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Abstract
We present an unsupervised approach for learning a gener-
ative layered representation of a scene from a video for mo-
tion segmentation. The learnt model is a composition of lay-
ers, which consist of one or more segments. Included in the
model are the effects of image projection, lighting, and mo-
tion blur. The two main contributions of our method are:
(i) A novel algorithm for obtaining the initial estimate of the
model using efficient loopy belief propagation; (ii) Using αβ-
swap and α-expansion algorithms, which guarantee a strong
local minima, for refining the initial estimate. Results are
presented on several classes of objects with different types of
camera motion. We compare our method with the state of the
art and demonstrate significant improvements.
1. Introduction
We present an approach for learning a generative layered
representation from a video for motion segmentation. Our
method is applicable to any video containing piecewise para-
metric motion, e.g. piecewise homography, without any re-
strictions on camera motion. It also accounts for the effects
of occlusion, lighting and motion blur. For example, Fig. 1
shows one such sequence where a layered representation can
be learnt and used to segment the walking person from the
static background.

Many different approaches for motion segmentation have
been reported in the literature. Important issues are: (i)
whether the methods model occlusion; (ii) whether they
model spatial continuity; (iii) whether they apply to multi-
ple frames (i.e. a video sequence instead of a pair of images);
(iv) whether they are independent of keyframes for initializa-
tion. For instance, the approaches described in [2, 4] are
examples of methods which do not model occlusion. Thus,
they tend to over count the data when learning the model.

Amongst the methods which do model occlusion are those
which use a layered representation [14]. One such approach,
described in [16], divides a scene into (almost) planar regions
for occlusion reasoning. Torr et al. [12] extend this repre-
sentation by allowing for parallax disparity. However, these
methods rely on a keyframe for the initial estimation. Other
approaches [6, 17] overcome this problem by using layered

Figure 1: Four intermediate frames of a 40 frame video sequence of a

person walking sideways where the camera is static. Given the sequence,

the generative model which best describes the person and the background
is learnt in an unsupervised manner. Note that the arm always partially

occludes the torso.
flexible sprites. A flexible sprite is a 2D appearance map
and matte (mask) of an object which is allowed to deform
from frame to frame according to pure translation. Winn
et al. [19] extend the model to handle affine deformations.
These methods do not model spatial continuity which leads to
non-contiguous segmentation when the foreground and back-
ground are similar in appearance (see Fig. 6(c)). Moreover,
they do not model changes in appearance due to lighting and
motion blur. Most of these approaches, namely those de-
scribed in [4, 6, 12, 14, 16], use either EM or variational meth-
ods for learning the parameters of the model which makes
them prone to local minima.

Wills et al. [18] noted the importance of spatial continuity
when learning the regions in a layered representation. Given
an initial estimate, they learn the shape of the regions us-
ing the powerful α-expansion algorithm [3] which guaran-
tees a strong local minima. However, their method does not
deal with multiple frames. In our earlier work [7], we de-
scribe a similar motion segmentation approach to [18] for a
video sequence. Like [10], this automatically learns a gener-
ative model of an object. However, the method depends on
a keyframe to obtain an initial estimate of the model. This
has the disadvantage that points not visible in the keyframe
are not included in the model, which leads to incomplete seg-
mentation.

We present a model which does not suffer from the prob-
lems mentioned above, i.e. (i) it models occlusion; (ii) it
models spatial continuity; (iii) it handles multiple frames;
(iv) it is learnt independent of keyframes. An initial estimate
of the model is obtained using efficient loopy belief propa-
gation [5]. Given this estimate, the shape of the segments,
along with the layering, is learnt by minimizing an objec-
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D Data (RGB values of all pixels in every frame of a video).
nF Number of frames.
nP Number of segments pi including the background.
li Layer number of segment pi.

Θi
M Matte for segment pi.

Θi
A Appearance parameter for segment pi.

Θ
j
T i Transformation {x, y, sx, sy, φ} of segment pi to frame j.

Θ
j
Li Lighting parameters {aj

i ,b
j
i} of segment pi to frame j.

Θ Model parameters {nP ,ΘM ,ΘA, li;ΘT ,ΘL}.
Table 1: Parameters of the layered representation.

tive function using αβ-swap and α-expansion algorithms [3].
We present results on several classes of objects with different
types of camera motion and compare them with the state of
the art.

In the next section, we describe the layered representation.
In section 3, we present a four stage approach to learn the pa-
rameters of the layered representation from a video. Such a
model is particularly suited for applications like motion seg-
mentation. Results are presented in section 4.

2. Layered representation
This section introduces the generative model for layered rep-
resentation which describes the scene as a composition of
layers. Any frame of a video can be generated from our
model by assigning appropriate values to its parameters (see
Fig. 2). It also provides the likelihood of that instance. The
parameters of the model, summarized in table 1, can be di-
vided into two sets: (i) those that describe the latent image,
and (ii) those that describe how to generate the frames using
the latent image.

