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Abstract

We present an efficient spectral method for finding consis-

tent correspondences between two sets of features. We build

the adjacency matrix M of a graph whose nodes repre-

sent the potential correspondences and the weights on the

links represent pairwise agreements between potential cor-

respondences. Correct assignments are likely to establish

links among each other and thus form a strongly connected

cluster. Incorrect correspondences establish links with the

other correspondences only accidentally, so they are un-

likely to belong to strongly connected clusters. We recover

the correct assignments based on how strongly they belong

to the main cluster of M , by using the principal eigenvec-

tor of M and imposing the mapping constraints required by

the overall correspondence mapping (one-to-one or one-to-

many). The experimental evaluation shows that our method

is robust to outliers, accurate in terms of matching rate,

while being much faster than existing methods.

1. Introduction

There are many tasks in computer vision which require ef-

ficient techniques for finding consistent correspondences

between two sets of features, such as object recognition,

shape matching, wide baseline stereo, 2D and 3D registra-

tion. We propose an efficient technique that is suitable for

such applications. Our method finds consistent correspon-

dences between two sets of features, by taking in consid-

eration both how well the features’ descriptors match and

how well their pairwise geometric constraints (or any other

type of pairwise relationship) are satisfied. Our formulation

can accommodate different kinds of correspondence map-

ping constraints, such as allowing a data feature to match

at most one model feature (commonly used), or allowing a

feature from one set to match several features from the other

set (used in shape matching [1]).

The features could consist of points, lines, shape descrip-

tors or interest points, depending on the specific applica-

tion. For problems where the features are non discrimina-

tive (e.g. points), it is the features pairwise geometric infor-

mation that helps in finding the right correspondence. When

discriminative features are extracted (e.g. interest points)

then both the geometry and the properties of each individual

feature can be used.

Our approach avoids the combinatorial explosion inher-

ent to the correspondence problem by taking advantage of

the spectral properties of the weighted adjacency matrix

M of a graph, whose nodes are the potential assignments

a = (i, i′) and whose weights on edges measure the agree-

ments between pairs of potential assignments (Section 2).

When the two pairs of features put in correspondence by

two potential assignments agree in terms of their pairwise

geometry (or other type of pairwise relationship), there will

be an agreement link (positive edge) formed between the

two assignments. Otherwise there will be no link between

the two assignments (edge of zero weight). We use the

terms assignment and correspondence interchangebly .

Our method is based on the observation that the graph

associated with M contains:

1. a main strongly connected cluster formed by the cor-

rect assignments that tend to establish agreement links

(edges with positive weights) among each other. These

agreement links are formed when pairs of assignments

agree at the level of pairwise relationships (e.g. geom-

etry) between the features they are putting in corre-

spondence.

2. a lot of incorrect assignments outside of that cluster

or weakly connected to it, which do not form strongly

connected clusters due to their small probability of es-

tablishing agreement links and random, unstructured

way in which they form these links.

These statistical properties motivate our spectral ap-

proach to the problem. We start by first finding the level

of association of each assignment with the main cluster, by

inspecting the eigenvector of M corresponding to its largest

eigenvalue (principal eigenvector). Then we keep rejecting

the assignments of low association, until the constraints on

the correspondence mapping are met (Section 3). Spectral

methods are commonly used for finding the main clusters of

a graph, in tasks such as segmentation [14], grouping [9],
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[12], and change detection [11]. Shapiro and Brady [13]

also proposed a spectral technique for correspondence prob-

lems, later improved by Carcassoni and Hancock [3], but

their formulation is different and it applies only to match-

ings between point sets.

