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Figure 1: Given a video (a) containing an opaque video oliea complicated background, our system can generate d¢jdex mattes and
foreground colors (b) for the video object, which can be gésinto another background.

Abstract

In this paper, we present a system for cutting a moving olgatt
from a video clip. The cutout object sequence can be pasted on
another video or a background image. To achieve this, wedfirst
ply a new 3D graph cut based segmentation approach on thalspat
temporal video volume. Our algorithm partitions watersipee-
segmentation regions into foreground and background vyinie
serving temporal coherence. Then, the initial segmemtaésult is
refined locally. Given two frames in the video sequence, veesp
ify two respective windows of interest which are then tratkeing

a bi-directional feature tracking algorithm. For each feaim be-
tween these two given frames, the segmentation in eachetlack
window is refined using a 2D graph cut that utilizes a locabcol
model. Moreover, we provide brush tools for the user to abritre
object boundary precisely wherever needed. Based on tlesdec
binary segmentation result, we apply coherent matting ti@ekthe
alpha mattes and foreground colors of the object.
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1 Introduction

Previous approaches for video object cutout involve sidtizu
tracking, such as in [Kass et al. 1987; Blake and Isard 199frA
wala et al. 2004; Drori et al. 2004]. Although these methatstme
applied to general backgrounds, object boundaries arecitigaly
represented by smooth curves for greater robustness ireitierg
process. Since a coarse boundary descriptor cannot capéufiee
details of a silhouette, these techniques are inadequataif@and
paste applications. Rough boundaries could be interdygtigéned
by auto keying [Mitsunaga et al. 1995], which provides a user-
face for detailed boundary adjustment by spline editingweicer,
since each video frame must be individually modified by ther,us
prohibitive amount of manual work would be required to prbpe
delineate the boundary details.

Recently, video matting techniques (e.g., [Chuang et @220
Apostoloff and Fitzgibbon 2004]) have relaxed the solicbchlack-
ground requirement to allow smooth color changes. The sscce
of video matting depends on how accurately the trimaps can be
propagated and how well Bayesian matting [Chuang et al. 2001
performs in each individual frame. Thus, video matting has t
main difficulties for general video sequences. First, maidgoes
contain fast motions, deforming silhouettes, and oftemnging
topologies, which are very challenging for the state-ofegtical

Cut and paste of moving objects in a video sequence has manyflow algorithm [Black and Ananda 1996] to bidirectionallyopr

applications in video processing. Typically, this is penfed by
chroma keying, which is also referred to as blue screen ngatti
In chroma keying, foreground objects are video recordedadntf
of a solid-colored background, usually blue or green, aed tire
separated from the background using matting techniquds asic
[Smith and Blinn 1996] that take advantage of the known back-
ground color. The simplicity of these techniques enablgsdra
foreground separation. For example, using the Ultifatgstem,
chroma keying can be computed in real time. However, thesle-me
ods are limited to simple backgrounds of a solid color. Eraften
occur when foreground objects contain colors similar tokthek-
ground.

agate trimaps as shown in Figure 2(c). Second, even if atecura
trimaps can be obtained with considerable user interactioa
Bayesian matting technique often produces unsatisfactsylts
when the foreground/background contains complex textoiréise
foreground colors are similar to the background colors. ¥aneple

of this problem is shown in Figure 2(e).

In this paper, we propose a practical system for video olgjetct
and paste from general backgrounds. We obtain a binary segme
tation of the video objects using a two-step approach: alrgve
graph cut based segmentation followed by a new trackingeblas
cal refinement. Then we adopt coherent matting [Shum et 84]20
which uses the binary segmentation as a prior to producepha a
matte of the object.

Our approach has the following advantages. First, we gemera
an accurate binary segmentation before we apply the catmen
ting. Therefore, coherent matting can generate bettettsethian
Bayesian matting because it fully exploits the informaiiothe bi-
nary segmentation with a regularization term for the alpb#en as
shown in Figure 2(f). Moreover, to obtain a binary video segta-
tion, our system provides more accurate results and arrgasise



Figure 2: Coherent matting vs. Bayesian matting.

(a) The 28 frame in clip #4 from the accompanying video.

(b) The optical flow from the 28 frame. (each vector is multipled by 2 for
better visualization.)

(c) The trimap generated by the optical flows from two ace&utamaps in
the 28" and 3d" frames by following the approach in [Chung et al. 2002],
which appears too coarse for matting.

