In all of these

algorithms, the approach is to assume that thereetnatantinear relationship between the error
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imageF (x) andadditiveincrements to the shape and appearance parameters:

X€ESo XESso

where R;(x) and S;(x) are constant images defined on the base mgsliere, constant means
that R;(x) and S;(x) do not depend om; or \;. This assumption is motivated by the fact that
almost all previous gradient descent algorithms boil doaiedamputingAp; and A); as linear
functions of the error image and then updatmg— p; + Ap; and\; — \; + A);. However,

in previous gradient descent algorithms the equivalen®¢k) and S;(x) are not constant, but
instead depend on the AAM model paramefe@nd . It is because they depend on the current
model parameters that they have to be recomputed. In esgbiges why the gradient descent
algorithms are so inefficient.

To improve the efficiency, previous AAM fitting algorithmscduas [7, 11, 21] have either ex-
plicitly or implicitly simply assumed thak;(x) andS;(x) do notdepend on the model parameters.
This assumption is an approximation. To provide a countargde showing thak;(x) and.S;(x)
are not constant, it is sufficient to exhibit two cases whbeeedrror image is the same and for

which different increments to the parameters should beeghpWWe demonstrate this in Figure 4.

(0,10) (1,1) (2,1)

—_—
Base Appearance pr=0
Ap(x) S1 -
S

(0,0) (1,0) (2,0)
Example A (g 1) (2,1) (3,1) Example B (g 1) (1.5,1)
g 1 Currentp; =1 Currentp; =0
| 7 T T | 1 T
mage ! : Correctp; =2 @ mage : Correctp; = 0.5 @
(0,0) (2,0) (3,0) (0,0) (1.5,0)
(0,1) (1,1) (0,1) (1,1)
I(W(x;p)) CorrectAp; = (2—-1) =1 I(W(x;p)) CorrectAp, = (0.5-0) = 0.5
(0,0) (1,0) (0,0) (1,0)

Figure 4: A demonstration that the linear relationship between and the error imagé’(x) does not
have constant coefficients. A simple AAM is applied to twouhpmages, both of which yeild the same
error image. However, the correct upddig, to the parametep, is different in the two cases.
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The base appearaneg(x) is shown at the top of the figure. The single shape vegtartoves
the two vertices on the right hand side of the square oneattigt right. Consider Example A: the
input imagel consists of a stretched version of the base template. lexaisiple the correct value
of p; = 2, and the current estimate pf = 1. WhenI is warped back to the template,W (x; p))
is as shown in the lower left of the figure. The correct estewdt\p, should be equal to—1 = 1.
Example B is similar: the input image is the base templaticdied in the same direction, but not
so far. In this case, the correct valuegf = 0.5 and the current estimate pf = 0. When/
is warped back to the templaté{W (x; p)) is exactly the same as in Example A and therefore
the error image is also identical. However, the correcinestie of Ap; in Example B should be
0.5 — 0 = 0.5. Since this is different from the correct estimate/nf; in Example A, this is a
counterexample which demonstrates that in gengréat) is not a constant (but depends on the
current estimate gb.)

Note that although in this simple example the differencevien the two cases could be ex-
plained by a global affine warp (see Section 4.2), other eXasrgan easily be provided where a
global correction does not help. Similarly, although irstexample the direction @kp; is correct
and it is just the magnitude that is wrong, other examplesegprovided where the error images
are the same, but the directions of theg; are different.

Although the assumption thdt;(x) and S;(x) are constant is incorrect, previous algorithms
have set out to estimate them in a number of different wayse diiginal AAM formulation
[7,13, 14] estimated the update functiadRgx) and.S;(x) by systematically perturbing the model
parameterg\p; andA\; and recording the corresponding error imdgex). The values of?;(x)
andS;(x) are then estimated by linear regression. Later, the sarhemytroposed a finite differ-
ence approach [10,11] that is essentially the same adiffieeence decompositidrlgorithm used

in [21].

INote that the author of the original difference decomposipaper [15] may have been aware of the need to use
the compositionabpproach described in Section 3.2. It is hard to tell. Howebe use of difference decomposition
in [21] makes the constant linear assumption in Equatioh ¢2that paper.

11



3 Efficient Gradient Descent Image Alignment

As described above, existing AAM fitting algorithms fallenbne of two categories. Either they
take the analytical, gradient descent approach, with alktliivantages of using a principled algo-
rithm, but are very slow, or they make a provably incorresuasption to obtain efficiency and in
the process forfeit fitting accuracy. Ideally one would likeise a fast, efficient gradient descent al-
gorithm such as that proposed by Hager and Belhumeur [1&pbrilmately, the algorithm in [16]
cannot be applied to piecewise affine warps; in fact it onlgliag to translations, 2D similarity
transformations, affine warps, and a small collection oéo#soteric warps.

Is there another efficient gradient descent algorithm? Tgenaent in Section 2.3.3 shows
that there cannot be any efficient algorithm that solvesXprand then updates the parameters
p < p + Ap. Fortunately, this is not the only way to update the pararaetn alternative is to
update the entire warp by composing the current warp wittctmeputed incremental warp with

parameterg\p. The update rule is then:
W(x;p) « W(x;p)o W(x;Ap). (10)

This compositionabkpproach is different, yet provably equivalent, to the Usullitiveapproach
[3]. This section describes both additive and compositignadient descent in the framework
of theimage alignmenproblem. This is closely related to fitting an AAM, and the ns&ction

extends the efficieribverse compositionallgorithm for independent AAMSs.

3.1 Lucas-Kanade Image Alignment

The goal of image alignment is to find the location of a constamplate image in an input im-
age. The application of gradient descent to image alignmest first described in Lucas and
Kanade [20]. The goal of the Lucas-Kanade algorithm is to firelocally “best” alignment by

minimizing the sum of squares difference between a constamplate imaged,(x) say, and an

12



example imagéd (x) with respect to the warp parameters

> [Ao(x) — I(W(x;p))J". (11)

X

Note the similarity with Equation (7). As in Section W (x; p) is a warp that maps the pixets
from the template (i.e. the base mesh) image to the inputenaag has parameteps Note that
I(W(x;p)) is an image with the same dimensions as the template; it is\the imagel warped
backwards onto the same coordinate frame as the template.

Solving forp is a nonlinear optimisation problem. This is true eveWMi{x; p) is linear inp
because, in general, the pixel valués) are nonlinear in (and essentially unrelated to) the pixel
coordinates. To linearize the problem, the Lucas-Kanade algorithmmgsuthat an initial esti-

mate ofp is known and then iteratively solves for increments to thapeetersAp; i.e. minimise:

> [Ao(x) = I(W(x; p + Ap))]° (12)

X

with respect td\p and then updatp <— p+Ap. The expression in Equation (12) can be linearized

aboutp using a Taylor series expansion to give:

ow . 1°
Zle(X)—I(W(X;p))—W%Ap] : (13)

X

whereV I is thegradientof the image evaluated &V (x; p), andaa—‘g’ is theJacobianof the warp

evaluated ap. The closed form solution of Equation (13) fap is:

ap = HY [w%—f} [Ao(x) — I(W(x; )] (14)

whereH is the Gauss-Newton approximation to tHessianmatrix:

aw} . (15)

T
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(Known)
W(x;p)

Ap(x)

W(x;p+ Ap)
(Estimated)

I(x)
Figure 5: A schematic overview of the Lucas-Kanade (forwards-adelitimage alignment algorithm.
Given current estimates of the paramefergucas-Kanade linearizes the problem and solves for inenem
tal updates to the parameteks that are then added to the current estimates p + Ap.

An overview of the Lucas-Kanade algorithm is shown in Figbiren [3] we refer to this as
the forwards-additivealgorithm. The additive part comes from the iterative updaftthe warp
parametersAp is added each time. The forwards part denotes the directithre avarp parameter
estimation: the warp projecisto the image coordinate frame.

