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An object recognition system has been developed that uses a
new class of local image features. The features are invariant
to image scaling, translation, and rotation, and partially in-
variant to illumination changes and affine or 3D projection.
These features share similar properties with neurons in in-
ferior temporal cortex that are used for object recognition
in primate vision. Features are efficiently detected through
a staged filtering approach that identifies stable points in
scale space. Image keys are created that allow for local ge-
ometric deformations by representing blurred image gradi-
ents in multiple orientation planes and at multiple scales.
The keys are used as input to a nearest-neighbor indexing
method that identifies candidate object matches. Final veri-
fication of each match is achieved by finding a low-residual
least-squares solution for the unknown model parameters.
Experimental results show that robust object recognition
can be achieved in cluttered partially-occluded images with
a computation time of under 2 seconds.

1. Introduction

Object recognition in cluttered real-world scenes requires
local image features that are unaffected by nearby clutter or
partial occlusion. The features must be at least partially in-
variant to illumination, 3D projective transforms, and com-
mon object variations. On the other hand, the features must
also be sufficiently distinctive to identify specific objects
among many alternatives. The difficulty of the object recog-
nition problem is due in large part to the lack of success in
finding such image features. However, recent research on
the use of dense local features (e.g., Schmid & Mohr [19])
has shown that efficient recognition can often be achieved
by using local image descriptors sampled at a large number
of repeatable locations.

This paper presents a new method for image feature gen-
eration called the Scale Invariant Feature Transform (SIFT).
This approach transforms an image into a large collection
of local feature vectors, each of which is invariant to image

translation, scaling, and rotation, and partially invariant to
illumination changes and affine or 3D projection. Previous
approaches to local feature generation lacked invariance to
scale and were more sensitive to projective distortion and
illumination change. The SIFT features share a number of
properties in common with the responses of neurons in infe-
rior temporal (IT) cortex in primate vision. This paper also
describes improved approaches to indexing and model ver-
ification.

The scale-invariant features are efficiently identified by
using a staged filtering approach. The first stage identifies
key locations in scale space by looking for locations that
are maxima or minima of a difference-of-Gaussian function.
Each point is used to generate a feature vector that describes
the local image region sampled relative to its scale-space co-
ordinate frame. The features achieve partial invariance to
local variations, such as affine or 3D projections, by blur-
ring image gradient locations. This approach is based on a
model of the behavior of complex cells in the cerebral cor-
tex of mammalian vision. The resulting feature vectors are
called SIFT keys. In the current implementation, each im-
age generates on the order of 1000 SIFT keys, a process that
requires less than 1 second of computation time.

The SIFT keys derived from an image are used in a
nearest-neighbour approach to indexing to identify candi-
date object models. Collections of keys that agree on a po-
tential model pose are first identified through a Hough trans-
form hash table, and then througha least-squares fit to a final
estimate of model parameters. When at least 3 keys agree
on the model parameters with low residual, there is strong
evidence for the presence of the object. Since there may be
dozens of SIFT keys in the image of a typical object, it is
possible to have substantial levels of occlusion in the image
and yet retain high levels of reliability.

The current object models are represented as 2D loca-
tions of SIFT keys that can undergo affine projection. Suf-
ficient variation in feature location is allowed to recognize
perspective projection of planar shapes at up to a 60 degree
rotation away from the camera or to allow up to a 20 degree
rotation of a 3D object.
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2. Related research
Object recognition is widely used in the machine vision in-
dustry for the purposes of inspection, registration, and ma-
nipulation. However, current commercial systems for object
recognition depend almost exclusively on correlation-based
template matching. While very effective for certain engi-
neered environments, where object pose and illumination
are tightlycontrolled, template matching becomes computa-
tionally infeasible when object rotation, scale, illumination,
and 3D pose are allowed to vary, and even more so when
dealing with partial visibility and large model databases.

An alternative to searching all image locations for
matches is to extract features from the image that are at
least partially invariant to the image formation process and
matching only to those features. Many candidate feature
types have been proposed and explored, including line seg-
ments [6], groupings of edges [11, 14], and regions [2],
among many other proposals. While these features have
worked well for certain object classes, they are often not de-
tected frequently enough or with sufficient stability to form
a basis for reliable recognition.