Maciel and Costeira [8] use a different formulation based

on integral quadratic programming, which can be reduced

to an equivalent concave minimization problem. How-

ever, the complexity of concave minimization is still non-

polynomial. Berg and Malik [1] obtain a more efficient

implementation that works only for the case of allowing

several features from one image to match the same fea-

ture from the second image. Their approximation of the

quadratic problem with m2 + 1 linear programming prob-

lems is suitable for other mapping constraints as well (m
is the number of features to match). We implement the ap-

proximation they used, for the case of one to one matchings,

and compare it against our method. Our algorithm proves

to be several orders of magnitude faster, while also being

more robust to noise and outliers (Section 5).

Our work differs from existing approaches based on

spectral methods or quadratic programming, in that it has

a much better computational complexity, which allows it to

scale much better to large data sets, while being robust to

noise and outliers. Its low complexity is due to the relax-

ation during the optimization step of both the correspon-

dence mapping constraints and the integral constraints on

the solution. We show that this method is very robust to

noise and outliers due to the spectral properties of M .

2. Problem formulation

Given two sets of features P , containing nP data features,

and Q, having nQ model features, a correspondence map-

ping is a set C of pairs (or assignments) (i, i′), where i ∈ P
and i′ ∈ Q. The features in P and Q that belong to some

pair from C are the inliers. The features for which there is

no such pair in C are the outliers. Different problems im-

pose different kinds of mapping constraints on C, such as:

allowing one feature from P to match at most one feature

from Q, or allowing one feature from one set to match more

features from the other. Our approach can accommodate

different kinds of constraints.

For each candidate assignment a = (i, i′) there is an

associated score or affinity that measures how well feature

i ∈ P matches i′ ∈ Q. Also, for each pair of assignments

(a, b), where a = (i, i′) and b = (j, j′), there is an affin-

ity that measures how compatible the data features (i, j) are

with the model features (i′, j′). Given a list L of n can-

didate assignments, we store the affinities on every assign-

ment a ∈ L and every pair of assignments a, b ∈ L in the n
x n matrix M as follows:

1. M(a, a) is the affinity at the level of individual assign-

ments a = (i, i′) from L. It measures how well the

data feature i matches the model feature i′. Assign-

ments that are unlikely to be correct (due to a large

distance between the descriptors of i and i′) will be

filtered out. Thus, each such rejection will reduce the

number of rows and columns in M by one.

2. M(a, b) describes how well the relative pairwise ge-

ometry (or any other type of pairwise relationship) of

two model features (i′, j′) is preserved after putting

them in correspondence with the data features (i, j).
Here a = (i, i′) and b = (j, j′). If the two assignments

do not agree (e.g. the deformation between (i, j) and

(i′, j′) is too large) or if they are incompatible based

on the mapping constraints (e.g i = j and i′ 6= j′)
we set M(a, b) = 0. We assume M(a, b) = M(b, a)
without any loss of generality.

We require these affinities to be non-negative, symmet-

ric (M(a, b) = M(b, a)), and increasing with the quality

of the match, without any loss of generality. The candidate

assignments a = (i, i′) from L can be seen as nodes form-

ing an undirected graph, with the pairwise scores M(a, b)
as weights on the edges and the individual scores M(a, a)
as weights at the nodes. Then, M represents the affinity

matrix of this undirected weighted graph. The number of

nodes in this graph ( = number of elements in L), adapts

based on the actual data and it depends mainly on how dis-

criminative the features’s descriptors are. If the features are

highly discriminative, such as SIFT descriptors, then only

a small fraction of all possible pairs (i, i′) are kept as can-

didate matches. In this case the size of M and the dimen-

sion of the problem search space are considerably reduced.

When the features are non-discriminative (such as 2D or 3D

points) and there is no a priori information about candidate

matches (e.g. constraints on translation), all possible pairs

(i, i′) can be considered as candidate assignments. In gen-

eral, M is an n x n, sparse symmetric and positive matrix

where n = knP , and k is the average number of candidate

matches for each data feature i ∈ P . Each feature i ∈ P
will usually have a different number of candidate correspon-

dences (i, i′), i′ ∈ Q.