The Lucas-Kanade algorithm is slow. In general, both andaa—‘;f’ depend orp. Hence the

. T . . . : .
Hessian an(@V]%—V;’] need to be recomputed in every iteration, both of which aw sperations.

3.2 Forwards Compositional Image Alignment

In the Lucas-Kanade algorithm the warp parameters are catjy estimating @ p offset from
the current warp parameters The compositionalframework computes aimcremental warp

W (x; Ap) to be composed with the current wa¥ (x; p). The minimisation is over:

> [Ao(x) = I(W(W(x; Ap);p))]° (16)
and the update step involveesmposinghe incremental and current warp:

W(x;p) « W(x;p)o W(x;Ap). (17)

If we compute the solution foAp in Equation (16) then we have computed the incremental warp

in the “image” direction. It can be composed with the cursgatp using Equation (17) and results

14



in the forwards compositionahlgorithm [3]. This algorithm was also used in [23]. Takirugpt

Taylor series expansion of Equation (16) gives:

> |Alx) ~ IOW(W(xi0):p)) ~ VI(W(xip)) 5 Ap| (18)

At this point we assume thas = 0 is the identity warp; i.eW(x;0) = x. There are then
two differences between Equation (18) and Equation (13)stFihe gradient is computed on
I(W(x;p)). Second, the Jacobian is evaluatedsat0) and therefore is a constant that can be
precomputed. The composition update step is computatjomadre costly than the update step
for an additive algorithm, but this is offset by not havingdompute the Jacobia%‘l%V in each
iteration.

The key point in the forwards compositional algorithm, slitated in Figure 6(a), is that the

update is computed with respectiio= 0 each time. This is why the Jacobian is constant.

3.3 Inverse Compositional Image Alignment

The inverse compositionalgorithm is a modification of the forwards compositionajaithm
where the roles of the template and example image are reveRather than computing the in-
cremental warp with respect tf W (x; p)) it is computed with respect to the templatg(x).
The proof that this role reversal step results in an equntakgorithm can be found in [2, 3]. The
intuitive reason is that when we reverse the roles of the @ndim the compositional case), we just
estimate the incremental warp in the opposite “inversedaion. See Figure 6(b) for an overview
of the inverse compositional algorithm.

Reversing the roles ol W (x; p)) and Ay(x) in Equation (16) results in the inverse composi-

tional algorithm minimizing:

ST I(W(x;p)) — Ao(W(x; Ap))J?, (19)

X

15
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(Update)

W(x;p) o W(x; Ap)~!

.l (Update) e
Ao(x) (Estimated)
W(x; Ap)

. W(x;p)

I(W(x;p)) (Known)

Ao(x) (Estimated)
W(x; Ap)
. W(x;p)

I(W(x;p)) (Known)

I(x) 1(x)
(a) Forwards Compositional (b) Inverse Compositional

Figure 6: (a) A schematic overview of the forwards-compositional g®alignment algorithm. Given
current estimates of the parameters, the forwards connusitalgorithm solves for an incremental warp
W (x; Ap) rather than a simple update to the paramefeps The incremental warp is then composed with
the current estimate of the warp. (b) A schematic overvieth@inverse-compositional image alignment al-
gorithm. The roles of (W (x; p)) andA(x) are reversed and the incremental wi¥fix; Ap) is estimated

in the other (inverse) direction. The incremental warpefae has to be inverted before it is composed with
the current estimate of the warp.

with respect taAp and then updating the warp using:
W(x;p) «— W(x;p)o W(x;Ap)~. (20)

Taking the Taylor series expansion of Equation (19) gives:

X [1WExp) - (W 0) - VA A (1)

X

Assuming again thalV (x; 0) is the identity warp, the solution to this least squares lgmls:

Ap — HI'Y [VAO%—V;’] (W (x; p)) — Ao(x) (22)

whereH is Hessian matrix with replaced byA,:

T
H= zx: [VAO%—?] lVAO%—‘Z] : (23)

Since the templaté, is constant and the Jacobigggl is always evaluated at = 0, most of the

computation in Equations (22) and (23) can be moved to a prpatation step and performed
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The Inverse Compositional Algorithm

Pre-compute:

(3) Evaluate the gradierW A, of the templated(x)

(4) Evaluate the Jacobiad§ at (x;0)

(5) Compute the steepest descent imd@e@o%—vg

(6) Compute the Hessian matrix using Equation (23)

Iterate Until Converged:

(1) WarpI with W (x; p) to computel (W (x; p))

(2) Compute the error |magE{W(x p)) — Ao(x)

(7) Computey™, [V AW T [1(W (x; p)) — Ao(x)]

(8) ComputeAp using Equation (22)

(9) Update the warpW (x; p) «— W(x;p) o W(x; Ap)~!

Figure 7: The inverse compositional algorithm [3]. All of the compiigaally demanding steps are per-
formed in a pre-computation step. The main algorithm singalgsists of image warping (Step 1), image
differencing (Step 2), image dot products (Step 7), muttgtion with the inverse of the Hessian (Step 8),
and the update to the warp (Step 9). All of these steps can jplernented efficiently.

only once. The result is a very efficient image alignment algm, see Figure 7 for the details.
The main algorithm just iterates: image warping (Step 1agmdifferencing (Step 2), image dot
products (Step 7), multiplication with the precomputeceirse of the Hessian (Step 8), and update
to the warp (Step 9). All of these steps can be implementegeféiciently. Note that Steps 1, 2,
and 7 parallel equivalent steps in the efficient ad-hoc AANNf algorithms. The only additional

computation is Steps 8 and 9 which are very efficient. Thesesteps essentially correct for the

current estimates of the parametprand avoid the problem illustrated in Figure 4.

4 Applying the Inverse Compositional Algorithm to AAMs

We now show how the inverse compositional algorithm can Ipdieghto independent AAMs. As
described in Section 2.1, independent AAMs have separafeeghand appearanck parameters.
To simplify presentation we initially ignore the global glganormalising transform. (This is
still a valid algorithm if one wishes to describe all possishape variation in the linear shape
modes.) We then show how the basic algorithm may be modifiedctarporate a global shape

normalising transform.
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Triangle in Base Meshs, Corresponding Triangle in Meshs
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Figure 8: Computing the piecewise affine waWW (x; p). Each pixekx = (z,y)T in the base mest, lies

in a triangle. The pixe(z,y)" can be decomposed into one vertex plusmes a vector down one side of
the triangle plus3 times a vector down the other side of the triangle. The daitin of (2, )T under the
piecewise affine warpV (x; p) is the equivalent expression for the other triangle in mesh

4.1 Fitting an AAM Without a Global Shape Transform

We first describe how the inverse compositional AAM algarithpplies when used without ei-
ther a global shape normalising transform (e.g. similaraysform) or any appearance variation;
i.e. whenm = 0. Comparing Equation (7) with Equation (11) we see that ifehs no appearance
variation, the inverse compositional image alignment algm applies as is. Examining Figure 7
we find that most of the steps in the algorithm are standartbyamatrix, and image operations
such as computing image gradients and image differencesofilly non-standard steps are: Step 1
warping/ with the piecewise affine wai¥ (x; p), Step 4 computing the Jacobian of the piecewise
affine warp, and Step 9 inverting the incremental piecewiig@eawarp and composing it with the
current estimate of the piecewise affine warp. The follovsagtions describe how each of these

steps are performed.

