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Abstract

An obj ect recognition system has been devel oped that usesa
new class of local imagefeatures. Thefeaturesareinvariant
toimagescaling, trandation, and rotation, and partiallyin-
variant to illumination changes and affine or 3D projection.
These features share similar properties with neuronsin in-
ferior temporal cortex that are used for object recognition
in primate vision. Features are efficiently detected through
a staged filtering approach that identifies stable points in
scale space. Image keys are created that allow for local ge-
ometric deformations by representing blurred image gradi-
ents in multiple orientation planes and at multiple scales.
The keys are used as input to a nearest-neighbor indexing
method that i dentifies candi date object matches. Final veri-
fication of each match isachieved by finding a low-residual
least-squares solution for the unknown model parameters.
Experimental results show that robust object recognition
can be achieved in cluttered partially-occluded images with
a computation time of under 2 seconds.

1. Introduction

Object recognition in cluttered real-world scenes requires
local image features that are unaffected by nearby clutter or
partial occlusion. The features must be at least partialy in-
variant to illumination, 3D projective transforms, and com-
mon object variations. On the other hand, the features must
also be sufficiently distinctive to identify specific objects
among many aternatives. Thedifficulty of the object recog-
nition problem is due in large part to the lack of successin
finding such image festures. However, recent research on
the use of dense local features (e.g., Schmid & Mohr [19])
has shown that efficient recognition can often be achieved
by using local image descriptors sampled at alarge number
of repeatable locations.

Thispaper presents anew method for image festure gen-
eration called the Scale Invariant Feature Transform (SIFT).
This approach transforms an image into a large collection
of local feature vectors, each of whichisinvariant to image
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trandation, scaling, and rotation, and partially invariant to
illumination changes and affine or 3D projection. Previous
approaches to local feature generation lacked invariance to
scale and were more sensitive to projective distortion and
illumination change. The SIFT features share a number of
propertiesin common with the responses of neuronsininfe-
rior temporal (IT) cortex in primate vision. This paper also
describes improved approaches to indexing and model ver-
ification.

The scae-invariant features are efficiently identified by
using a staged filtering approach. The first stage identifies
key locations in scale space by looking for locations that
aremaximaor minimaof adifference-of-Gaussian function.
Each point isused to generate afeature vector that describes
thelocal image region sampled rel ativeto its scal e-space co-
ordinate frame. The features achieve partial invariance to
local variations, such as affine or 3D projections, by blur-
ring image gradient locations. This approach isbased on a
model of the behavior of complex cellsin the cerebral cor-
tex of mammalian vision. The resulting feature vectors are
called SIFT keys. In the current implementation, each im-
age generates on theorder of 1000 SIFT keys, aprocessthat
requires less than 1 second of computation time.

The SIFT keys derived from an image are used in a
nearest-neighbour approach to indexing to identify candi-
date object models. Collectionsof keysthat agree on a po-
tential model pose arefirst identified through aHough trans-
form hash tabl e, and then through aleast-squaresfit toafina
estimate of model parameters. When at least 3 keys agree
on the model parameters with low residual, there is strong
evidence for the presence of the object. Since there may be
dozens of SIFT keys in the image of a typical object, it is
possibleto have substantial levels of occlusion in theimage
and yet retain high levels of reliability.

The current object models are represented as 2D loca
tions of SIFT keysthat can undergo &ffine projection. Suf-
ficient variation in feature location is allowed to recognize
perspective projection of planar shapes at up to a 60 degree
rotation away from the camera or to alow up to a 20 degree
rotation of a 3D object.



2. Related research

Object recognition iswidely used in the machine vision in-
dustry for the purposes of inspection, registration, and ma-
nipul ation. However, current commercia systemsfor object
recognition depend almost exclusively on correl ation-based
template matching. While very effective for certain engi-
neered environments, where object pose and illumination
aretightly controlled, template matching becomes computa-
tionally infeasible when object rotation, scale, illumination,
and 3D pose are alowed to vary, and even more so when
dealing with partial visibility and large model databases.

An dternative to searching al image locations for
matches is to extract features from the image that are at
least partidly invariant to the image formation process and
matching only to those festures. Many candidate feature
types have been proposed and explored, including line seg-
ments [6], groupings of edges [11, 14], and regions [2],
among many other proposals. While these features have
worked well for certain object classes, they are often not de-
tected frequently enough or with sufficient stability to form
abasisfor reliable recognition.