The correspondence problem reduces now to finding the

cluster C of assignments (i, i′) that maximizes the inter-

cluster score S =
∑

a,b∈C M(a, b) such that the mapping

constraints are met. We can represent any cluster C by an

indicator vector x, such that x(a) = 1 if a ∈ C and zero

otherwise. We can rewrite the total inter-cluster score as:

S =
∑

a,b∈C

M(a, b) = xT Mx (1)

The optimal solution x∗ is the binary vector that maxi-

mizes the score, given the mapping constraints:

x∗ = argmax(xT Mx) (2)

The inter-cluster score xT Mx depends mainly on three

things: the number of assignments in the cluster, how in-

terconnected the assignments are (number of links adjacent

2



to each assignment) and how well they agree (weights on

the links). Previous approaches [1], [8] gave a quadratic

programming formulation to the correspondence problem

by embedding the mapping constraints on x in the general

form of Ax = b. Instead, we relax both the mapping con-

straints and the integral constraints on x, such that its ele-

ments can take real values in [0, 1]. We interpret x∗(a) as

the association of a with the best cluster C∗. Since only the

relative values between the elements of x matter, we can fix

the norm of x to 1. Then, by the Raleigh’s ratio theorem,

x∗ that will maximize the inter-cluster score xT Mx is the

principal eigenvector of M . Since M has non-negative el-

ements, by Perron-Frobenius theorem, the elements of x∗

will be in the interval [0, 1]. In Section 3 we describe how

we use the mapping constraints to binarize the eigenvector

and obtain a robust approximation to the optimum solution.

The main computational gain of our approach comes

from dropping both the mapping constraints and the integral

constraints during the optimization step, and using them

only afterwards to binarize the eigenvector. The problem

becomes one of finding the main cluster from the assign-

ments graph and can be solved easily using the well known

eigenvector technique. We show that this method is very

robust, because the main cluster in the assignments graph is

statistically formed by the correct assignments.

A key insight in the understanding of the statistics of M
is that a pair of model features is very likely to agree (in

terms of pairwise relationship between features) with the

correct corresponding pair of data features. The same pair

is very unlikely to agree with an incorrect pair of data fea-

tures. Thus, correct assignments are expected to establish

agreement links between them. At the same time, incorrect

assignments are not expected to form such links, and when

they do it occurs because of accidental alignments between

features in the two data sets, which happen in a random, un-

structured way. This suggests that the correct assignments

will form a highly connected cluster with a high association

score, while the wrong assignments will be weakly con-

nected to other assignments and not form strong clusters.

The larger the value in the eigenvector x∗(a), the stronger

the association of a with the main cluster. Since this cluster

is statistically formed by correct assignments, it is natural to

interpret x∗(a) as the confidence that a is a correct assign-

ment.

3. Algorithm

We propose a greedy algorithm for finding the solution to

the correspondence problem. As discussed earlier, we in-

terpret the eigenvector value corresponding to a particular

assignment a = (i, i′) as the confidence that a is a cor-

rect assignment. We will refer to this value x∗(a) as the

confidence of a. We start by first accepting as correct

the assignment a∗ of maximum confidence (for which the

eigenvector value x∗(a∗) is maximum), because it is the

one we are most confident of being correct. Next we have

to reject all other assignments that are in conflict with a∗, as

dictated by the constraints on the correspondence mapping.

In our experiments these are assignments of the form (i, ∗)
or (∗, i′) (one feature i ∈ P can match at most one feature

i′ ∈ Q and vice-versa). Note that here one could use dif-

ferent constraints to find the assignments that are in conflict

with a∗. We accept the next correct assignment as the one

with the next highest confidence that has not been rejected

and thus it is not in conflict with a∗. We continue by re-

jecting the assignments in conflict with the newly accepted

assignment. We repeat this procedure of accepting new as-

signments of next highest confidence that are not in conflict

with the ones accepted already, until all assignments are ei-

ther rejected or accepted. This algorithm will split the set

of candidate assignments in two: the set of correct assign-

ments C∗ and rejected assignments R, having the following

property: every assignment from R will be in conflict with

some assignments from C∗ of higher confidence. Thus, no

element from R can be included in C∗ without having to

remove from C∗ an element of higher confidence.