4.1.1 Piecewise Affine Warping

The imagel (W (x;p)) is computed by backwards warping the input imag®ith the warp
W (x; p); i.e. for each pixek in the base mesk, we computeW (x; p) and sample (bilinearly
interpolate) the imagé at that location. Every pixet in the base mesk, lies in a triangle. The
vertices of that triangle arer}, y?)", (29, 9)", and(z), y)". The vertices of the corresponding
triangle in the AAM mesh arér;, v;)*, (z;,y;)", and(zx, yr)*. These vertices are computed from

the current shape parametgersising Equation (2).
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One way to implement the piecewise affine warp is illustrateligure 8. Consider the pixel
x = (z,y)" in the triangle(z?, 4?)", (27,49)", and (a7, »)" in the base mesk,. This pixel can

be uniquely expressed as:

x = (2,9)" = @90 +a @) y)" = @)y + 8@ )" = @) (24)

where:
_ (=2 —y)) = (v — ) (R — 2D
C T W)= ) — (o — )@l —a0) (25)
and:
S ) O ) [ e (26)

The result of applying the piecewise affine warp is then:
W(xip) = (z0,5)" + o [(25,5)" = (@00 + 8 [(@rw)” = @0)'] @7)

where (z;, y:)", (zj,y;)", and(z, yx)T are the vertices of the corresponding triangles.inTo-

gether, Equation (25), (26), and (27) constitute a simgdlaafvarp:
W(x;p) = (ay+as-x+as-y,as+as-x+ag-y) . (28)

The 6 parameters of this wafp,, as, as, a4, as, ag) can easily be computed from the shape pa-
rametergp by combining Equations (2), (25), (26), and (27). This comapian only needs to be
performed once per triangle, not once per pixel. To implerttenpiecewise affine warp efficiently,

the computation should be structured:

e Givenp compute(z;, y;)T for all vertices ins.
o Compute(ay, as, as, aq, as, ag) for each triangle.

e For each pixelx in the meshs,, lookup the triangle thak lies in and then lookup the
corresponding values @, as, as, a4, as, ag).

e Finally, computéW (x; p) using Equation (28).
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Figure 9: The Jacoblan%— and 3‘;" with respect to the vertices of the mesfor 3 different vertices.
Thex component of the Jacobian is in the top row anditltemponent is in the bottom row.

If we raster scan the mesh we can avoid looking ugay, as, as, a4, as, ag) most of the time by

creating a lookup table that codes when the triangle ideatianges.

4.1.2 Computing the Warp Jacobian

The destination of the pixet under the piecewise affine wai\¥ (x; p) depends on the AAM
shape parametersthrough the vertices of the meshFrom Equation (1) recall that these vertices

are denoteds = (x1,y1, T2, Yo, - - -, T, Yu) . Applying the chain rule to the warlV (x; p) gives:

oW Z OW 0x; 8W8yi
0p 8xz8p Jy; Op

(29)
The first components of the Jacobian %?—’8 and %—W, the Jacobians of the warp with respect to
€Ly Yi

the vertices of the mesh From Equation (27) we see that:

oW
3@-

oW
Oy

= (1—a-30"7T and = (0,1 —a—-p"T. (30)

These Jacobians are images the size of the basesneskamples of these Jacobians are included
in Figure 9. Each image is the Jacobian with respect to aqodati vertex. The Jacobia%}‘i’
denotes the rate of change of the destination of the Wé(g; p) with respect to the vertex;. As

can be seen, the Jacobian is only non-zero in the triangtesdr;. It takes the maximum value

of 1 at the vertex:; and decays away linearly as described by Equation (30).
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p1 P2 b3

Figure 10: The Jacobiar%—‘g’ corresponding to the three shape vectors in Figure 1. Thenfioslep,
mostly corresponds to a left-right rotation of the face, skeond mode, to the up-down rotation of the
head, and the third modsg to motion of the mouth.

The second components of the Jacobian%#and%—gg. Differentiating Equation (2) gives:

8:172-
Jp

= (s¥, s, ..., s¥%) (31)

r n

= (s1’,s7',...,s01) and

wheres]* denotes the component of that corresponds te; and similarly fory;. The quantities

%ﬁ;‘ and %ij are therefore just the shape vectgrsearranged appropriately.

Putting together the components in Equations (30-31)tesuthe overall Jacobia%‘l’;" look-

ing like those in Figure 10. The array 8fx 3 (base mesls, sized) images correspond to the
Jacobian for the three shape vectors in Figure 1. In paatictiie first pair of images mostly cor-
respond to a left-right rotation of the face, the secondfoetine up-down rotation of the head, and

the third pair to the opening and closing of the mouth.

4.1.3 Warp Inversion

In Step 9 of the inverse compositional algorithm we mustiintlee incremental piecewise affine

warpW (x; Ap) to computeW (x; Ap)~!. Since:

oW OW
W(x; Ap) = W(x; 0)+$Ap = X+gﬁp+O(Ap2) (32)
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(remember thaW (x; 0) = x is the identity warp) we therefore have:

W W
W(x; Ap) o W(x; —Ap) = x — 0 Ap + 0 Ap = x+ O(Ap?). (33)
Jp Jp
It therefore follows that to first order iAp:
W(x;Ap)™' = W(x; —Ap). (34)

Note that the two Jacobians in Equation (33) are not evaluattexactly the same location,
but since they are evaluated at poift€Ap) apart, they are equal to zeroth orderAp. Since
the difference is multiplied byAp we can ignore the first and higher order terms. Also note
that the composition of two warps is not strictly defined aodhe argument in Equation (33) is
informal. The essence of the argument is correct, howeveceQve have the derived the first
order approximation to the composition of two piecewisenaffivarps below, we can then use that
definition of composition in the argument above. The resuthat the warpV (x; —Ap) followed

by the warpW (x; Ap) is equal to the identity warp to first order iap.

4.1.4 Composing the Incremental Warp with the Current Warp Estimate

After we have inverted the piecewise affine wak(x; Ap) to computéW (x; Ap)~! in Step 9 we
must compose the result with the current wa§f{x; p) to obtainW (x; p) o W(x; Ap)~'. Given
the current estimate of the parametpithe current mesh vertex locations= (1, y1, ..., 7y, ys) "
can be computed using Equation (2). From the previous sedtie parameters aV (x; Ap) !
are—Ap. Given these parameters, we can use Equation (2) againitoagstthe corresponding

changes to the base mesh vertex locations:

Asy = _ZApiSi (35)
i=1
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(2, y?) T+
(A, Ay9)Y
[ ]

(i, )T+
(Az;, Ayi)T
[

Base Meshs, Current Mesh s

(a0,99)" (i, )"
Figure 11: Composing the incremental waW (x; Ap)~! with the current warpV (x; Ap). The current

meshs and incremental updates to the base migst’, Ay?)T are known. We need to compute incremental
updates to the current me6Az;, Ay;)™. This can be performed by applying the affine warp for ea@miri
gle about the'" vertex to(z?,y?)™ + (Az?, Ay?)™ to obtain multiple estimates ¢f;, y;)* + (Axz;, Ay;)?T
which may be averaged to compute the new mesh vertex losation

whereAs, = (Ax), Ay, ..., Az% Ay®)T are the changes to the base mesh vertex locations corre-
sponding toW (x; Ap)~t. In order to compos® (x; Ap) ! with W (x; p), we must compute the
corresponding changes to the current mesh vertex locatiens: (Azy, Ay, ..., Az, Ay,)T.
Once we know these locations we can then compute the pananoé¥ (x; p) o W (x; Ap)~! by

solving Equation (2) for the new parameters:

!

p; = si-(s+ As —sp) (36)

wherep; is thei*" parameter oW (x; p) o W(x; Ap)~!, - denotes vector dot product, and the
shape vectors; are assumed to be orthonormal.

All that remains to be described is how to compte from As,. Considering theé'® vertex
in the mesh, we need to computaAz;, Ay;)T in the current mesk from (Az?, Ay?)T in the
base mes,. This is illustrated in Figure 11. Now consider any one of thesh triangles that
contains the'" vertex. For this triangle there is an affine warp between theebmesls, and
the current mesh. See Section 4.1.1 for more details. One way to compite, Ay;)T from
(Az9, Ay))T is to apply the affine warp for that specific triangle(td, 49)* + (Az?, Ay?)T and
so obtain(z;, v;)* + (Ax;, Ay;)T. The only problem with this approach is which triangle do
we use? Using a different triangle means using a differdimeafvarp and so the destination

(zs, )T + (Azy, Ay;)T may be different. This is the reason that the compositiomwofgiecewise

23



affine warps is hard to define. In general there will be seveigigles that share th&" vertex.
One possibility is to use the triangle that contains the fp@ify y?)* + (Az?, Ay?)™. The problem
with this approach is that the point could lie outside theebashs,. Instead we compute the
destination(z;, ;)™ + (Axz;, Ay;)T for every triangle that shares th¢ vertex and then average

the result. This will tend to smooth the warp at each vertekilat is desirable anyway.