(d) The accurate trimap obtained from accurate binary satatien.

(e) Even with the accurate trimap (d), Bayesian matting peed a fuzzy
result because of the low contrast boundary (such as thk btdars around
the head) and complicated background textures (such asethein back-
ground). Even worse, these artifacts may cause flickeringsadrames.

(f) The result produced by our approach and coherent mattirays a
clearer and more stable boundary.

Ul for refinement than contour tracking or trimap propagatiBe-
cent interactive 2D image segmentation methods [Li et a0420
Rother et al. 2004] have demonstrated that accurate objectds
aries can be easily obtained using simple user interactidnttze
graph cut algorithm [Boykov and Jolly 2001]. In this papee, fur-
ther extend the pixel-level 3D graph cut proposed by [Boyaod
Jolly 2001] to the region-level 3D graph cut to handle videgeots
(Section 3), and we also provide a local refinement methaagusi
tracking (Section 4).

2 Overview

The framework of our system is illustrated in Figure 3. Therus
first selects a few key frames in the video sequence and mevid
their precise foreground/background segmentation usiggeaist-

ing image snapping tool, such as from [Li et al. 2004]. Keyrfes
are typically sampled at ten-frame intervals, but the samgplate
may vary according to object motion. For slower moving or de-
forming objects, a lower sampling rate may be used.
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Figure 3: The framework of our system

to refine the segmentation results in local windows acraanés,
which we refer to asideo tubes. These tubes are extracted by bi-
directional feature tracking of windows positioned by tiseiu The
segmentation of sections of these tubes is recomputed laiay
color models and 2D graph cut.

For those regions that are very difficult for automatic segtae
tion, e.g., when color changes are subtle or edges are aousigu
our system allows the user to override the segmentation fmask
brushing over the foreground and background.

Finally, the video object is cut out by applying coherent tmat
within a trimap that is generated by dilating the binary segtation
boundary. The alpha matte as well as the foreground colas ar
produced for the cut-out object sequence, which can bethjirec
pasted onto another video or image background.

3 3D graph cut segmentation

Our 3D graph cut segmentation algorithm is applied on théapa
temporal volume of the video. To make the optimization pssce
tractable, we pre-segment each frame in the video into a auofb
atomic regions using the watershed algorithm [Vincent aoileS
1991] and build the 3D graph based on these atomic regions. An
alternative pre-segmentation algorithm is tobogganingrighsen
and Barrett 1999]. The novelty of our approach lies in the way
we form temporal connections that preserve a set of caredicatd
therefore embed temporal consistency without explicitiomogsti-
mation.

3.1 3D graph construction

The video object segmentation problem can be viewed as krlgbe
problem, where each region in the video is assigned a uniahed, |
x € {1(foreground, 0(backgroundl}. The regions in key frames
already have labels, while regions in other frames are tabigaed
labels by the 3D graph cut segmentation algorithm.

We construct a 3D grapi = (V, .A) on a 3D volume bounded
by two successive key frames. The nodelgentains atomic re-
gions generated by the watershed pre-segmentation &igorithe
arc setA4 contains two kinds of arcs: intra-frame atds connect-
ing nodes within one frame, and inter-frame ass connecting
nodes across adjacent frames.

To construct the intra-frame arc4;, we simply connect each

Between each pair of successive key frames, a 3D graph is regiony, to each of the adjacent regions in the same frdmeTo

built on atomic regions (obtained with pre-segmentatiorstead
of individual pixels [Boykov and Jolly 2001; Kwatra et al. 2%].

construct the inter-frame arcd,, we connect each region to
each region in the adjacent franfig.; that lies within a given ra-

A novel 3D graph cut based segmentation is then performed by g;,,& (typically 15 pixels), excluding obviously unrelated regs

considering the color consistency of each region with the-fo
ground/background color distribution in key frames, arehtmax-
imizing the color differences between regions across thjecbb
boundary. In addition, it embeds temporal coherence of itheov
object in the optimization. Much of the object silhouette dze
accurately located by this 3D graph cut segmentation.