The overall algorithm can be summarized as follows:

1. Build the symmetric non-negative n x n matrix M as

described in Section 2.

2. Let x∗ be the principal eigenvector of M . Initialize the

solution vector x with the n x 1 zero vector. Initialize

L with the set of all candidate assignments.

3. Find a∗ = argmaxa∈L(x∗(a)). If x∗(a∗) = 0 stop

and return the solution x. Otherwise set x(a∗) = 1
and remove a∗ from L.

4. Remove from L all potential assignments in conflict

with a∗ = (i, i′). These are assignments of the form

(i, k) and (q, i′) for one-to-one correspondence con-

straints (they will be of the form (i, k) for one-to-many

constraints).

5. If L is empty return the solution x. Otherwise go back

to step 3.

We note that the outliers are found at steps 3 and 4.

They belong to weak assignments incompatible with as-

signments of higher confidence, or to those that have a zero

corresponding eigenvector value (step 3). Different kinds

of constraints on the correspondence mapping can be used

to remove the assignments conflicting with higher confi-

dence assignments (step 4). Our approach takes advantage

of the fact that these constraints are usually easy to check

and it provides a simple way to enforce them as a post-

optimization step. In practice our algorithm was several

orders of magnitude faster than the linear programming ap-

proximation [1] to the quadratic problem, even for medium

size data-sets (matching 15-20 points). In turn, the linear

optimization approximation is less computationally expen-

sive than the optimal quadratic programming approach [8].
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In the case of rigid transformations the algorithm could

be stopped after selecting enough assignments (step 3) for

computing the transformation. We successfully use this

modifed method on registration of 3D lines. However, the

results in this paper do not use this idea.

4. Numerical considerations

4.1. Stability issues

It is important to verify that the principal eigenvector of the

ideal matrix M∗ (in which only correct assignments form

pairwise links) is stable in the presence of outliers or de-

formations. Here we present an argument that shows that

the principal eigenvector of M∗ is indeed stable due to the

statistics of M∗. In general, the principal eigenvector of a

symmetric matrix M is robust to small perturbations ‖E‖
if the difference between the first two largest eigenvalues of

M is large [15], [10]. This difference is also known as the

eigengap of M . In general, our matrix M will be a slightly

perturbed version of the ideal M∗, in which only the correct

assignments establish pairwise agreement links among each

other. In M∗ there will be no accidental agreement links be-

tween wrong assignments (no accidental alignments), while

the correct assignments will form a clique of pairwise agree-

ments. Thus the off-diagonal elements M∗(a, b) will have

the maximum positive affinity value if a and b are correct as-

signments and M∗(a, b) = 0 otherwise. The largest eigen-

value λ∗
1 of M∗ will be equal to the total association score

of the cluster formed by the correct assignments, while its

second largest eigenvalue λ∗
2 will equal the largest affinity

score M(a, a) of some wrong assignment a.

For a large enough number of correct assignments the

eigengap ρ∗ of M∗ will be about the same as λ∗
1, so we

can approximate ρ∗ ≈ λ∗
1. Moreover, the principal eigen-

value will be much larger in absolute value than all the other

eigenvalues. Therefore the Frobenius norm of the ideal M∗,

‖M∗‖F =
√

∑

i λ∗
i
2 is slightly larger than λ∗

1, so we can

approximate ρ ≈ ‖M∗‖F . This approximation conforms to

empirical observations. For example, we obtained the ideal

matrix M∗ experimentally, in matching sets of points (Sec-

tion 5). We rotated and translated a set of points, without

deforming it, to obtain the other set. The matrices obtained

in this manner are very close to the ideal M∗ and their ratio
ρ∗

‖M∗‖F
is approximately 1 even for small data sets (Figure

1).