The latent image consists of a set of segments, which
are 2D patterns (specified by their shape and appearance)
along with their layering. The layering determines the oc-
clusion ordering. Thus, each layer contains a number of non-
overlapping segments. The shape of a segment pi is mod-
elled as a binary matte ΘMi, of size equal to the frame of the
video, such that ΘMi(x) = 1 if x ∈ pi and ΘMi(x) = 0
otherwise.

The appearance ΘAi(x) is the RGB value of points x ∈
pi. In order to model the layers, we assign a layer number
li to each segment pi such that segments belonging to the
same layer share a common layer number. Furthermore, each
segment pi can partially or completely occlude segment pk,
if and only if li > lk. In summary, the latent image is defined
by the mattes ΘM , the appearanceΘA and the layer numbers
li of the nP segments.

When generating frame j, we start from a latent image
and map each point x ∈ pi to x′ using transformation Θ

j
T i.

This implies that points belonging to the same segment move
rigidly together. The generated frame is then obtained by
compositing the transformed segments in descending order
of their layer numbers. For this paper, each transforma-
tion has five parameters: rotation, translation and anisotropic
scale factors. The model accounts for the effects of lighting

Figure 2: The top row shows the various layers of a human model, the

latent image in this case. Each layer consists of one of more segments whose

appearance is shown. The shape of each segment is represented by a binary
matte (not shown in the image). Any frame j can be generated using this

representation by assigning appropriate values to its parameters. Note that

the background is not shown.

conditions on the appearance of a segment pi using parame-
ter Θ

j
Li = {aj

i ,b
j
i}. The change in appearance of the seg-

ment pi in frame j due to lighting conditions is modelled as
c(x′) = diag(aj

i ) ·ΘAi(x) +b
j
i . The motion of segment pi

from frame j− 1 to frame j, denoted by m
j
i , can determined

using the transformation parameters Θ
j−1

Ti and Θ
j
T i. This

allows us to take into account the change in appearance due
to motion blur as c(x′) =

∫ T

0
c(x′ − m

j
i (t))dt, where T is

the total exposure time when capturing the frame.
Posterior of the model: We represent the set
of all parameters of the layered representation as
Θ = {nP ,ΘM ,ΘA, li;ΘT ,ΘL}, where nP is the to-
tal number of segments. Given data D, i.e. the nF frames of
a video, the posterior probability of the model is given by

Pr(Θ|D) =
Pr(D|Θ) Pr(Θ)

Pr(D)
=

1

ZΘ

exp(−Ψ(Θ|D)).

(1)
The energy Ψ(Θ|D) has the form

Ψ(Θ|D) =

nP
∑

i=1

∑

x∈pi

(

Ai(x) + λ1

∑

y

(−Bi(x,y) + λ2Pi(x,y))

)

,

(2)
where x and y are neighbouring points. The energy has two
components: (i) the data log likelihood term which consists
of the appearance term Ai(x) and the contrast term Bi(x,y),
and (ii) the prior Pi(x,y) which encourages spatial conti-
nuity. The relative weight of the contrast and prior terms
to , which encourages boundaries between two neighbouring
segments to lie on edges in the frames, is given by λ1. The
parameter λ2 is the weight given to spatial continuity. We
use λ1 = λ2 = 1 in our experiments.
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Let Ij
i (x) be the observed RGB values of point x′ =

Θ
j
T i(x) in frame j and c

j
i (x

′) be the generated RGB values.
Here Θ

j
T i(x) is the projection of x ∈ pi to frame j. The

appearance term is given by

Ai(x) =

j=nF
∑

j=1

− log(Pr(Ij
i (x)|x ∈ pi). (3)

The likelihood of Ij
i (x) consists of two factors: (i) consis-

tency of texture which is the conditional probability of I j
i (x)

given x ∈ pi and is computed using histogram Hi, and (ii)
consistency of motion which measures how well the gener-
ated RGB values c

j
i (x

′) match the observed values Ij
i (x).

Thus,

Pr(Ij
i (x)|x ∈ pi) ∝ Pr(Ij

i (x)|Hi) exp(−µ(cj
i (x

′) − Ij
i (x))2),

(4)
where µ is some normalization constant. We use µ = 1 in
our experiments.

The contrast term pushes the projection of the boundary
between parts to lie on image edges and has the form

Bi(x,y) =

{

γi(x,y) if x ∈ pi,y /∈ pi

0 if x ∈ pi,y ∈ pi.
(5)

For this paper, we use

γi(x,y) = exp

(

−g2

i (x,y)

2σ2

)

·
1

dist(x,y)
, (6)

where

gi(x,y) =
1

nF

nF
∑

j=1

|Ij
i (x) − Ij

i (y)|. (7)

Thus, gi(x,y) measures the difference between the RGB val-
ues Ij

i (x) and Ij
i (y) throughout the video sequence. The

term dist(x,y), i.e. the euclidean distance between x and y,
gives more weight to the 4-neighbourhood of x than the rest
of the 8-neighbourhood. The value of σ in equation (6) deter-
mines how the energy Ψ(Θ|D) is penalized since the penalty
is high when gi(x,y) < σ and small when gi(x,y) > σ.
Thus σ should be sufficiently large to allow for the variation
in RGB values within a segment. In our experiments, we use
σ = 5.