There has been recent work on devel oping much denser
collections of image features. One approach has been to
use a corner detector (more accurately, a detector of peaks
in local image variation) to identify repeatable image loca
tions, around whichloca image propertiescan be measured.
Zhang et al. [23] used the Harris corner detector to iden-
tify feature locationsfor epipolar aignment of imagestaken
from differing viewpoints. Rather than attempting to cor-
relate regions from one image against all possible regions
in a second image, large savingsin computation time were
achieved by only matching regions centered at corner points
in each image.

For the object recognition problem, Schmid & Mohr
[19] dso used the Harris corner detector to identify in-
terest points, and then created a locad image descriptor at
each interest point from an orientation-invariant vector of
derivative-of-Gaussian image measurements. These image
descriptorswere used for robust object recognition by |ook-
ing for multiple matching descriptors that satisfied object-
based orientation and location constraints. This work was
impressive both for the speed of recognition in a large
database and the ability to handle cluttered images.

The corner detectors used in these previous approaches
have a major failing, which is that they examine an image
at only asingle scale. Asthe change in scale becomes sig-
nificant, these detectors respond to different image points.
Also, sincethedetector does not providean indication of the
object scalg, it is necessary to create image descriptors and
attempt matching at alarge number of scales. This paper de-
scribes an efficient method to identify stable key locations
in scale space. This means that different scalings of anim-
age will have no effect on the set of key locations sel ected.

Furthermore, an explicit scale is determined for each point,
which alows the image description vector for that point to
be sampled at an equivalent scale in each image. A canoni-
cal orientationisdetermined at each location, so that match-
ing can be performed relative to a consistent loca 2D co-
ordinate frame. Thisallows for the use of more distinctive
image descriptors than the rotation-invariant ones used by
Schmid and Mohr, and the descriptor is further modified to
improveitsstability to changesin affine projection and illu-
mination.

Other approaches to appearance-based recognition in-
clude eigenspace matching [13], color histograms[20], and
receptive field histograms [18]. These approaches have al
been demonstrated successfully on isolated objects or pre-
segmented images, but due to their more global features it
has been difficult to extend them to cluttered and partialy
occluded images. Ohba & Ikeuchi [15] successfully apply
the el genspace approach to cluttered images by using many
small local eigen-windows, but thisthen requires expensive
search for each window in a new image, as with template
matching.

3. Key localization

We wish to identify locations in image scale space that are
invariant with respect to image trand ation, scaling, and ro-
tation, and are minimally affected by noise and small dis-
tortions. Lindeberg [8] has shown that under some rather
genera assumptions on scale invariance, the Gaussian ker-
nel and its derivatives are the only possible smoothing ker-
nelsfor scale space analysis.

To achieve rotation invariance and a high level of effi-
ciency, we have chosen to select key locations at maxima
and minima of a difference of Gaussian function appliedin
scale space. Thiscan be computed very efficiently by build-
ing an image pyramid with resampling between each levd.
Furthermore, it locates key points a regions and scales of
high variation, making theselocationsparticul arly stablefor
characterizing theimage. Crowley & Parker [4] and Linde-
berg [9] have previously used the difference-of-Gaussian in
scale space for other purposes. Inthefollowing, we describe
aparticularly efficient and stable method to detect and char-
acterize the maxima and minima of thisfunction.

Asthe 2D Gaussian functionisseparable, itsconvolution
with the input image can be efficiently computed by apply-
ing two passes of the 1D Gaussian functionin the horizontal
and vertical directions:
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For key localization, al smoothing operations are done us-
ing ¢ = /2, which can be approximated with sufficient ac-
curacy using a 1D kernd with 7 sample points.



The input image is first convolved with the Gaussian
function using o = /2 to give an image A. This is then
repeated a second time with a further incremental smooth-
ing of ¢ = /2 to give a new image, B, which now has an
effective smoothing of o = 2. The difference of Gaussian
functionis obtained by subtractingimage B from A, result-
inginaratioof 2/1/2 = /2 between the two Gaussians.

To generate the next pyramid level, we resample the al-
ready smoothed image B using bilinear interpolation with a
pixel spacing of 1.5 in each direction. While it may seem
more natural to resample with a relative scale of /2, the
only congtraint is that sampling be frequent enough to de-
tect peaks. The 1.5 spacing meansthat each new samplewill
be a constant linear combination of 4 adjacent pixels. This
is efficient to compute and minimizes aliasing artifacts that
would arise from changing the resampling coefficients.