Let v∗ be the principal eigenvector of the ideal ma-

trix M∗ and v be the principal eigenvector of the actual

matrix M , which is a slightly perturbed version of M∗:

M = M∗ + E. By Theorems V.2.8 from [15] and 1 from

[10], if
√

2‖E‖F ≤ ρ∗

2 , the perturbation of the eigenvector

v∗ satisfies the inequality:

‖v∗ − v‖2 ≤ 4‖E‖F

ρ −
√

2‖E‖F

(3)
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Figure 1: Top-right: ρ∗/‖M∗‖F vs.data set size. The other plots

show principal eigenvectors (permuted such that the values of cor-

rect assignments show up on the first 25 entries)

In our case we approximate ρ∗ ≈ ‖M∗‖F . If we also use

the inequality
√

2‖E‖F ≤ ρ∗

2 , we get a rough upper bound

ε∗ on the change ‖v∗ − v‖2 of the principal eigenvector:

ε∗ ≈ 8
‖E‖F

‖M∗‖F
(4)

This analysis agrees with the intuition that small pertur-

bations ‖E‖F relative to ‖M∗‖F will not change signifi-

cantly the direction of the principal eigenvector. In prac-

tice, even large perturbations ‖E‖F that cause the formation

or deletion of links in an unstructured way, will not pro-

duce higher eigenvector values for wrong assignments than

for correct assignments. Only a structured perturbation,

which causes wrong assignments to belong to strong clus-

ters, can significantly affect the relative difference between

the eigenvector values of correct assignments vs. wrong

ones. These structured accidents happen when there is a lot

of symmetry in the data, the deformations noise is high or

there are a lot of outliers. Figure 1 shows how the prin-

cipal eigenvector (obtained in experiments from Section 5)

changes smoothly as we increase the deformation noise in

the problem of matching sets of points.

In a related application on detecting structural changes

Sarkar and Boyer [11] also discuss the robustness of the

principal eigenvector and eigenvalue to small unstructured

perturbations of matrices with similar statistics.

4.2. Complexity considerations

M is an n x n sparse matrix for which the efficient compu-

tation of its first eigenvector in step 2 is typically less than

O(n3/2). Variants of the Lanczos method, such as the one

implemented by MATLAB function eigs (which we used in

our experiments) are very efficient for finding the principal

eigenvector of large symmetric sparse matrices.

Since M is very sparse both its storage and computa-

tion can be made very efficient. Its space requirements and

computation time will never reach the O(n2) complexity in

practice. In our experiments (Section 5) M was on average
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about 3% full. After finding the principal eigenvector, one

can show that in the worst case, the number of the remain-

ing steps is: n + (n − 1)...(n − m) = O((k − 1/2)m2),
where m = min(nP , nQ) and k = n/m. For problems

where the features are very discriminative (e.g., SIFT de-

scriptors, shape context), k is expected to be very small as

compared to m, since a feature from one set will have only a

few possible potential matches in the other set. In the worst

case, every data feature could potentially match any model

feature which leads to n = nP nQ.

5. Experiments

We evaluate the robustness of our method first on the task

of finding correspondences between 2D sets of points. This

problem lets us evaluate the average performance of the al-

gorithm for different levels of deformation and ratio of out-

liers to inliers. We study two main cases: when the de-

formation noise is added from a gaussian distribution with

zero mean and equal variances on the points x-y coordi-

nates, and when sets of points are deformed using the Thin

Plate Spline model [16](TPS). The noise level is controlled

by varying the variance of the gaussian distribution or the

bending energy of the TPS model, and the number of out-

liers. We use the mapping constraint that one model feature

can match at most one data feature and vice-versa.