4.1.5 Including Appearance Variation

We have now described all of the steps needed to apply theseneempositional algorithm to an
independent AAM assuming that there is no appearance waridtlore generally, we wish to use
the same algorithm to minimise the expression in Equatign This can be achieved using the

technique proposed in [16]. Rewrite Equation (7) as:

m 2

3 A006) + SNAG) ~ IWEkp)| = | Anx) + SN 6) ~ 1(WEip)

XESo =1

(37)

where||-|| is the L2 norm. This expression must be minimised simultaslowith respect te
andX = (A, X, ..., \n)T. If we denote the linear subspace spanned by a collectioaatbisA;

by span(A;) and its orthogonal complement byan(A;)*, Equation (37) can be rewritten as:

2

H Ag(x) + fj Aidi(x) = I(W(x;p))

1=1

4 H Ag(x) + ; NAi(x) — I(W(x;p))
i— spanégié

span(A;)+

where|| - ||2 denotes the square of the L2 norm of the vector projectedfirdinear subspace.
The first of the two terms immediately simplifies. Since thenmanly considers the components
of vectors in the orthogonal complementspfin(A;), any component ispan(4;) itself can be

dropped. We therefore wish to minimise:

span(A;

43 = HOWO5) Py + | 4000+ 35 0,0) = T(W i)
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The first of these two terms does not depend uporror anyp, the minimum value of the second
term is alway%). Therefore the minimum value can be found sequentially Isy fiinimising the
first term with respect tp alone, and then using that optimal valuepods a constant to minimise
the second term with respect to the Assuming that the basis vecta#s are orthonormal, the

second minimisation has a simple closed-form solution:

= > Ai(x) - [[(W(x;p)) — Ao(x)], (40)

XESsQ

the dot product of4; with the final error image obtained after doing the first miisiation.

Minimising the first term in Equation (39) is very similar tpgying the the inverse compo-
sitional algorithm to the AAM with no appearance variatidine only difference is that we need
to work in linear subspacean(A;)* rather than in the full vector space defined over the pixels
in sp. We do not even need to project the error image into this sadespAll we need to do is
prolectVAo into the subspacepan(A;)* in Step 5 of the inverse compositional algorithm,
see Figure 7. The reason error image does not need to betpwjato this subspace is because
Step 7 of the algorithm is the dot product of the error imag MAO . As long as one of the
two terms of the dot product is projected into a linear subspthe result is the same as if they
both were. Effectively, the error due to appearance varids “projected out”.

We refer toVAO as the steepest descent images because this dot-prodagbégghe
shortest path down the error surface, ignoring the noria@bis provided by the Hessian [3]. De-
note the elements of the ma@Ao asSD ;(x) for each parametgr=1,...,n. The steepest

descent images can be projected islqtﬁm(Ai)L as follows:

Ui OW
SD; (x) = VAO— -2 AR VAS— [ Aix) (41)
i=1 Lx€sp p]

See Figure 12 for a summary of the inverse compositionarilgo with appearance variation and
[1] for more details of the various ways that the inverse cositpnal algorithm can be combined

with linear appearance variation.
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The Inverse Compositional Algorithm with Appearance Variation

Pre-compute:

(3) Evaluate the gradierW A, of the templated(x)
(4) Evaluate the Jacobiad§? at (x;0)

(5) Compute the modified steepest descent images usingi&iét)
(6) Compute the Hessian matrix using modified steepest desnages

Iterate:

(1) WarpI with W (x; p) to computel (W (x; p))

(2) Compute the error imagW (x;p)) — Ao(x)

(7) Compute dot product of modified steepest descent imagkswor image
(8) ComputeAp by multiplying by inverse Hessian

(9) Update the warpW (x; p) «— W(x;p) o W(x; Ap)~!

Post-computation:
(10) Compute\; using Equation (40). [Optional step]

Figure 12: The inverse compositional algorithm with appearance tiariaThe only differences from the
algorithm without appearance variation are: (1) the exgioesin Equation (41) is computed in place of the
steepest descent imag@%o%—vg’ in Step 5, and (2) Step 10 is added to compute the appeararaagiars.

4.2 Including a Global Shape Normalising Transform

When constructing an AAM [10], the training meshes are Ugualormalised” before PCA is
applied to compute the shape eigenvectors. global shape normalising transforis often a
2D similarity transformation (translation, rotation, aswhle), although other global warps such as
affine warps could be used instead [4]. The global shape nizingatransform separates the (often
large) changes in mesh location due to the formation of thecbn the image from the local mesh
variation due to non-rigid shape deformation. The traimmgshes are typically normalised using
an iterative Procrustes analysis [10, 12] that removesgxtample: translation, rotation and scale
differences across all training meshes. The shape eigemsece then computed by applying PCA
to the normalised training meshes.

Obviously, because of this normalisation, the shape veabthe AAM do not model, for
example: translation, rotation, and scale. However, theggendata that the AAM is fit to will, in
general, be translated, rotated, and scaled by the imagefmn process (i.e. camera location.)

To fit a “normalised” AAM to such data it is therefore necegdarincorporate a matching global
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shape transform to the AAM.
In this section we describe the 2D similarity transform we fo global shape normalisation.
We also show how to parameterize it to simplify computatianthie inverse compositional AAM

fitting algorithm that includes a global shape transform.

4.2.1 Parameterizing a Global 2D Similarity Transform

We defineN(x; q) as the global shape normalising transform for the AAM tragndata. For
example N(x; q) might be the set of 2D similarity transforms:
(14a) —b x ty
N(x;q) = + (42)
b (1+a) Yy ty
where the four parametegs= (a, b, t,, t,)* have the following interpretations. The first péir b)
are related to the scaleand rotatiorf : a = kcosf — 1, andb = ksin 6. The second pait,, t,)
are ther andy translations. Equation (42) is parameterized so that thetity transform isy = 0.
Note that the above is not the only way to parameterize thaf 8 similarity transformations.
Another way is to define the set as a special subset of the sgecdwise affine warps used in
AAMs. The base meshig = (29,49 ... 22, y9)T. If we choosest = sq = (29,99, ...,29, )T,
sy = (—y9,29, ..., =0, 297, st = (1,0,---,1,0)T, ands; = (0,1,---,0,1)T then the set of

allowed linear AAM shape variation is exactly equal to theafe2D similarity transformations:

4
N(xq) = so+ ) _as; (43)

i=1

whereq = (¢1, g2, g3, ¢4). Note that it is straightforward to transform between theapeeters of
this linear parameterization and the parameters of the omrenon (nonlinear) parameterization

in Equation (42):

(44)
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We use the representationfin Equation (43) because this is similar to thaWfand therefore

much of the analysis in Section 4.1 can be reused, most ydtabdbderivation of the Jacobian.

4.2.2 Adding a Global Shape Normalising Transform to an AAM

GivenN(x; q), the definition of an AAM is then augmented from Equation @) t
MN(W(xip)ia)) = Ax) = Ag(x) + > NiAi(x) (45)

whereM is a 2D image of the appropriate size and shape that contermaddel instance. Given
appearance parametexs= (A, \o, ..., \,) T, the AAM appearance (x) is generated in the base
meshs,. The model instanc@/ is then created by warping the appearaddeom the base mesh
so first with the linear shape wa¥W (x; p) and then with the normalising wab§(x; q).