There has been recent work on developing much denser
collections of image features. One approach has been to
use a corner detector (more accurately, a detector of peaks
in local image variation) to identify repeatable image loca-
tions, around which local image properties can be measured.
Zhang et al. [23] used the Harris corner detector to iden-
tify feature locations for epipolar alignment of images taken
from differing viewpoints. Rather than attempting to cor-
relate regions from one image against all possible regions
in a second image, large savings in computation time were
achieved by only matching regions centered at corner points
in each image.

For the object recognition problem, Schmid & Mohr
[19] also used the Harris corner detector to identify in-
terest points, and then created a local image descriptor at
each interest point from an orientation-invariant vector of
derivative-of-Gaussian image measurements. These image
descriptors were used for robust object recognition by look-
ing for multiple matching descriptors that satisfied object-
based orientation and location constraints. This work was
impressive both for the speed of recognition in a large
database and the ability to handle cluttered images.

The corner detectors used in these previous approaches
have a major failing, which is that they examine an image
at only a single scale. As the change in scale becomes sig-
nificant, these detectors respond to different image points.
Also, since the detector does not provide an indication of the
object scale, it is necessary to create image descriptors and
attempt matching at a large number of scales. This paper de-
scribes an efficient method to identify stable key locations
in scale space. This means that different scalings of an im-
age will have no effect on the set of key locations selected.

Furthermore, an explicit scale is determined for each point,
which allows the image description vector for that point to
be sampled at an equivalent scale in each image. A canoni-
cal orientation is determined at each location, so that match-
ing can be performed relative to a consistent local 2D co-
ordinate frame. This allows for the use of more distinctive
image descriptors than the rotation-invariant ones used by
Schmid and Mohr, and the descriptor is further modified to
improve its stability to changes in affine projection and illu-
mination.

Other approaches to appearance-based recognition in-
clude eigenspace matching [13], color histograms [20], and
receptive field histograms [18]. These approaches have all
been demonstrated successfully on isolated objects or pre-
segmented images, but due to their more global features it
has been difficult to extend them to cluttered and partially
occluded images. Ohba & Ikeuchi [15] successfully apply
the eigenspace approach to cluttered images by using many
small local eigen-windows, but this then requires expensive
search for each window in a new image, as with template
matching.

3. Key localization
We wish to identify locations in image scale space that are
invariant with respect to image translation, scaling, and ro-
tation, and are minimally affected by noise and small dis-
tortions. Lindeberg [8] has shown that under some rather
general assumptions on scale invariance, the Gaussian ker-
nel and its derivatives are the only possible smoothing ker-
nels for scale space analysis.

To achieve rotation invariance and a high level of effi-
ciency, we have chosen to select key locations at maxima
and minima of a difference of Gaussian function applied in
scale space. This can be computed very efficiently by build-
ing an image pyramid with resampling between each level.
Furthermore, it locates key points at regions and scales of
high variation, making these locations particularly stable for
characterizing the image. Crowley & Parker [4] and Linde-
berg [9] have previously used the difference-of-Gaussian in
scale space for other purposes. In the following, we describe
a particularly efficient and stable method to detect and char-
acterize the maxima and minima of this function.

As the 2D Gaussian function is separable, its convolution
with the input image can be efficiently computed by apply-
ing two passes of the 1D Gaussian function in the horizontal
and vertical directions:

g(x) =
1p
2��

e
�x2=2�2

For key localization, all smoothing operations are done us-
ing � =

p
2, which can be approximated with sufficient ac-

curacy using a 1D kernel with 7 sample points.
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The input image is first convolved with the Gaussian
function using � =

p
2 to give an image A. This is then

repeated a second time with a further incremental smooth-
ing of � =

p
2 to give a new image, B, which now has an

effective smoothing of � = 2. The difference of Gaussian
function is obtained by subtracting image B from A, result-
ing in a ratio of 2=

p
2 =

p
2 between the two Gaussians.

To generate the next pyramid level, we resample the al-
ready smoothed image B using bilinear interpolation with a
pixel spacing of 1.5 in each direction. While it may seem
more natural to resample with a relative scale of

p
2, the

only constraint is that sampling be frequent enough to de-
tect peaks. The 1.5 spacing means that each new sample will
be a constant linear combination of 4 adjacent pixels. This
is efficient to compute and minimizes aliasing artifacts that
would arise from changing the resampling coefficients.