5.1. Deformations using white noise

In the first set of experiments we generate data sets of 2D

model points Q by randomly selecting ni
Q inliers in a given

region of the plane. We obtain the corresponding inliers in

P by disturbing independently the ni
Q points from Q with

white gaussian noise N(0, σ) and then rotating and translat-

ing the whole data set Q with a random rotation and trans-

lation. Next we add no
Q and no

P outliers in Q and P , re-

spectively, by randomly selecting points in the same region

as the inliers from Q and P , respectively, from the same

random uniform distribution over the x-y coordinates. The

range of the x− y point coordinates in Q is 256
√

nQ/10 to

enforce an approximately constant density of 10 points over

a 256 x 256 region, as the number of points varies. The to-

tal number of points in Q and P are nQ = ni
Q + no

Q and

nP = ni
P + no

P . The parameter σ controls the level of de-

formations between the two sets, while no
P and no

Q control

the number of outliers in P and Q, respectively. This is a

difficult type of problem for two reasons. First, the points

are non-discriminative and they can be translated and ro-

tated arbitrarily, so any of the nP points from P can po-

tentially match any of the nQ model points from Q. This

maximizes the search space (the solution vector will have

nQnP elements) and leaves the task of finding a solution

entirely to the relative geometric information between pairs

of points. Secondly, picking points randomly in the plane

creates homogeneous data sets with an increased level of
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Figure 2: Performance curves for our method vs. linprog method.

The mean performance is shown as a solid red line (our method)

and a blue dash-dotted line (linprog method). One std below the

mean: red dashed lines (our method), blue dotted lines (linprog

method). First two rows: no outliers, varying deformation noise.

The number of correct matches (left) and the actual scores (right)

are plotted. Third row: the number of outliers in each P and Q is

varied for two values of the deformation noise.

symmetry, which increases the chance of accidental agree-

ments between wrong correspondences or between correct

correspondences and wrong ones. Also, choosing outliers

from the same distribution as the inliers, within the same

region, increases the chance that similar geometrical rela-

tionships will be formed among outliers or between the out-

liers and the clean points as among the clean points only.

Since points are non-discriminative we set the score on

individual assignments M(a, a) to zero (we left the match-

ing score entirely to the pairwise geometric information,

since there is no information on the individual assignments).

For the pairwise score M(a, b) on deformations between

candidate assignments a = (i, i′) and b = (j, j′) we use the

pairwise distances between points:

M(a, b) =

{

4.5 − (dij−di′j′ )
2

2σ2

d

if |dij − di′j′ | < 3σd

0 otherwise,

where the candidate assignments are a = (i, i′) and b =
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(j, j′). dij and di′j′ are the Euclidean distances between

the points i and j, and between their candidate matches i′

and j′, respectively. The parameter σd controls the sen-

sitivity of the score on deformations. The larger σd the

more deformations in the data we can accommodate, also

the more pairwise relationships between wrong assignments

will get a positive score. M(a, b) defined above is al-

ways non-negative and increases as the deformation be-

tween candidate pairs of assignments decreases. The total

score S = xT Mx increases as the number of assignment

links that are below the deformation threshold of 3σd in-

creases and as the sum of squared deformations on those

links decreases.

Figure 2 shows the performance curves of our method

vs. the linear programming approximation method [1] as

we vary the noise σ from 0.5 to 10 (in steps of 0.5), the

number of points to be matched: from 15 up to 30, and the

number of outliers in both P and Q. We score the perfor-

mances of the two methods by counting how many matches

agree with the ground truth. We initially kept the sensitiv-

ity parameter fixed σd = 5. For our algorithm we use the

MATLAB function eigs, which implements the Implicitly

Restarted Arnoldi method [5], a variant of Lanczos method.