Note that this new definition of an AAM in Equation (45) is @ifent from just augmenting the
linear shape variation to include a 2D similarity transfation. For example, we could prepend
the four 2D similarity vectors;, s3, s; ands; to the AAM shape vectors tos,, and then orthonor-
malise. The AAM would then be able to move under 2D similatignsformationsas well aghe
original linear AAM shape variation. This is not the same awimg under the linear shape varia-
tion followed bythe 2D similarity transformation. Whether or not to use aglshape transform,
what it should be, and how it affects the performance of an A#dvan interesting, and relatively
unstudied question.

In the following description, we will assume that the gloshbpe transfornN(x; q) is the
2D similarity transform defined in Equation (43) by the shapetorsst = (29,49,..., 22, y9)T,
sy = (—yl, 2% ... =2, 20T, st = (1,0,---,1,0)" ands; = (0,1,---,0,1)T that are then or-
thonormalised. The orthonormalisation allows us to diyembmpute new parameters in the com-
position step. Assuming that the base shape is zero me&an)(= 0, 37 y? = 0), the only change
to Section 4.2.1 is that the similarity parameter valuesdndfion (44) must be weighted by the

inverse of the orthonormalising multiplier when convegtbetweer{q,, ¢2, g3, ¢+) and(a, b, t,;, t,)).
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Furthermore, we assume that the two sets of shape vegtamsls® are orthogonal to each other.
This should happen automatically when the AAM is constrdici&hen each shape vector is nor-
malised by removing the similarity transform, we effeclimeroject it into the subspace orthogonal
to s;. Since the shape vectassare computed by applying PCA to a collection of vectors that a
orthogonal tas}, they themselves should be orthogonasto In practice, due to various sources
of noise,s; ands; are never quite orthogonal to each other. This minor errdy affects the

composition step and can either be ignored or, preferahé/complete set o, ands; can be

orthonormalised.

4.3 Fitting an AAM Including a Global Shape Transform

We now describe how the inverse compositional algorithmbsansed to fit an AAM with a global

shape transformation; i.e. apply the inverse compositiaigarithm to the warp:
NoW(x;q,p) = N(W(x;p);q) (46)

rather than the warfV (x; p). Fitting the AAM to an imagd (x) then consists of minimising:

2

5 [ 40) + 3 M) — TN(Wxip); ) (@)

XESsQ

simultaneously with respect to the appearance paramatdiee linear shape parametgssand
the global shape warp parametersTo do this, we repeat the steps in Section 4.1 for the warp

N o W with parametersq, p) rather than the warfV with parameterp.

4.3.1 Warping

To perform the piecewise affine warping to comp{®&N (W (x;p);q)) as in Section 4.1.1 we
need to know the destination of the base m&shinder the wargN o W. As a convenient abuse

of terminology, denote the destination of the mesinder the warpW (x; p) by W (s; p). From
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Equation (2) we have:

W (so;p) = so+ Zpisi~ (48)

i=1
We now want to comput® (W (so; p); q); i-e. we need to warp every vertexW (sy; p) with the

2D similarity transformN(x; q). This can be performed in the following manner. Since:
4
N(so;q) = so + Z sy (49)
i=1

we can compute the destinationsgfunderN, and in particular, the destination of any one triangle
underIN. Using the technique described in Section 4.1.1 we can ctertha affine warp for this
triangle. Since the set of 2D similarity transforms is a stlef the set of affine warps, we can
just apply this affine warp to every vertexW (sq; p) to compute the destination of the base mesh

underNoW. The piecewise affine warping is then performed exactly asriteged in Section 4.1.1.

4.3.2 Computing the Jacobian

The Jacobian of the waily o W is (§:N o W, &-N o W). SinceW (x; 0) = N(x;0) = x, the

identity warp, and we are evaluating the Jacobiap at0, q = 0, we have:

0 ON
and:
0 OW

Since the representation of the wasandN is the same (linear shape variation defined on the

base mesh), the computation of the Jacolﬁ%&rN oW, g—pN o W) = (%—2‘, %—VP}’) is exactly as

described in Section 4.1.2, just fg}! we uses;, and for% we uses;.
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4.3.3 Warp Inversion

In Section 4.1.3 we showed th¥¥ (x; Ap)~! = W (x; —Ap) to first order inAp. Replacing the

warp W with the warpN o W and the parameterSp with the parameter&Aq, Ap) yields:

N o W(x;Aq,Ap)™" = NoW(x; —Aq, —Ap) (52)

to first order inAq andAp.

4.3.4 Warp Composition

The first thing we need to do is compute the destination of &semesls, under:

(NoW)(x;q,p)o(NoW)(x; Aq, Ap) " & (NoW)(x;q,p)o(NoW)(x; —Aq, —Ap). (53)

The destination of, under(No W) (x; —Aq, —Ap) can be computed similarly to the computation

for the warping above. First we compute:

W(so; —Ap) = sp — Z Ap;s;. (54)
=1
We then compute:
4
N(so; —Aq) = sp — Z Ag;s; (55)
=1

and an affine warp faN(sy; —Aq) using the technique described in Section 4.1.1. We theryappl
this affine warp toW (so; Ap) to computeN o W (sy; —Aq, —Ap). The destination of the base
meshs, under(IN o W)(x; q, p) was computed to perform the piecewise affine warp. We can then
use the technique in Section 4.1.4 to comh¥e W (sy; —Aq, —Ap) andN o W (sg; q, p) to
compute the destination of the base meshnder the warp in Equation (53). Denote the result

The second thing we need to do is find a new sgqi ahdq such that:

NoW(sp;q,p) = s'. (56)

31



In general solving this equation fef andp is a non-linear optimisation. FAX a 2D similarity

transform, however, the problem can be solved fairly eaBilgt note that:

NoW(so;q,p) = N(so+ Y pisi;q). (57)

1=1

SinceN can also take the form in Equation (42), this expressionlsqua

1+a —b n
N(so;q) + 1+a) > pisi (58)
b (1+a) |i=t

where we have again abused the terminology. The multiplee®?® tx 2 matrix with the2v di-
mensional shape vectors is performed by extracting eaclopaiatchingry vertex coordinates in

turn, mutliplying by the2 x 2 matrix, and then replacing. We can rewrite Equation (58) as:

10)n
N(so;q) + |(1+a) > pisi| 4+ |b
=1

sz'si . (59)
0 1 i=1

1 0

The secontiterm in Equation (59) is orthogonal & because; is orthogonal tas;. The third
term in Equation (59) is orthogonal &) because, for every vector #} if we switch the role ofr
andy and change the sign of one of them we still have a vector ti{atésnstant multiple of) one

of the others;.

SinceN(sy; q) = sp + i, ¢:s; we therefore wish to solve:

0

4 — n
So + Z (]ZS;k + (1 + CI,) szsz = S]L (60)
=1

Zpisi + |b
i=1 0 1 |i=t

1 0

the solution of which fo;, using the orthogonality relations discussed above, is:

g = s - (SJr —Sp)- (61)

(2

2This argument is only applicable to 2D similarity warps. Angar argument may also be possible for affine
warps. For a general global waly, however, there is likely to be no corresponding derivation
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Once the parametetgare known we can then compute:
pi = si- (N(sh,q) ™" —sg). (62)
Note that these last two equations correspond to Equat®)nr{&Section 4.1.4.

4.3.5 Appearance Variation

The treatment of appearance variation is exactly as in @edtil.5. Solving for the warpy o W
rather than foW does not change anything except that the steepest des@gdsifor bothp and
q need to be projected intpan(A;)* using the equivalent of Equation (41).