Maximaand minimaof this scale-space function are de-
termined by comparing each pixd in the pyramid to its
neighbours. First, apixel iscompared to its 8 neighbours at
the same level of the pyramid. If it isamaximaor minima
at thislevel, then the closest pixéd location is calculated at
the next lowest leve of the pyramid, taking account of the
1.5times resampling. If the pixel remains higher (or lower)
than this closest pixel and its 8 neighbours, then the test is
repeated for thelevel above. Since most pixelswill bedim-
inated withinafew comparisons, the cost of thisdetectionis
small and much lower than that of building the pyramid.

If thefirst level of thepyramidissampled at the samerate
astheinput image, the highest spatial frequencieswill beig-
nored. Thisisdue to theinitial smoothing, which is needed
to provide separation of peaks for robust detection. There-
fore, we expand theinput image by afactor of 2, using bilin-
ear interpolation, prior to building the pyramid. This gives
on the order of 1000 key pointsfor atypical 512 x 512 pixel
image, compared to only a quarter as many without theini-
tial expansion.

3.1. SIFT key sability

To characterize theimage at each key ocation, the smoothed
image A at each level of the pyramid is processed to extract
image gradientsand orientations. At each pixel, A;;, theim-
age gradient magnitude, M;;, and orientation, 1 ;;, are com-
puted using pixel differences:

M;j = \/(Az'j — Aig1j)? + (Aij — Aij1)?
Rij = atan?2 (A” - Ai-l-l,ja Ai7j+1 — A”)

The pixel differences are efficient to compute and provide
sufficient accuracy due to the substantia level of previous
smoothing. The effective half-pixel shiftin positioniscom-
pensated for when determining key location.

Robustnessto illuminationchangeisenhanced by thresh-
olding the gradient magnitudes at a value of 0.1 times the

Figure 1: The second image was generated from thefirst by
rotation, scaling, stretching, change of brightness and con-
trast, and addition of pixel noise. In spite of these changes,
78% of the keys from the first image have a closely match-
ing key in the second image. These examples show only a
subset of the keys to reduce clutter.

maximum possible gradient value. This reduces the effect
of a change in illumination direction for a surface with 3D
relief, asan illuminationchange may result in large changes
to gradient magnitude but islikely to have less influence on
gradient orientation.

Each key location is assigned a canonical orientation so
that the image descriptors are invariant to rotation. In or-
der to make thisas stable as possible against lighting or con-
trast changes, the orientation is determined by the peak in a
histogram of local image gradient orientations. The orien-
tation histogram is created using a Gaussi an-weighted win-
dow with o of 3 timesthat of the current smoothing scale.
These weights are multiplied by the thresholded gradient
values and accumulated in the histogram at locations corre-
sponding to the orientation, £ ;;. The histogram has 36 bins
covering the 360 degree range of rotations, and is smoothed
prior to peak selection.

The stability of the resulting keys can be tested by sub-
jecting natural images to affine projection, contrast and
brightness changes, and addition of noise. The location of
each key detected in the first image can be predicted in the
transformed image from knowl edge of thetransform param-
eters. This framework was used to select the various sam-
pling and smoothing parameters given above, so that max-



Imagetransformation Match % | Ori %
A. Increase contrast by 1.2 89.0 86.6
B. Decrease intensity by 0.2 88.5 85.9
C. Rotate by 20 degrees 854 81.0
D. Scale by 0.7 85.1 80.3
E. Stretch by 1.2 835 76.1
F. Stretch by 1.5 7.7 65.0
G. Add 10% pixd noise 90.3 88.4
H. All of A,B,C,D,E,G. 78.6 71.8

Figure 2: For various image transformations applied to a
sample of 20 images, thistablegivesthe percent of keysthat
are found a matching locations and scales (Match %) and
that also match in orientation (Ori %).

imum efficiency could be obtained while retaining stability
to changes.