To correct errors caused by the global nature of the color-mod
els used in the above 3D segmentation, our system allowsstre u

whose mean color differs from that of regien by more than a
thresholdr. (typically 30). We keep a set of candidate connections
for possible correspondences on adjacent frames, andalegh gut
optimization decide which should be cut off. This strateggds to

1To handle regions with various shapes, such as an “L” shatéroand
long regions, the adjacency between regions is computeddoghmlogical
dilation instead of Euclidean distance between regionersnt



Figure 4: 3D graph cut construction. For a regiqrit contributes

to 3D graph construction in three ways. First, it connectth®
foreground and background virtual nodes according to anggne
term E;. Second, it connects to neighboring regions within a frame
with term E». Last, it connects to candidate regions on adjacent
frames with termEs.

greater robustness than traditional tracking methodschvtieter-
mine only one correspondence.

3.2 3D graph cut optimization

The 3D graph cut algorithm solves the labeling problem byimin
mizing the following energy function defined on the 3D graph

E(X) :ZE1($T)+)\1 Z Es(zr, xs) + A2 Z Es(zr,xs)

rey (r,s)EAL (r,s)EAT
@

where z,. is the foreground/background label of region and

X = {z, : Vr}. The first termE; measures the conformity of
the color of regionr to the foreground/background color model
built from the color information in the key frames. The sedon

noted ag(d’),. The distancéd®), to the background color is de-
fined similarly. Then, the likelihood energ¥y: (z,) is defined as:

re{F} re{B} rg{F}u{B}
Ei(z,=1) 0 00 (d),
Ei(zr =0) ) 0 (d®),

{F} and{B} are sets of foreground regions and background re-
gions, respectively, in key frames, whose labels are inpiéts-
signments of) andoo to E; enforce these hard constraints in the
optimization.

Prior energies E> and F5 These two energies are defined with
respect to color similarity between two regionands as follows:

7/8“67“768“2
)

E(xr,xs) = |xr —xs| - € (5)
where||c, — ¢s|| is the Lz norm of the RGB color differences

is a robust parameter that weights the color contrast, andbea
settof = (2([le; — c||?)) " [Blake et al. 2004], wheré) is the
expectation operatofl is computed separately féf. andE5. Note

that the factolz, — x| allows this energy to be considered only
for connections across the segmentation boundary. Theqrérgy

E5 andE; are penalty terms when adjacent nodes are assigned with
different labels.

The objective function of Equation (1) can be globally min-
imized by an efficient graph cut algorithm ([Boykov and Jolly
2001]) and the resulting labels for each node determine maeg
tation in the video volume. The construction of the 3D graph i
illustrated in Figure 4. Note that in the 3D graph constuttithe
edge cost of the arc to virtual foreground (background) rindkee
graph isE1(0) (E1(1)), and the edge cost of the intra-frame or
inter-frame arc is=~?l°r—°+I* | The arc between nodes that have
similar colors ¢, andc;) should have high cost.

The default parameters are fixedX¢ = 24, Ao = 12 in all
of our experiments. The 3D graph cut segmentation algortam

term E» measure color differences between two adjacent regions in compute the video object boundary well at a reasonable speed

the same frame, and encourage two similar adjacent regiobs t
both within the foreground or in the background. The thindrte
E3 measures color differences between two adjacent regidasin
adjacent frames, and embeds temporal coherence in the guaph
optimization process through intra-frame aits.
Likelihood energy E; The foreground/background color mod-
els for E; are built by sampling the colors in these key frames.
Gaussian mixture models (GMMs) are used to describe the fore
ground/background color distributions. Theh component of the
foreground GMMs is denoted d®y,, 1uf,, ©7,), representing the
weight, the mean color and the covariance matrix. WeMseom-
ponents to describe the foreground or background colonsgene
m € [1, M]. Typically M = 6.

For a given colok, its distance to the foreground GMMs is de-
fined as,

f _ : (o d f > f f
d'(e)= min [D(w], Sf)+De.uh, 2L, @
where
D(w7 ¥) =—logw + %log det X, 3)
and
~ 1 _
Die,p,3) = 5(c— ) S (e —p). @)

2

For a regionr, its distance to the foreground GMMs is defined as
the expectation of the distance of all pixels inside theaegte-

4 Local refinement by tracking

Since the foreground/background color distributions aiit lob-

ally from the key frames, the 3D graph cut segmentation tesul
can be poor in areas where the foreground color matches e ba
ground color of a different part of the video, and vice veltsahis
section, we introduce a tool which allows the user to spesfifyrt
and localized video tubes where only local color models aeglun
graph cut segmentation. By isolating local colors, the sagation
boundary can be improved significantly.