Maxima and minima of this scale-space function are de-
termined by comparing each pixel in the pyramid to its
neighbours. First, a pixel is compared to its 8 neighbours at
the same level of the pyramid. If it is a maxima or minima
at this level, then the closest pixel location is calculated at
the next lowest level of the pyramid, taking account of the
1.5 times resampling. If the pixel remains higher (or lower)
than this closest pixel and its 8 neighbours, then the test is
repeated for the level above. Since most pixels will be elim-
inated within a few comparisons, the cost of this detection is
small and much lower than that of building the pyramid.

If the first level of the pyramid is sampled at the same rate
as the input image, the highest spatial frequencies will be ig-
nored. This is due to the initial smoothing, which is needed
to provide separation of peaks for robust detection. There-
fore, we expand the input image by a factor of 2, using bilin-
ear interpolation, prior to building the pyramid. This gives
on the order of 1000 key points for a typical 512�512 pixel
image, compared to only a quarter as many without the ini-
tial expansion.

3.1. SIFT key stability
To characterize the image at each key location, the smoothed
image A at each level of the pyramid is processed to extract
image gradients and orientations. At each pixel,Aij , the im-
age gradient magnitude,Mij , and orientation,R ij, are com-
puted using pixel differences:

Mij =
q

(Aij � Ai+1;j)2 + (Aij � Ai;j+1)2

R ij = atan2 (Aij � Ai+1;j; Ai;j+1 �Aij)

The pixel differences are efficient to compute and provide
sufficient accuracy due to the substantial level of previous
smoothing. The effective half-pixel shift in position is com-
pensated for when determining key location.

Robustness to illuminationchange is enhanced by thresh-
olding the gradient magnitudes at a value of 0.1 times the

Figure 1: The second image was generated from the first by
rotation, scaling, stretching, change of brightness and con-
trast, and addition of pixel noise. In spite of these changes,
78% of the keys from the first image have a closely match-
ing key in the second image. These examples show only a
subset of the keys to reduce clutter.

maximum possible gradient value. This reduces the effect
of a change in illumination direction for a surface with 3D
relief, as an illuminationchange may result in large changes
to gradient magnitude but is likely to have less influence on
gradient orientation.

Each key location is assigned a canonical orientation so
that the image descriptors are invariant to rotation. In or-
der to make this as stable as possible against lighting or con-
trast changes, the orientation is determined by the peak in a
histogram of local image gradient orientations. The orien-
tation histogram is created using a Gaussian-weighted win-
dow with � of 3 times that of the current smoothing scale.
These weights are multiplied by the thresholded gradient
values and accumulated in the histogram at locations corre-
sponding to the orientation,R ij. The histogram has 36 bins
covering the 360 degree range of rotations, and is smoothed
prior to peak selection.

The stability of the resulting keys can be tested by sub-
jecting natural images to affine projection, contrast and
brightness changes, and addition of noise. The location of
each key detected in the first image can be predicted in the
transformed image from knowledge of the transform param-
eters. This framework was used to select the various sam-
pling and smoothing parameters given above, so that max-
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Image transformation Match % Ori %

A. Increase contrast by 1.2 89.0 86.6

B. Decrease intensity by 0.2 88.5 85.9

C. Rotate by 20 degrees 85.4 81.0

D. Scale by 0.7 85.1 80.3

E. Stretch by 1.2 83.5 76.1

F. Stretch by 1.5 77.7 65.0

G. Add 10% pixel noise 90.3 88.4

H. All of A,B,C,D,E,G. 78.6 71.8

Figure 2: For various image transformations applied to a
sample of 20 images, this table gives the percent of keys that
are found at matching locations and scales (Match %) and
that also match in orientation (Ori %).

imum efficiency could be obtained while retaining stability
to changes.