Figure 1 shows a relatively small number of keys de-
tected over a 2 octave range of only the larger scales (to
avoid excessiveclutter). Each key isshownasasqguare, with
alinefromthe center to oneside of thesquareindicating ori-
entation. In the second half of thisfigure, theimageisro-
tated by 15 degrees, scaled by afactor of 0.9, and stretched
by afactor of 1.1inthehorizontal direction. The pixel inten-
sities, in the range of 0 to 1, have 0.1 subtracted from their
brightnessvalues and the contrast reduced by multiplication
by 0.9. Random pixel noise is then added to give less than
5hbits/pixel of signal. In spite of these transformations, 78%
of the keys in the first image had closely matching keysin
the second image at the predicted locations, scales, and ori-
entations

Theoveral stability of thekeystoimage transformations
can be judged from Table 2. Each entry in thistableisgen-
erated from combining the results of 20 diverse test images
and summarizes the matching of about 15,000 keys. Each
line of the table shows a particular image transformation.
The first figure givesthe percent of keysthat have a match-
ing key in the transformed image within ¢ in location (rel-
ativeto scale for that key) and afactor of 1.5in scale. The
second column givesthe percent that match these criteriaas
well as having an orientation within 20 degrees of the pre-
diction.

4. Local imagedescription

Given astablelocation, scale, and orientationfor each key, it
isnow possibleto describe theloca image regionin aman-
ner invariant to thesetransformations. Inaddition, itisdesir-
able to make this representation robust against small shifts
inlocal geometry, such as arisefrom affine or 3D projection.

Oneapproach to thisissuggested by the response properties
of complex neuronsin the visual cortex, in which a feature
positionisallowed tovary over asmall regionwhileorienta
tion and spatial frequency specificity are maintained. Edel-
man, Intrator & Poggio[5] have performed experimentsthat
simul ated the responses of complex neuronsto different 3D
views of computer graphic models, and found that the com-
plex cell outputs provided much better discrimination than
simplecorrel ation-based matching. Thiscan beseen, for ex-
ample, if an affine projection stretches an image in one di-
rection relative to another, which changes the relative loca
tions of gradient features while having a smaller effect on
thelr orientations and spatial frequencies.

This robustness to local geometric distortion can be ob-
tained by representing the local image region with multiple
images representing each of a number of orientations (re-
ferred to as orientation planes). Each orientation plane con-
tains only the gradients corresponding to that orientation,
with linear interpolation used for intermediate orientations.
Each orientation planeis blurred and resampled to allow for
larger shiftsin positions of the gradients.

This approach can be efficiently implemented by using
the same precomputed gradients and orientations for each
level of the pyramidthat were used for orientation selection.
For each keypoint, we use the pixel sampling fromthe pyra-
mid level at which the key was detected. The pixelsthat fal
inacircle of radius 8 pixels around the key location arein-
serted into the orientation planes. The orientation is mea-
sured relative to that of the key by subtracting the key’s ori-
entation. For our experiments we used 8 orientation planes,
each sampled over a4 x 4 grid of locations, with a sample
spacing 4 times that of the pixel spacing used for gradient
detection. The blurring is achieved by allocating the gradi-
ent of each pixel among its 8 closest neighbors in the sam-
plegrid, using linear interpolationin orientation and thetwo
gpatia dimensions. Thisimplementation is much more effi-
cient than performing explicit blurring and resampling, yet
gives almost equivaent results.

In order to sample the image at alarger scae, the same
processisrepeated for asecond level of the pyramid oneoc-
tave higher. However, thistimea 2 x 2 rather thana4 x 4
sample region is used. This means that approximately the
same image region will be examined at both scales, so that
any nearby occlusionswill not affect one scale morethanthe
other. Therefore, the total number of samples in the SIFT
key vector, fromboth scales, is8 x 4 x 4+ 8 x 2 x 2 or 160
elements, giving enough measurements for high specificity.

5. Indexing and matching

For indexing, we need to storethe SIFT keysfor sampleim-
ages and then identify matching keysfrom new images. The
problem of identifyingthemost similar keysfor high dimen-



siona vectors is known to have high complexity if an ex-
act solutionisrequired. However, a modification of the k-d
tree algorithm called the best-bin-first search method (Beis
& Lowe [3]) can identify the nearest neighbors with high
probability using only alimited amount of computation. To
further improvetheéefficiency of thebest-bin-firsta gorithm,
the SIFT key samples generated at thelarger scale are given
twice the weight of those at the smaller scale. This means
that the larger scale isin effect able to filter the most likely
neighbours for checking at the smaller scale. Thisasoim-
proves recognition performance by giving more weight to
the least-noisy scale. In our experiments, it is possible to
have a cut-off for examining a most 200 neighbors in a
probabilisticbest-bin-first search of 30,000 key vectorswith
almost no loss of performance compared to finding an exact
solution.