The inverse compositional AAM fitting algorithm including@earance variation and global
shape transform is summarised in Figure 13. In Step 5 we ctanipa modified steepest descent
images:

ON U [ ON

SD; () = Vo7 — Y Ai(x)-VAoa—q] Ay(x) (63)
J i=1 J

XESQ

for each of the four normalised similarity parameters ¢-, g3, ¢4) and:

OW i OW
SDj+4(X) == VA()— - Z [Z Ai(X) . VAQ—‘| AZ(X) (64)
Op; i=1 Lx€sp Op;
for p wherej = 1,...,n. The concatenated steepest descent images form a singte weit

four images foig followed byn images forp. If we denote the elements of this veckid; (x) for
j=1,...,n+4,the(j, k)" element of thén + 4) x (n + 4) Hessian matrix is then computed in
Step 6 as:

H;j = ) SD;(x) - SDi(x). (65)

XESQ

We compute the appearance parameters in Step (10) using:

A= ) Ai(x) - [I(IN(W(x;p);q) — Ao(x)]. (66)

XESQ
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Inverse Compositional Algorithm with Appearance Variation and Global Shape Transform

Pre-compute:

(3) Evaluate the gradierW A, of the templated(x)

(4) Evaluate the JacobiadsY and %l at (x; 0)

(5) Compute the modified steepest descent images usingi&ugié&3) and (64)
(6) Compute the Hessian matrix using Equation (65)

Iterate:
(1) WarpI with W (x; p) followed by N (x; q) to computel (N(W (x;p);q))
(2) Compute the error imagéIN(W (x;p);q)) — Ao(x)
(7) Computey, o, SD;(x) - [[(N(W(x;p);q)) — Ao(x)]fori=1,...,n+4
(8) Compute(Aq, Ap) by multiplying the resulting vector by the inverse Hessian
(9) Update(N o W)(x;q,p) < (N o W)(x;q,p) o (N o W)(x; Aq, Ap)
Post-computation:
(10) Compute); using Equation (66)[Optional step]

Figure 13: The inverse compositional AAM fitting algorithm with appaace variation and global shape
transform. Most of the computation is similar to that in Figd2 for the inverse compositional algorithm
with appearance variation, except thererare4 shape parameter$jn q andn in p. We therefore compute
n + 4 modified steepest descent images in Step(d,& 4) x (n + 4) Hessian matrix in Step 6, and+ 4
steepest descent parameter updates in Step 7. These wedi@sned into a + 4 dimensional vector and
multiplied by the inverse of the Hessian in Step 8 to giverthe 4 dimensional vectofAq, Ap).

4.4 Other Extensions to the Algorithm

We have described how the inverse compositional image rakgw algorithm can be applied to
AAMs. The field of image alignment is well studied and over ylears a number of extensions
and heuristics have been developed to improve the perfaenaiithe algorithms. Most of these

can easily be applied to the algorithm that we have just desdtr Three examples include:

Hierarchical Processing: The fitting algorithm can be applied hierarchically on a Gaarsimage

pyramid to reduce the likelihood of falling into a local mimim [4].

Progressive Transformation Complexity: The fitting algorithm can be applied incrementally to
more and more complex warps; i.e. first fit on a small numbehefghape parameters

(p1,-..,pn)T and then incrementally add more and more complexity [4].

Levenberg-Marquardt: It is possible to use the Levenberg-Marquardt inverse caitipoal al-
gorithm instead of the Gauss-Newton inverse compositialgalrithm described in this pa-

per. See [3] for the details of that algorithm.
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5 Empirical Evaluation

We have proposed a new fitting algorithm for AAMs. The perfante of AAM fitting algorithms
depends on a wide variety of factors. For example, it dependshether hierarchical process-

ing, progressive transformation complexity, and adapgtep-size algorithms such as Levenberg

Marquardt are used. See Section 4.4. The performance carbalsery dependent on minor
details such as the definition of the gradient filter used topateV A,. Comparing like with like
is therefore very difficult. Another thing that makes emgafievaluation hard is the wide variety
of AAM fitting algorithms [6,7,11,18,21] and the lack of astkard test set.

In our evaluation we take the following philosophy. Instedd¢omparing our algorithm with
the original AAM fitting algorithm or any other algorithm @hresults of which would have limited
meaning), we set up a collection of systematic experimehtrawe only vary one component of

the algorithm. In this paper, we have discussed three mainggs to AAM fitting:

1. We use the inverse compositional warp update rather tleaadditive; i.e. we use Step 9 in
Figure 13 to update the warp parameters rather than simplgtingp «— p + Ap.

2. We use an analytical derivation of the steepest desceagamrather than a numerical ap-
proximation [11,15, 21].

3. We project out the appearance variation as describedatmo8et.1.5 rather than fitting for
itasin[11,15,21].
Each of these changes can be made independently and so watevedch one independently. We
compare our AAM fitting algorithm with and without each of #lsechanges. For example, in the
first experiment we try the two alternatives for Step 9 of tlgoathm and compare them. Every

other line of code in the implementation is exactly the same.

5.1 Constructing the AAMs

One choice we need to make to test the algorithms is the cooteéhe AAM. There are a wide
variety of applications for AAMs. An AAM could be constructéor a specific person and used

to track that person’s face. Alternatively, a generic AAMiltbbe constructed using images of a
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Figure 14: Five of the 110 training images used to construct the 5-pefgdM. Figures 1 and 2 contain
the first few modes of the shape and appearance variatior oégulting AAM.

variety of people’s faces and might be used for face recmgnitAlthough there is no reason to
expect theelative performance of the algorithms to depend on the AAM used, weqnt results

using two different AAM models to validate our conclusionsmafully. Specifically, we chose to
use a person specific AAM and a multi-person AAM constructedbtpeople.

Five of the 110 training images used to construct the 5-pmefgdM are included in Figure 14.
The mean shape and first 3 (of 13) shape modes for this modshaven in Figure 1. The mean
appearance and first 3 (of 42) appearance modes are showguire 2. Figure 15 contains 4 of
the 30 training images used to construct the person-spédild, the mean shape, the 3 shape

modes, the mean appearance, and the first 3 (of 9) appearaades.m

5.2 Test Data, Ground Truth, and Experimental Procedure

We evaluate both of the AAMs on a collection of images. Thepeispecific AAM was evaluated
on 300 frames. The 5-person AAM was evaluated on 900 frant® frames for each of the
five people. The accompanying files ‘tastleo ps.mpg’ and ‘teswvideo 5p.mpg’ contain the test
sequences. Note that although the test data is arrangedeassyihe evaluation of the algorithms
treats each frame as a separate test case and is an evatidaiiogle-frame fitting performance.
To generate ground truth data, we fit the appropriate AAM tthdeame of the test data. This
is achieved through a combination of: (1) hand initialisatand re-initialisation, and (2) track-
ing through the sequences. We visually check that the fit &edréconstruction is good for
each frame in the test data. The result is illustrated in féigé and the accompanying movies

‘ground.truth_ps.mpg’ and ‘groundruth 5p.mpg’. Ideally we want to use these fitting results as
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Figure 15: The person-specific AAM. Top Row: Four of the 30 training ireagised to construct the

AAM. Middle Row: The mean shape and all 3 shape variation rmoBettom Row: The mean appearance
and the first 3 (of 9) appearance variation modes.

ground-truth. This, however, is problematic because it triag the results towards the algorithm
used to generate the ground truth. Specifically, we usedtleede compositional algorithm with
analytically computed steepest descent images and pedjectt appearance variation to generate
the ground-truth. To detect any possible bias in the graumit we create a new sequence by
overlaying the reconstructed AAM on the original movie. Werefore have four movies. The
original movies, and two new synthetic movies containirgltackground of the original movies
and the face region synthetically generated from the fitt@dAparameters. By comparing the
performance of the algorithms on these sequences we sheuddblb to detect any bias in the
ground-truth. A side-by-side comparison of the real andlsstic movies is contained in the files
‘syntheticvs_realps.mpg’ and ‘synthetiws_real 5p.mpg’. Empirically we found no difference in
the relative performance of any of the algorithms on theesponding real and synthetic data, and
so conclude that there is no bias. For lack of space, we jasept the results on the synthetic data.