Figure 1 shows a relatively small number of keys de-
tected over a 2 octave range of only the larger scales (to
avoid excessive clutter). Each key is shown as a square, with
a line from the center to one side of the square indicating ori-
entation. In the second half of this figure, the image is ro-
tated by 15 degrees, scaled by a factor of 0.9, and stretched
by a factor of 1.1 in the horizontal direction. The pixel inten-
sities, in the range of 0 to 1, have 0.1 subtracted from their
brightness values and the contrast reduced by multiplication
by 0.9. Random pixel noise is then added to give less than
5 bits/pixel of signal. In spite of these transformations, 78%
of the keys in the first image had closely matching keys in
the second image at the predicted locations, scales, and ori-
entations

The overall stability of the keys to image transformations
can be judged from Table 2. Each entry in this table is gen-
erated from combining the results of 20 diverse test images
and summarizes the matching of about 15,000 keys. Each
line of the table shows a particular image transformation.
The first figure gives the percent of keys that have a match-
ing key in the transformed image within � in location (rel-
ative to scale for that key) and a factor of 1.5 in scale. The
second column gives the percent that match these criteria as
well as having an orientation within 20 degrees of the pre-
diction.

4. Local image description
Given a stable location, scale, and orientation for each key, it
is now possible to describe the local image region in a man-
ner invariant to these transformations. In addition, it is desir-
able to make this representation robust against small shifts
in local geometry, such as arise from affine or 3D projection.

One approach to this is suggested by the response properties
of complex neurons in the visual cortex, in which a feature
position is allowed to vary over a small region while orienta-
tion and spatial frequency specificity are maintained. Edel-
man, Intrator & Poggio [5] have performed experiments that
simulated the responses of complex neurons to different 3D
views of computer graphic models, and found that the com-
plex cell outputs provided much better discrimination than
simple correlation-based matching. This can be seen, for ex-
ample, if an affine projection stretches an image in one di-
rection relative to another, which changes the relative loca-
tions of gradient features while having a smaller effect on
their orientations and spatial frequencies.

This robustness to local geometric distortion can be ob-
tained by representing the local image region with multiple
images representing each of a number of orientations (re-
ferred to as orientation planes). Each orientation plane con-
tains only the gradients corresponding to that orientation,
with linear interpolation used for intermediate orientations.
Each orientation plane is blurred and resampled to allow for
larger shifts in positions of the gradients.

This approach can be efficiently implemented by using
the same precomputed gradients and orientations for each
level of the pyramid that were used for orientation selection.
For each keypoint, we use the pixel sampling from the pyra-
mid level at which the key was detected. The pixels that fall
in a circle of radius 8 pixels around the key location are in-
serted into the orientation planes. The orientation is mea-
sured relative to that of the key by subtracting the key’s ori-
entation. For our experiments we used 8 orientation planes,
each sampled over a 4 � 4 grid of locations, with a sample
spacing 4 times that of the pixel spacing used for gradient
detection. The blurring is achieved by allocating the gradi-
ent of each pixel among its 8 closest neighbors in the sam-
ple grid, using linear interpolation in orientation and the two
spatial dimensions. This implementation is much more effi-
cient than performing explicit blurring and resampling, yet
gives almost equivalent results.

In order to sample the image at a larger scale, the same
process is repeated for a second level of the pyramid one oc-
tave higher. However, this time a 2 � 2 rather than a 4� 4
sample region is used. This means that approximately the
same image region will be examined at both scales, so that
any nearby occlusions will not affect one scale more than the
other. Therefore, the total number of samples in the SIFT
key vector, from both scales, is 8�4�4+8�2�2 or 160
elements, giving enough measurements for high specificity.

5. Indexing and matching

For indexing, we need to store the SIFT keys for sample im-
ages and then identify matching keys from new images. The
problem of identifyingthe most similar keys for high dimen-
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sional vectors is known to have high complexity if an ex-
act solution is required. However, a modification of the k-d
tree algorithm called the best-bin-first search method (Beis
& Lowe [3]) can identify the nearest neighbors with high
probability using only a limited amount of computation. To
further improve the efficiency of the best-bin-first algorithm,
the SIFT key samples generated at the larger scale are given
twice the weight of those at the smaller scale. This means
that the larger scale is in effect able to filter the most likely
neighbours for checking at the smaller scale. This also im-
proves recognition performance by giving more weight to
the least-noisy scale. In our experiments, it is possible to
have a cut-off for examining at most 200 neighbors in a
probabilisticbest-bin-first search of 30,000 key vectors with
almost no loss of performance compared to finding an exact
solution.