An efficient way to cluster reliable model hypotheses
is to use the Hough transform [1] to search for keys that
agree upon a particular model pose. Each model key in the
database contains a record of the key's parameters relative
to the modd coordinate system. Therefore, we can create
an entry in a hash table predicting the mode location, ori-
entation, and scale from the match hypothesis. We use a
bin size of 30 degrees for orientation, afactor of 2 for scale,
and 0.25 times the maximum model dimension for location.
These rather broad bin sizes allow for clustering eveninthe
presence of substantial geometric distortion, such asduetoa
changein 3D viewpoint. To avoid the problem of boundary
effectsin hashing, each hypothesisishashed intothe 2 clos-
est binsin each dimension, giving a total of 16 hash table
entries for each hypothesis.

6. Solution for affine parameters

The hash table is searched to identify al clusters of at least
3entriesin abin, and the bins are sorted into decreasing or-
der of size. Each such cluster isthen subject to a verification
procedurein which aleast-squares solutionis performed for
the affine proj ection parameters rel ating themodel to theim-
age.

The affine transformation of a mode point [ 3] to an
image point [« v]7 can be written as

(7 mq mso xr tx
= +
[”] lmS m4][y] lty]
where the model trandation is [t t,]7 and the affine rota-
tion, scale, and stretch are represented by them,; parameters.

We wish to solve for the transformation parameters, so

Figure 3: Model images of planar objects are shown in the
toprow. Recognitionresultsbel ow show model outlinesand
image keys used for matching.

the equation above can be rewritten as

This equation shows a single match, but any number of fur-
ther matches can be added, with each match contributing
two morerowstothefirst and last matrix. Atleast 3 matches
are needed to provide a solution.

We can write thislinear system as

Ax=Db

Theleast-squares solution for the parameters x can be deter-



Figure4: Top row shows modd images for 3D objectswith
outlinesfound by background segmentation. Bottomimage
showsrecognitionresultsfor 3D objectswithmodel outlines
and image keys used for matching.

mined by solving the corresponding normal equations,
x = [ATA]71ATb

which minimizes the sum of the squares of the distances
from the projected model locationsto the correspondingim-
age locations. This least-squares approach could readily be
extended to solving for 3D pose and internal parameters of
articulated and flexible objects [12].

Outlierscan now be removed by checking for agreement
between each imagefeature and themode, giventhe param-
eter solution. Each match must agree within 15 degrees ori-
entation, /2 changein scale, and 0.2 times maximum model
sizeinterms of location. If fewer than 3 pointsremain after
discardingoutliers, thenthematchisrejected. If any outliers
arediscarded, theleast-squares solutionisre-solved with the
remaining points.

Figure5: Examplesof 3D object recognitionwith occlusion.

7. Experiments

The &ffine solution provides a good approximation to per-
spective projection of planar objects, so planar models pro-
videagood initial test of the approach. Thetop row of Fig-
ure 3 shows three model images of rectangular planar faces
of objects. Thefigure a so showsa cluttered image contain-
ing the planar objects, and the same image is shown over-
layed with the models following recognition. The model
keysthat are displayed are the ones used for recognitionand
final least-squares solution. Since only 3 keys are needed
for robust recognition, it can be seen that the solutions are
highly redundant and would survive substantial occlusion.
Also shown aretherectangul ar borders of themodel images,
projected using the affine transform from the least-square
solution. These closely agree with the true borders of the
planar regions in the image, except for small errors intro-
duced by the perspective projection. Similar experiments
have been performed for many images of planar objects, and
therecognition has provento berobust to at |east a60 degree
rotation of the object inany directionaway fromthe camera.

Although the model images and affine parameters do not
account for rotation in depth of 3D objects, they are till
sufficient to perform robust recognition of 3D objects over
about a 20 degree range of rotation in depth away from each
model view. An example of three model imagesisshownin



Figure 6: Stability of image keys is tested under differing
illumination. The first image isilluminated from upper |eft
and the second from center right. Keys shown in the bottom
image were those used to match second image to first.

thetop row of Figure4. The model swere photographedona
black background, and object outlinesextracted by segment-
ing out the background region. Anexampleof recognitionis
shownin the samefigure, again showing the SIFT keysused
for recognition. The object outlines are projected using the
affine parameter solution, but thistime the agreement is not
as close because the solution does not account for rotation
in depth. Figure 5 shows more examples in which thereis
significant partial occlusion.