A video tube consists of rectangular windo§#;}7_, across
T frames. To specify a video tube, the user only needs to place
two key windowsWW; and Wr. The remaining windows are au-
tomatically located by a bi-directional feature trackingaaithm.
There are two requirements for specifying a video tube: 1gaatt
one key frame is in betweeW; and Wr such that local fore-
ground/background color models can be obtained for refinéme
2) the tube boundary must be correct at the segmentatioretsord
since the intersection points provide hard constrainthéedpti-
mization.

After tracking is performed, a constrained 2D pixel-levedgh
cut segmentation is applied to each window individuallyhgsihe
local foreground and background color models constructenh f
the windows in the key frames. Finally, the refined segmentae-
sult in each window is seamlessly connected to the existingd-
ary outside the window.
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Figure 5: (a) A window of a video tube placed on a boundary
of an existing segmentation result. (b) A 2D graph cut segmen
tation is constructed. The outermost pixels are labeledoees f
ground/background hard constraints according to theirgiseg-
mentation result, and all inside pixels are uncertain. Tiaply cut
segmentation result (shown as a dashed line) is used txecpla-
vious segmentation boundary.

4.1 Bi-directional feature tracking

Given two key windowd¥; andWr, our algorithm tracks the po-
sition of the window in the intermediate frames. The size$laf
andWr can be different and adjusted by the user. Before tracking,
the windows in between are linearly interpolated (both tiasiand
size) fromW; andWr.

We denotep; as the center position of each winddW; in the
video tube. We also define a search rasgefor the position of
each window. All positiongp:}~' of windows can be solved by
minimizing the following objective function:

T—1
{pi} = arg min > " min(D(ps,p1), D(pe, pr)) +
=2

T
> Amlipe = pi1) = B — Be-1)| + m2D(pe, 1)}, (6)
t=2

where D(p:1, pr2) is the sum of squared color distances between
two windowsW:; andW:. in their overlapping region when their
centersp;, andp;, are aligned.p;—1 andp; are the positions of
windows W;_; and W; before optimization, which is computed
by linear interpolation.n; = 0.1 andn, = 1 are used in all our
experiments.

The first term in equation (6) is designed to optimize the icolo
consistency of the window with respect to the key windows. We
choose the best matching key window to compute this costi-to a
low for feature changes over time. The second term enfotees t
smoothness of the video tube. The third term is for miningzime
color differences between adjacent windows. Note that the-p
tions of key windows are fixed in the optimization procesagcsi
they have been placed by the user. We refer to this trackirigade
as “bi-directional” tracking because each window receiméma-
tion from two key windows in two directions.

This objective function can be optimized using the dynamée p
gramming (DP) algorithm [Bellman 1957]. In our system, atiaul
scale method is used for the optimization. First, a Gaugsieamid
is built for each frame in the video, and each higher leveltiadf
the frame size of its immediate lower level. The window'sipos
and size are scaled accordingly. We perform optimizatiogaah
level beginning from the top of the pyramid, within the séar@nge
S centered at the optimized location in the preceding leved tite
top level, the initial position of1; is linearly interpolated from the
key windows. Typically, for an NTSC vided20 x 480) there are
L = 4 levels andS; is a7 x 7 square window at each level for our
experiments.

To view this tracking process, please refer to the accompany
ing video. Although the appearances within some windows may
change over time, our optimization algorithm performs \aeldl lo-

@

(b)

Figure 6: Local refinement by local color model. (a) One frame
from video clip #3. (b) The 3D graph cut segmentation resudt-
tice that the error pixels have colors similar to the colothaf red
flag in the background. (c) The green rectangle is one windaav o
video tube. With a local color model that excludes irrelegabal
color information, the boundary is precisely refined.

cates the windows that comply with the requirements of tieallo
refinement process.

4.2 Constrained 2D graph cut segmentation

Once a video tube is located, a 2D graph cut segmentatiorrs pe
formed within each window to refine the existing segmentatio
boundaries. The 2D graph is constructed at the pixel level:

E(X)=>_ Eiz)+X\ Y Es(wi,z;)

iev’ (i,5)EA’ [

@)

wherez; is the label of the pixel, V' are all pixels in the tracker,
and.A’; is the eight-neighboring relationship between pixels.
and E»; have similar definitions as in Equation (1) except that re-
gions are replaced by pixels. The valueXif is typically set to
10.

In order to seamlessly embed the refinement into the existing
segmentation, a foreground and background hard constsadnt-
tomatically generated according to the existing segmiemtagsult.