The results on the original data are almost identical andoeambtained on the authors webpages.
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Frame: 5 Frame: 6 Frame: 7 Frame: 8

Figure 16: Example frames from the 5-person test sequence overlaidthét ground truth mesh. The
ground truth result is used in two ways: (1) to create the rhimmnstructed synthetic test sequence, and
(2) to define the initial conditions for all of the perturlmatiexperiments.

Also note that the convergence plots in Figures 19, 20, 2d 22show that all of the algorithms
converge almost exactly to the ground truth, at least sontkeofime. This provides even more
evidence that there is no bias in the ground-truth.

Our experimental procedure consists of running the algmston a large number of inputs,
evaluating the results, and averaging. Each input consfst¢l) one of the images from the
appropriate test data, and (2) the ground truth shape, egpEs and similarity parameters. Each
input test case is then generated as follows. Given thertesgie, the ground-truth parameters for
that image are randomly perturbed to generate the initralpater estimates to start the algorithms
with. The shape parameters are randomly generated frompéndent Gaussian distributions with
variance equal to a multiple of the eigenvalue of that modinénPCA performed during AAM
construction. The similarity transform parameters areegated using the same procedure as in [3].
Two distinguished poinfdn the mesh are perturbed with Gaussian noise of a certaiangar and

the similarity transform parameters then solved for. Hyndlhe appearance parameters are set to

3The motion of two points defines a similarity warp. The exmenits in [3] use an affine warp and so three points
are required. The amount of perturbation is then sampledbying the variance. Other approaches to perturbing the
similarity warp are possible. For example, we could perthdbmesh points with equal magnitude perturbations to
the orthonormalised 4 eigenvectors used to implement thigesity transformation. The high-level meaning of doing
this is unclear, however.
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be the mean appearance.

The results presented in the following sections are thdtreaveraging the performance over
20 randomly generated trials for each of the 300/900 framésa test data. Figure 17 shows four
example random perturbations from the ground truth. Sixé&sfrom one of the example trials are
shown in Figure 18 for the inverse compositional algoritithe algorithm converges well before

20 iterations. More example trials for the person-specifidvRare illustrated in ‘trialsps.mpg’.

Figure 17: Examples of perturbed initial conditions. The ground trietbult (dotted mesh) is randomly
perturbed by a chosen variance to form the starting poitid(soesh). The algorithms are then run for 20
iterations and tested for convergence.

™ ]
SRR

N

10 iterations: 0.69 15 iterations: 0.09 20 iterations: 0.09
Figure 18: Six frames from the 20 iterations of a perturbation trialtHa initial frame the total mesh point

location error from the ground truth mesh is 21.8 pixels. By 10th iteration the error is 1.0 and so the
trial has already passed the convergence test.
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5.3 The Evaluation Metrics

Given the initial, perturbed, parameters, the AAM fittinga@lithm should hopefully converge to
the ground-truth parameters. We measure this convergenteoi ways. The first measure is
the average rate of convergenc®Ve plot the RMS error in the mesh point locations against the
iteration number of the algorithm. If the algorithm convesghe RMS error should reduce to close
to zero. These graphs are averaged (for approximately the starting error) over all cases where
all algorithms converge. We say that an algorithm conveifgi® RMS mesh point error is less
than1.0 pixels after 20 iterations. The second measure isatrexage frequency of convergence.
We count the number of times each algorithm has convergeer (20 iterations), divide by the
total number of trials, and multiply by 100 to convert to agesrtage.

We do not measure the accuracy of the appearance parametarssk once the shape param-
eters have been estimated, estimating the appearancegtaraims a simple linear operation. See
Equation (40). Also, comparing the appearance algorithyngheir appearance estimates is not

possible because the appearance is not computed untiltbiecpout” algorithm has converged.

5.4 Experiment 1: The Update Rule

In the first experiment we compare the inverse compositiapdhte in Step 9 of the algorithm
with the usual additive update gf: — p + Ap. (Because the roles of the image and the template
were switched in the derivation of the inverse compositi@agorithm, we actually updatp «

p — Ap.) All previous AAM fitting algorithms, including [7, 11, 21]se the additive update. The
results for the person-specific AAM are included in Figureah@l those for the 5-person AAM in
Figure 20. For both figures in (a) and (b) we plot results otgdiby perturbing only the shape
parameters, in (c) and (d) we plot results perturbing ongysimilarity transform parameters, and
in (e) and (f) we plot results perturbing both the shape andlaiity parameters. The weighting
between the shape and similarity transform parameterséfiioth” case was chosen so that the
knee points in the frequency of convergence plots for shapesanilarity occur at roughly the

same point.
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Figure 19: Person-Specific AAM Results: The results of comparing thtbitae and inverse compositional
updates to the warp in Step 9 of the algorithm. We plot the sat®nvergence in (a), (c), and (e), and the
frequency of convergence in (b), (d), and (f). Two curves sltewn for each algorithm in the rate of
convergence plots in (a), (c), and (e) for two different sdéthe initial parameter estimates corresponding
to two different degrees of perturbation to the groundhtno@rameters. In (a) and (b) we just perturb the
shape parameters, in (c) and (d) we just perturb the sityilaeinsform parameters, and in (e) and (f) we
perturb both sets of parameters. In general, the compoasitiqppdate outperforms the additive update.
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Figure 20: 5-Person AAM Results: The results of comparing the addiéimel inverse compositional
updates to the warp in Step 9 of the algorithm. We plot the e&teonvergence in (a), (c), and (e), and
the frequency of convergence in (b), (d), and (f). Two cur@esshown for each algorithm in the rate of
convergence plots in (a), (c), and (e) for two different sétéhe initial parameter estimates corresponding
to two different degrees of perturbation to the groundrtno@rameters. In (a) and (b) we just perturb the
shape parameters, in (c) and (d) we just perturb the sityilaansform parameters, and in (e) and (f) we
perturb both sets of parameters. In general, the compoaitigodate outperforms the additive update.
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The first thing to notice in Figures 19 and 20 is that in mosesdbe inverse compositional
update outperforms the additive. The rate of convergentaster and the frequency of conver-
gence is higher. The one exception is for perturbing onlystiepe component in (a) and (b). In
this case, the global similarity transform hides the probtescribed in Section 2.3.3 and so the
addition and inverse composition updates perform verylangi When the normalising similarity
transformation is used, the shape variation is very smiallive to the mesh. The additive update is
therefore a reasonable approximation for the shape pagasndthe constant linear update approx-
imation problem is clear for the similarity transform paters in (c) and (d), and the combined
performance for perturbing both shape and similarity iraf&] (f) is also poor.

Comparing Figures 19 and 20 it is clear that the performaacéhe person-specific AAM is
far better than the performance for the 5-person AAM. Thisxpected because of the greater
shape and appearance variation in the 5-person AAM. Notewerthat the relative performance
of the algorithms is the same in both cases.

In the following experiments we only show results for pdsing both shape and similarity
transform parameters. In all cases the “both” results greesentative of those obtained for per-

turbing shape or similarity transform parameters alone.

5.5 Experiment 2: Computation of the Steepest Descent Image

The inverse compositional algorithm uses seepest descent imagwo%—‘g. The analytically
derived steepest descent images play exactly the samesrtiie aumerically estimated imag%';s
in [11] (and the corresponding finite difference images i, PI1].) The difference between these
two sets of images is that in the additive formulation, theepest descent images are a function
of p whereas in the inverse compositional formulation they aoggbly constant. Otherwise their
roles and meaning are identical.

Is it better to analytically compute or numerically estim#te steepest descent images? To
answer this question, we apply the same inverse compaaitedgorithm using both approaches,

the analytically deriveon%—Vg’, and the numerically estimatgg computed as described in [11].
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Because we use the inverse compositional update, the stefgseent images in both cases should
be evaluated gb = 0. The only change to the numerical estimate computationribestin [11]
then is that we always perturb from a starting poinpof 0.