Theimagesin these examples are of size 384 x 512 pix-
els. The computation times for recognition of al objectsin
each image are about 1.5 seconds on a Sun Sparc 10 pro-
cessor, with about 0.9 seconds required to build the scale-
space pyramid and identify the SIFT keys, and about 0.6
seconds to perform indexing and |east-squares verification.
Thisdoesnot includetimeto pre-process each model image,
which would be about 1 second per image, but would only
need to be done once for initial entry into amodel database.

The illuminationinvariance of the SIFT keysis demon-
strated in Figure 6. The two images are of the same scene
from the same viewpoint, except that the first image isil-
[uminated from the upper left and the second from the cen-
ter right. The full recognition system is run to identify the
second image using the first image as the model, and the
second image is correctly recognized as matching the first.
Only SIFT keysthat were part of the recognition are shown.
There were 273 keys that were verified as part of the fina
match, which meansthat in each case not only was the same
key detected at the same location, but it aso was the clos-

est match to the correct corresponding key in the second im-
age. Any 3 of these keyswould be sufficient for recognition.
While matching keys are not found in some regions where
highlightsor shadows change (for example on the shiny top
of the camera) in genera the keys show good invariance to
illumination change.

8. Connectionsto biological vision

The performance of human vision is obvioudy far superior
tothat of current computer vision systems, so thereis poten-
tially much to be gained by emulating biological processes.
Fortunately, there have been dramatic improvementswithin
the past few years in understanding how object recognition
is accomplished in animals and humans.

Recent research in neuroscience has shown that object
recognition in primates makes use of features of intermedi-
ate complexity that are largely invariant to changesin scale,
location, and illumination (Tanaka [21], Perrett & Oram
[16]). Some examples of such intermediate features found
in inferior temporal cortex (IT) are neurons that respond to
adark five-sided star shape, a circle with a thin protruding
element, or a horizontal textured region within a triangular
boundary. These neuronsmaintain highly specific responses
to shape features that appear anywhere within a large por-
tion of the visua field and over a severa octave range of
scales (Ito et. al [7]). The complexity of many of these fea-
tures appears to be roughly the same as for the current SIFT
features, although there are also some neurons that respond
to more complex shapes, such as faces. Many of the neu-
rons respond to color and texture properties in addition to
shape. The feature responses have been shown to depend
on previousvisua |learning from exposureto specific objects
containing the features (Logothetis, Pauls & Poggio [10]).
These features appear to be derived in the brain by a highly
computation-intensive parallel process, which is quite dif-
ferent from the staged filtering approach given in this paper.
However, the results are much the same: an imageistrans
formed into a large set of local features that each match a
small fraction of potential objects yet are largely invariant
to common viewing transformations.

It is al'so known that object recognition in the brain de-
pends on a seria process of attention to bind featuresto ob-
ject interpretations, determine pose, and segment an object
from a cluttered background [22]. This process is presum-
ably playing the same role in verification as the parameter
solving and outlier detection used in this paper, since the
accuracy of interpretations can often depend on enforcing a
singleviewpoint constraint [11].

9. Conclusionsand comments

The SIFT featuresimproveon previousapproaches by being
largely invariant to changesin scale, illumination, and local



affine distortions. The large number of featuresin atypica
imageallow for robust recognition under partial occlusionin
cluttered images. A final stage that solves for affine model
parameters alows for more accurate verification and pose
determination thanin approachesthat rely only onindexing.

Animportant areafor further research isto build models
from multiple views that represent the 3D structure of ob-
jects. Thiswould have the further advantage that keysfrom
multipleviewing conditionscoul d be combinedinto asingle
model, thereby increasing the probability of finding matches
in new views. The models could be true 3D representations
based on structure-from-motion solutions, or could repre-
sent the space of appearance in terms of automated cluster-
ing and interpolation (Pope & Lowe[17]). An advantage of
the latter approach isthat it could also modd non-rigid de-
formations.

The recognition performance could be further improved
by adding new SIFT feature types to incorporate color, tex-
ture, and edge groupings, as well as varying feature sizes
and offsets. Scale-invariant edge groupingsthat make local
figure-ground discriminations would be particularly useful
at object boundaries where background clutter can interfere
with other features. The indexing and verification frame-
work alowsfor all types of scale and rotation invariant fea-
turesto be incorporated into a single model representation.
Maximum robustness woul d be achieved by detecting many
different feature types and relying on the indexing and clus-
tering to select those that are most useful in a particular im-

age.
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