As shown in Figure 5, the labels of all pixels inside the winde
solved by the 2D graph cut algorithm, except for the pixelshan
window’s boundary. These pixels are marked as foreground ha
constraints if it is in the foreground of the existing segtagion.
Otherwise, they are marked as background hard constraBgs.
cause of these hard constraints, the 2D graph cut segnmniati
side the window must produce a result that is seamlesslyemed

to existing boundaries outside of the window, as shown inifei
(b).

There must be at least one key frame inside a video tube. The
pixels inside the window in the key frames are collected topuate
the foreground/background GMM models for this video tulrelie
E; term above. Compared to the global color models in 3D graph
cut segmentation, this local 2D graph cut segmentation mees
accurate color models in local windows and leads to sigmifiga
improved results. Figures 6(b) and 6(c) show the segmentag-
sults before and after local refinement, respectively. Téime-
ment method does not require accurate user interactiooaube
the user needs only to place the key windows to exclude uaate
colors.

5 Postprocessing

Overriding operations When there are ambiguous edges around
the boundary or the contrast of the border is very low, thelgra
cut algorithm may not be able to produce a correct object damn
Moreover, it usually performs poorly for very thin struatsr such

as fingers.



To overcome these difficulties, our system allows the usdi-to
rectly control the object boundary with great precisiomgsiwo
override brushes for identifying definite foreground andirde
background regions, respectively. All overriding opevas are
recorded in an override layer, as shown in Figure 7(b), Ei@(b),
and Figure 9(b).

Coherent matting To extract the video object for pasting, we
adopted coherent matting [Shum et al. 2004] to compute a frac
tional alpha matte for the object boundary. The coherentingat
algorithm improves Bayesian matting by introducing a ragah-
tion term for the alpha. Hence, it produces an alpha mattetma-
plies with the prior binary segmentation boundaries, antopmas
well even when foreground/background colors are similar.

The uncertain regions in matting are computed by dilatirey th
binary object boundary, typically by 10 pixels. For smalldsor
thin gaps in the foreground, this dilation may result in naksa
ground colors to be sampled nearby. In this case, we insteagle
background colors from neighboring frames.

6 Experiments

All experiments were performed on a 3.1GHz PC. The source

videos were taken with a DV camera in progressive scan moae at
12.5 frames/sec rate. Each clip was split into about 30 fsapes
segment, and each segment was loaded and processed iatlvidu
The key frames were usually sampled at every ten framesgwhil

preserves the details of the boundaries. Using a novel 3phgra
cut based segmentation approach, our system can captupesom
shape deformations with the input of only a few key frame esatt
Moreover, using local color models, the boundaries are loedited
even when colors are ambiguous. A bi-directional featuaeking
algorithm is designed to track the regions of local color eisd
The resulting object sequence is ready to be composed dmo ot
backgrounds.

In the future, we also plan to extend our system to light fields
Another interesting problem for future work is how to sinaule-
ously cut out several moving objects from a video sequence.
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Figure 7:Clip #2, frame 27. (a) 3D graph cut result is shown by the aietrtlashed line. The flag is a rapidly deforming object, bug&ph cut can capture
the shape very well. (b) Dashed lines indicate the bounslafter both the local refinement and overriding operatidiee white pixels record the actions of
foreground brushing and the black pixels for backgrounghing. (c) coherence matting result pasted on a blue screen.

(b)
Figure 8: Clip #1, frame 84. (a) 3D graph cut result. Notice that the tmmtrast edges between the hair and the tree shadows, aadhtiiguous edges
around the earring are difficult for global optimization & §raph cut. (b) Local refinement in the video tube windows @amect most errors, but some fine
details, especially thin structures, need manual ovelijdihe user. (c) Coherent matting result pasted on a bluersctd) Coherent matting result pasted on
another background with bright colors in contrast to thegiogl dark one. Notice that the video object is extracted with clear boundaries.

frame 9 frame 26 frame 39 frame 53

Figure 9:Clip #4. (a) 3D graph cut results. Please note that someesatitfacts (X) are hardly visible in the still image, butyreppear clearly in the video
as flickering artifacts. (b) Local video tubes are usuallyduto refine the low contrast regions (Y) and ambiguous edfe©{erriding operations are usually
necessary to eliminate artifacts caused by accidentaloshad texture changes (W), which do not appear in neighbdkgframes. (c) Coherent matting
results pasted on a blue screen.