For the linear programming method we use the MATLAB
function linprog with the LargeScale option that is based

on LIPSOL (Linear Interior Point Solver, [17]). Both al-

gorithms ran on the same problem sets over 30 trials for

each value of the varying parameter (Figure 2). Both the

mean performance curves as well as the curves one stan-

dard deviation below the mean are plotted. As expected, for

large values of the deformation σ and large numbers of out-

liers, both algorithms start shifting smoothly from the cor-

rect matches, which indicates that some wrong assignments

have established enough links to win over correct assign-

ments. The performance of the two algorithms degrades in

a similar manner, which suggests that the true optimum of

the score function shifts from the ground truth as the amount

of noise increases (as introduced by outliers and deforma-

tions). For lower values of the noise, both algorithms find

the correct matches which indicates that the optimum of the

score function coincides with the ground truth. Both algo-

rithms prove to be robust to noise, but ours shows a slightly

better robustness for larger values of noise. In the case of

outliers our algorithm is clearly more robust then the lin-

prog based method. Also, our method is orders of magni-

tude faster then linprog: over 400 times faster on 20 points

problem sets (average time of 0.03 sec. vs 13 sec) and over

650 faster on 30 points problem sets (0.25 sec. vs 165 sec.),

on a 2.4 GHz Pentium computer.

We further tested our method on the same problem, but

larger data sets (50, 100 and 130 points, Figure 3), for

which linprog becomes too slow to make an extensive com-

parison. We notice that the performance of our algorithm

improves as the number of points increases. This hap-

pens because as the number of data points increases, each
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Figure 3: Average matching rates (=correctly matched inliers vs.

total inliers) over 30 tests for each parameter value on the x axis.

Middle-right: also plotted (black dash-dotted line) the ratio of non-

zero values in M vs. total elements in M . The more deformation

we allow (σd) the less sparse M is

correct assignment establishes pairwise relationships with

more correct assignments. Thus it becomes more robust

to deformations or presence of outliers. Our method took

on average less than 9 seconds in MATLAB for 130 points

problem sets on a 2.4 GHz Pentium computer.

We also tried to simulate real applications of matching

very large number of points. We limited the number of

candidate correspondences per point, by accepting as can-

didate matches (i, i′) only points that were within a radius

of 500 from each other. When generating the inliers in P
from the inliers in Q, we limited the translation to 100 and

the rotation around the center of mass of the points in Q
to [−π/9, π/9]. This resulted in each point from P hav-

ing on average around 100 candidate correspondences in

Q, including its correct correspondence. We imposed the

additional constraint on the pairwise distances score that

M(a, b) = 0 if dij > 200 or di′j′ > 200, or the angle

between the directions of (i, j) and (i′, j′) was outside the

interval [−π/9, π/9]. The average performances, over 30

runs, on data sets of 400, 600 and 1000 points, for a de-

formation noise of σ = 2 and ratio of outliers/inliers =
50% in each set P and Q, were: 97% (400 points) and 93%
(both 600 and 1000 points). It took less than 30 sec. in

MATLAB on a 2.4 GHz Pentium computer to find the so-

lution for 1000 points.
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5.2. Non rigid deformations using the Thin
Plate Spline Model
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Figure 4: Top row: average matching rate of 50 points (top-left),

80 points (top-right) and 30 points (bottom-right) for different

bending energy levels, over 30 trials for each energy level. Middle

and bottom rows: examples of the x-y meshgrid deformation for

bending energy levels: 0.1, 0.5 and 1

In this Section we test our method on deformations that

follow the TPS model, for which the amount of deforma-

tion is quantified by the bending energy applied to a x-y

meshgrid (Figure 4). We generated the sets Q and P as

follows: we randomly pick ni
Q inliers in Q on a 20 by 20

x-y meshgrid. Then we randomly deform the meshgrid for

a given level of the bending energy and obtain the corre-

sponding ni
P inliers from P . We further add no

Q and no
P

outliers in Q and P by randomly picking points in the plane

in a region that contains the inliers. As in previous tests, we

enforce the mapping constraint that one point from P must

match at most one point from Q and vice-versa. The score

function used before on pairwise deformations is not appro-

priate in this case, since the pairwise distance between far

points is expected to vary more than the distance between

close points. Instead, we normalize the pairwise deforma-

tions by the absolute pairwise distance di′j′ . We also pe-

nalize changes in directions. As before, we do not use any

scores on individual assignments (M(a, a) = 0). For pair-

wise deformations we use a score function that is similar in

concept to the one from [1]: M(a, b) = (1 − γ)cα + γcd,

if |αab| < 3σα and |dab − 1| < 3σd, and zero otherwise.