An efficient way to cluster reliable model hypotheses
is to use the Hough transform [1] to search for keys that
agree upon a particular model pose. Each model key in the
database contains a record of the key’s parameters relative
to the model coordinate system. Therefore, we can create
an entry in a hash table predicting the model location, ori-
entation, and scale from the match hypothesis. We use a
bin size of 30 degrees for orientation, a factor of 2 for scale,
and 0.25 times the maximum model dimension for location.
These rather broad bin sizes allow for clustering even in the
presence of substantial geometric distortion, such as due to a
change in 3D viewpoint. To avoid the problem of boundary
effects in hashing, each hypothesis is hashed into the 2 clos-
est bins in each dimension, giving a total of 16 hash table
entries for each hypothesis.

6. Solution for affine parameters

The hash table is searched to identify all clusters of at least
3 entries in a bin, and the bins are sorted into decreasing or-
der of size. Each such cluster is then subject to a verification
procedure in which a least-squares solution is performed for
the affine projection parameters relating the model to the im-
age.

The affine transformation of a model point [x y]T to an
image point [u v]T can be written as

"
u

v

#
=

"
m1 m2

m3 m4

# "
x

y

#
+

"
tx

ty

#

where the model translation is [tx ty]T and the affine rota-
tion, scale, and stretch are represented by themi parameters.

We wish to solve for the transformation parameters, so

Figure 3: Model images of planar objects are shown in the
top row. Recognition results below show model outlinesand
image keys used for matching.

the equation above can be rewritten as

2
66664

x y 0 0 1 0

0 0 x y 0 1

: : :

: : :

3
77775

2
6666666664

m1

m2

m3

m4

tx

ty

3
7777777775
=

2
664

u

v

...

3
775

This equation shows a single match, but any number of fur-
ther matches can be added, with each match contributing
two more rows to the first and last matrix. At least 3 matches
are needed to provide a solution.

We can write this linear system as

Ax = b

The least-squares solution for the parameters x can be deter-
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Figure 4: Top row shows model images for 3D objects with
outlines found by background segmentation. Bottom image
shows recognition results for 3D objects with model outlines
and image keys used for matching.

mined by solving the corresponding normal equations,

x = [AT
A]�1AT

b

which minimizes the sum of the squares of the distances
from the projected model locations to the corresponding im-
age locations. This least-squares approach could readily be
extended to solving for 3D pose and internal parameters of
articulated and flexible objects [12].

Outliers can now be removed by checking for agreement
between each image feature and the model, given the param-
eter solution. Each match must agree within 15 degrees ori-
entation,

p
2 change in scale, and 0.2 times maximum model

size in terms of location. If fewer than 3 points remain after
discarding outliers, then the match is rejected. If any outliers
are discarded, the least-squares solution is re-solved with the
remaining points.

Figure 5: Examples of 3D object recognitionwith occlusion.

7. Experiments
The affine solution provides a good approximation to per-
spective projection of planar objects, so planar models pro-
vide a good initial test of the approach. The top row of Fig-
ure 3 shows three model images of rectangular planar faces
of objects. The figure also shows a cluttered image contain-
ing the planar objects, and the same image is shown over-
layed with the models following recognition. The model
keys that are displayed are the ones used for recognition and
final least-squares solution. Since only 3 keys are needed
for robust recognition, it can be seen that the solutions are
highly redundant and would survive substantial occlusion.
Also shown are the rectangular borders of the model images,
projected using the affine transform from the least-square
solution. These closely agree with the true borders of the
planar regions in the image, except for small errors intro-
duced by the perspective projection. Similar experiments
have been performed for many images of planar objects, and
the recognition has proven to be robust to at least a 60 degree
rotation of the object in any direction away from the camera.

Although the model images and affine parameters do not
account for rotation in depth of 3D objects, they are still
sufficient to perform robust recognition of 3D objects over
about a 20 degree range of rotation in depth away from each
model view. An example of three model images is shown in
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Figure 6: Stability of image keys is tested under differing
illumination. The first image is illuminated from upper left
and the second from center right. Keys shown in the bottom
image were those used to match second image to first.

the top row of Figure 4. The models were photographed on a
black background, and object outlinesextracted by segment-
ing out the background region. An example of recognition is
shown in the same figure, again showing the SIFT keys used
for recognition. The object outlines are projected using the
affine parameter solution, but this time the agreement is not
as close because the solution does not account for rotation
in depth. Figure 5 shows more examples in which there is
significant partial occlusion.