The results in Figure 21 show that the analytically deriviegtgest descent images perform
better for both the person-specific and 5-person AAMs. Thimost clearly seen in the 5-person
case where the numerical estimate results consistentiyeoge away from the ground truth and
therefore the frequency of convergence is very poor. Onsoreéor this difference may be that
the computation of the analytically derived steepest desogages does not depend on the back-
ground. We use & x 3 plane fitting algorithm to estimate the gradient of the teatgV A, that
can cope with arbitrary “missing” pixels at the boundarylo base mesh. In the numerical case

it is not clear how to best minimise background differendea$ at the boundary.

5.6 Experiment 3: Appearance Variation

In our algorithm we “project out” the appearance variatiSee Section 4.3.5. Projecting out the
appearance has the advantage that there are less unknalves tinre algorithm is more efficient.
This approach should be contrasted with that in [11, 15, 2i¢rne the appearance parameters
are treated like any other and are iteratively updated. & heg potentially benefits of iteratively
updating the appearance parameters. In particular, amglabon between the appearance and
shape parts of the model can be accounted for in the Hessi@ax niias straightforward to modify
the inverse compositional algorithm to model the appea@a@aciation in this way. The steepest
descent images must be computed for the parameters of appegrart of the model. The steepest
descent image for the appearance parametisrsimply A;(x). These steepest descent images are
then appended to the vector of steepest descent imagesg$is@H increases in size appropriately,
and otherwise the algorithm remains the same. The addpipeoach is the correct way to update
the appearance parameters. See [1] for more details of veesg compositional algorithm with
linear appearance variation.

We plot results comparing the “project out appearance” @ggr with the “explicitly modeling
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Figure 21: A comparison of using the analytically derived steepeste@simages versus the numerical
finite difference images used in [11, 15, 21]. The resultssti@at the analytically derived images perform

significantly better, especially in the 5-person case. Wwedets of curves in the rate of convergence plot
correspond to two different magnitudes of the initial pdsadion.

appearance” approach in Figure 22. Again, all other asp#dtse two algorithms are identical.
Both use the inverse compositional update and the andlgtieapest descent images. The results
in Figure 22 show that the two approaches perform idenyid¢atl both AAM models. Note, how-
ever, that the project out approach is far more efficient beedess parameters are updated in each
iteration of the algorithm. The “project out appearanceprapch is therefore the better choice.

Note, however, that there are possibly better, but far sloways to solve for the appearance
variation [1].
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Figure 22: A comparison of the “project out appearance” approach destin Section 4.3.5 with the
usual approach of “explicitly modelling appearance” usedlil]. The results show no difference in the
performance of the two approaches. The “project out appeataapproach is therefore the better choice
because it is far more computationally efficient. The twa sdtcurves in the rate of convergence plot
correspond to two different magnitudes of the initial peyation.

5.7 Computational Efficiency

One possible concern with the inverse compositional dlgaris that the time taken to perform
the warp update in Step 9 might be quite long. Although themjatson of the update is quite in-

volved, the actual calculation is minimal because the nurabeertices in the mesh is far less than
the number of pixels. In Table 1 we include timing resultsdar Matlab implementations of the

four algorithms compared in this section. “With Additive tiige” is the algorithm compared with
in Section 5.4: the inverse compositional algorithm witbBs® replaced with the additive update.
“With Numerical Gradient” is the algorithm compared with $ection 5.5: the inverse compo-

sitional algorithm with a numerical estimate of the ste¢plescent images. Finally, “Explicitly
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Table 1: Timing results for our Matlab implementations of the foug@ithms evaluated in Section 5 in
milliseconds These results were obtained on a dual 2.4GHz P4 machinerarfdrahe person-specific
AAM with 19,977 pixels, 3 shape parameters, 4 similarityhsfarm parameters, and 9 appearance param-
eters. Note that: (1) the inverse compositional algoritemat significantly slower than the additive algo-
rithm, (2) the pre-computation of the numerical steepesteliet images is slow, and (3) explicitly modeling
appearance is significantly slower than projecting out apgrece.

Pre-computation:

| | Step3 | Step4| Step5 | Step6| Total |
Inverse Compositional 12,682| 5,726| 90.2 85.2 | 18,583
With Additive Update 12,682| 5,726| 90.2 85.2 | 18,583

With Numerical Gradient - - 251,012 85.2 || 251,097
Explicitly Modeling Appearance| 12,682| 5,726 34.3 | 435.5| 18,878

Per Iteration:
| | Step 1] Step 2| Step 7| Step 8| Step 9]| Total |
Inverse Compositional 2.7 3.0 120 | 0.1 0.2 17.8
With Additive Update 2.7 3.0 120 | 0.1 0.1 17.7
With Numerical Gradient 2.7 3.0 120 | 0.1 0.2 17.8
Explicitly Modeling Appearance| 2.7 6.4 | 26.7 | 0.1 0.3 || 36.2

Post Computation:

| Step 10
Inverse Compositional 7.2
With Additive Update 7.2
With Numerical Gradient 7.2
Explicitly Modeling Appearancs -

Modeling Appearance” is the algorithm compared with in #ecb.6: the inverse compositional
algorithm extended to compute the appearance parametegsgradient descent.

The results in Table 1 were obtained on a dual 2.4GHz P4 mecmd are for the person-
specific AAM with 19,977 pixels, 3 shape parameters, 4 smitylaransform parameters, and 9
appearance parameters. The results for the 5-person AAMimEiear and omitted for lack of
space. As can be seen, the inverse compositional updatepn9Ss negligible compared with
the other steps and so the algorithm is only marginally sidan the additive algorithm. Also
note: (1) that the analytical computation of the steepestel® images in Steps 3, 4, and 5 is

significantly faster than the numerical computation andti2) explicitly modeling appearance
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algorithm is significantly slower primarily because there more parameters to solve for in each
iteration. The computation of the error image in Step 2 i at®re involved. We also have a
compiled implementation of our algorithm written in “C”. IBimplementation runs at 230 frames

per second for the person-specific AAM.

6 Conclusion

Previous AAM fitting algorithms fall into one of two categesi: (1) inefficient gradient descent
algorithms and (2) efficient, but ad-hoc, algorithms thakenthe approximation that there is a
constant linear relationship between the error image aedtitive updates to the (shape) pa-
rameters. In this paper we have proposed an algorithm forgisAMs that has the advantages
of both types of algorithms. It is an analytical gradientabsg algorithm with well understood
convergence properties that is even more efficient thandHeoa algorithms. The algorithm is
an extension to the inverse compositional image alignmigiorighm [3]. Overall our algorithm
outperforms previous approaches in terms of: (1) the spéedrvergence (fewer iterations are
needed to converge to any given accuracy), (2) the frequaragynvergence (our algorithm is more
likely to convergence from a large distance away), and @xtimputational cost (the algorithm is
faster mainly because the appearance variation is projecte)

The inverse compositional AAM fitting algorithm can only bgptied toindependenAAMs.
It cannot be applied toombinedAAMs (see Section 2.2 for a definition of independent and com-
bined AAMs) which parameterize the shape and appearan@igarwith a single set of param-
eters and so introduce a coupling between shape and appeavdthough this may seem like a
serious limitation because combined AAMs can parametéhigesame visual phenomenon with
fewer parameters, in practice it is not. The nonlinear og@tion in our algorithm is only over
then shape parameters and so is actually lower dimensional Heaadquivalent combined AAM
optimisation which would have more thanparameters. Currently we do not see an easy way to

extend our algorithm to combined AAMs, but of course we maybeng.
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The inverse compositional algorithm is an image alignméguaréthm. Hence most standard
extensions to image alignment can be applied with this @lgor See Section 4.4. For other
extensions, such as the use of robust norms [5, 16, 21], thatisin is not quite so clear. For
example, when a robust norm is used, the orthogonal decotigmosf the norm in Equation (38)

is not applicable. The efficient treatment of appearandeeiefore more complex [1].
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