Here, cα = 4.5− α2

ab

2σ2
α

, cd = 4.5− (dab−1)2

2σ2

d

, dab =
dij+q

di′j′+q ,

dij and di′j′ are the distances between the model features

(i, j) and between the data features (i′, j′), respectively, and

αab is the angle between the direction of (i, j) and that of

(i′, j′). The term cα penalizes changes in direction, cd pe-

nalizes changes in the relative length, while γ weighs one

term against the other. TPS is often used as a deformation

model for matching shapes. Figure 5 shows a couple of ex-

amples of matching point sets sampled from natural images,

using the scores defined here.
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correctly
matched

all 25
correctly
matched

Figure 5: Correspondences between points from natural images

5.3. Recognizing objects from low resolution
images

In this Section we show an application of our method to

recognition of vehicles from aerial images, using the DoG

feature detector and the SIFT feature descriptor, [7]. In this

case, because of the low resolution images, the normal vot-

ing method for retaining the correct matches [7] cannot be

applied reliably because the number of features extracted

for each object is very small and their location and scale is

not very stable. Moreover, the SIFT descriptors are less dis-

criminative when applied to low resolution and low texture

objects. For example, a lot of these features are extracted

at the cars boundaries, and it often happens that multiple

features from the same or different objects are very similar

to each other. Therefore, we must allow multiple candidate

matches for each feature and use the pairwise relationships

between them to disambiguate the correct correspondences.

We built 70 car models Qq from 70 video sequences, in

an unsupervised fashion, following the method described in

[6]. The models represent constellations of clusters of SIFT

features, that are grouped together, into the same model, if

they co-occur with a high probability during the video se-

quence within a small distance from each other. Given a test

image P containing an object and clutter, the task is to rec-

ognize it by trying to match it against a subset of the models

built. The model Q∗
q that gives the highest correspondence

score xT Mx will be retrieved as the correct match. We used

a pairwise score M(a, b) that is similar to the ones used pre-

viously: it is high if the distance dij between the centers of

the data features i and j is similar to the average distance

di′j′ ( during the training stage) between the centers of their

candidate model matches i′ and j′ (a = (i, i′), b = (j, j′)):
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Figure 6: Examples of correspondences between data features and model features in recognizing cars from aerial images

M(a, b) =

{

4.5 − (dij−di′j′ )
2

2σ2

d

if |dij − di′j′ | < 3σd

0 otherwise,

For the individual assignments M(a, a) we used a score

that is linearly decreasing with the L2 distance between fea-

ture i and its candidate corresponding feature i′.

We matched 506 novel images against the correct model

plus 10 other randomly selected models and we recognized

correctly 496 images (≈ 98% recognition rate). Figure 6

shows sample matches between the features from the test

images (left) and features from the models (right).

6. Conclusions

We have presented an efficient spectral solution to cor-

respondence problems using pairwise constraints between

candidate assignments. The problem formulation makes

our solution suitable for a variety of vision applications

from 2D or 3D registration to object recognition. Our ap-

proach takes advantage of the fact that correct assignments

are likely to establish links among each other, while incor-

rect ones are unlikely to form these links and when they do,

this happens in an unstructured, random way. Then, the re-

covery of the correct solution becomes a problem of detect-

ing the main strongly connected cluster in the assignments

graph. We showed in our experiments that the spectral ap-

proach is robust to noise and outliers, and it scales well with

the number of features.
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