The images in these examples are of size 384� 512 pix-
els. The computation times for recognition of all objects in
each image are about 1.5 seconds on a Sun Sparc 10 pro-
cessor, with about 0.9 seconds required to build the scale-
space pyramid and identify the SIFT keys, and about 0.6
seconds to perform indexing and least-squares verification.
This does not include time to pre-process each model image,
which would be about 1 second per image, but would only
need to be done once for initial entry into a model database.

The illumination invariance of the SIFT keys is demon-
strated in Figure 6. The two images are of the same scene
from the same viewpoint, except that the first image is il-
luminated from the upper left and the second from the cen-
ter right. The full recognition system is run to identify the
second image using the first image as the model, and the
second image is correctly recognized as matching the first.
Only SIFT keys that were part of the recognition are shown.
There were 273 keys that were verified as part of the final
match, which means that in each case not only was the same
key detected at the same location, but it also was the clos-

est match to the correct corresponding key in the second im-
age. Any 3 of these keys would be sufficient for recognition.
While matching keys are not found in some regions where
highlights or shadows change (for example on the shiny top
of the camera) in general the keys show good invariance to
illumination change.

8. Connections to biological vision
The performance of human vision is obviously far superior
to that of current computer vision systems, so there is poten-
tially much to be gained by emulating biological processes.
Fortunately, there have been dramatic improvements within
the past few years in understanding how object recognition
is accomplished in animals and humans.

Recent research in neuroscience has shown that object
recognition in primates makes use of features of intermedi-
ate complexity that are largely invariant to changes in scale,
location, and illumination (Tanaka [21], Perrett & Oram
[16]). Some examples of such intermediate features found
in inferior temporal cortex (IT) are neurons that respond to
a dark five-sided star shape, a circle with a thin protruding
element, or a horizontal textured region within a triangular
boundary. These neurons maintain highly specific responses
to shape features that appear anywhere within a large por-
tion of the visual field and over a several octave range of
scales (Ito et. al [7]). The complexity of many of these fea-
tures appears to be roughly the same as for the current SIFT
features, although there are also some neurons that respond
to more complex shapes, such as faces. Many of the neu-
rons respond to color and texture properties in addition to
shape. The feature responses have been shown to depend
on previous visual learning from exposure to specific objects
containing the features (Logothetis, Pauls & Poggio [10]).
These features appear to be derived in the brain by a highly
computation-intensive parallel process, which is quite dif-
ferent from the staged filtering approach given in this paper.
However, the results are much the same: an image is trans-
formed into a large set of local features that each match a
small fraction of potential objects yet are largely invariant
to common viewing transformations.

It is also known that object recognition in the brain de-
pends on a serial process of attention to bind features to ob-
ject interpretations, determine pose, and segment an object
from a cluttered background [22]. This process is presum-
ably playing the same role in verification as the parameter
solving and outlier detection used in this paper, since the
accuracy of interpretations can often depend on enforcing a
single viewpoint constraint [11].

9. Conclusions and comments
The SIFT features improve on previous approaches by being
largely invariant to changes in scale, illumination, and local
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affine distortions. The large number of features in a typical
image allow for robust recognition under partial occlusion in
cluttered images. A final stage that solves for affine model
parameters allows for more accurate verification and pose
determination than in approaches that rely only on indexing.

An important area for further research is to build models
from multiple views that represent the 3D structure of ob-
jects. This would have the further advantage that keys from
multiple viewing conditions could be combined into a single
model, thereby increasing the probabilityof finding matches
in new views. The models could be true 3D representations
based on structure-from-motion solutions, or could repre-
sent the space of appearance in terms of automated cluster-
ing and interpolation (Pope & Lowe [17]). An advantage of
the latter approach is that it could also model non-rigid de-
formations.

The recognition performance could be further improved
by adding new SIFT feature types to incorporate color, tex-
ture, and edge groupings, as well as varying feature sizes
and offsets. Scale-invariant edge groupings that make local
figure-ground discriminations would be particularly useful
at object boundaries where background clutter can interfere
with other features. The indexing and verification frame-
work allows for all types of scale and rotation invariant fea-
tures to be incorporated into a single model representation.
Maximum robustness would be achieved by detecting many
different feature types and relying on the indexing and clus-
tering to select those that are most useful in a particular im-
age.
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