The prior is specified by an Ising model such that it en-
courages spatial continuity, i.e.

Pi(x,y) =

{

T if x ∈ pi,y /∈ pi

0 if x ∈ pi,y ∈ pi.
(8)

In the next section, we describe a four stage approach to cal-
culate the parameters Θ of the layered representation of an
object, given data D, by minimizing the energy Ψ(Θ|D) (i.e.
maximizing Pr(Θ|D). The method described is applicable
to any scene with piecewise parametric motion.

3. Learning layered segmentation
Given a video, our objective is to estimate the parameters Θ,
i.e. the latent image and the transformations, of the layered
representation. We obtain these parameters in four stages. In
the first stage, an initial estimate of the parameters is found.
In the remaining stages, we alternate between holding some
parameters constant and optimizing the rest as illustrated in
table 2.

1. An initial estimate of the parameters Θ is obtained by finding
rigidly moving components between every pair of frames and
combining them (§ 3.1).

2. The parameters ΘT ,ΘA and ΘL are kept constant and the
mattes ΘM are optimized using αβ-swap and α-expansion
algorithms. The layer numbers li are obtained (§ 3.2).

3. Using the refined values of ΘM , the new appearance parame-
ters ΘA are obtained (§ 3.3).

4. Finally, the transformation parameters ΘT and lighting pa-
rameters ΘL are re-estimated, keeping ΘM and ΘA un-
changed (§ 3.4).

Table 2: Estimating the parameters of the layered representation.

3.1. Initial estimation of parameters
In this section, we describe a method to get an initial esti-
mate of the parameters Θ (excluding the layer numbers li) of
the layered representation by computing the image motion.
The method is robust to changes in appearance due to light-
ing and motion blur. The initial estimate is obtained using
loopy belief propagation (LBP) and then refined using graph
cuts. We develop a novel, efficient algorithm to determine
rigidly moving components between every pair of consec-
utive frames which are then combined to get the initial esti-
mate. This avoids the problem of finding only those segments
which are present in one keyframe of the video.

In order to identify points that move rigidly together from
frame j to j + 1 in the given video D, we need to determine
the transformation that maps each point x in frame j to its
position in frame j + 1 (i.e. the image motion). However, at
this stage we are only interested in obtaining a coarse esti-
mate of the parameters Θ. We can reduce the complexity of
the problem by dividing frame j into uniform patches fk of
size m×m pixels and determining their transformations ϕk.
We use m = 3 for all our experiments.

The initial estimate of parameters is obtained in four
stages: (i) finding a set of putative transformations ϕk for
each fragment in frame j; (ii) finding the most likely trans-
formation for each fragment in frame j using LBP (MAP es-
timation); (iii) combining rigidly moving components to de-
termine ΘMi; (iv) computing the remaining parameters i.e.
ΘAi, Θ

j
T i and Θ

j
Di. As the size of the patches is only 3 × 3

and we restrict ourselves to consecutive frames, it is suffi-
cient to use transformations defined by a scale ρk, rotation
θk and translation tk, i.e. ϕk = {ρk, θk, tk}.
Finding putative transformations: We define a Markov
random field (MRF) over the patches of frame j such that
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each site nk of the MRF represents a fragment fk. Each la-
bel sk of site nk corresponds to a putative transformationϕk.
The likelihood ψ(sk) of a label measures how well the frag-
ment fk matches frame j+1 after undergoing transformation
ϕk. The neighbourhood Nk of each site nk is defined as its
4-neighbourhood. The prior over the transformations ϕk is
modelled using pairwise potentials ψ(sk, sl). We specify the
prior that neighbouring patches tend to move rigidly together.
The joint probability of the MRF is

Pr(ϕ) =
1

Z

∏

k

ψ(sk)
∏

nl∈Nk

ψ(sk, sl) (9)

where ϕ is the set of transformations {ϕk, ∀k}.
By taking advantage of the fact that large scaling, trans-

lations and rotations are not expected between consecutive
frames, we restrict ourselves to a small number of putative
transformations. Specifically, we vary scale ρk from 0.8 to
1.2 in steps of 0.2, rotation θk from −0.3 to 0.3 radians in
steps of 0.15 and translations tk in x and y directions from
−5 to 5 pixels and −10 to 10 pixels respectively in steps of
1. Thus, the total number of transformations is 3465.

The likelihood of fragment fk undergoing transformation
ϕk is modelled as ψ(sk) ∝ exp(L(fk , ϕk)), where L(fk , ϕk)
is the normalized cross-correlation obtained using an n × n
window around the fragment fk, after undergoing transfor-
mation ϕk, with frame j + 1. When calculating L(fk , ϕk)
in this manner, the n × n window is subjected to different
degrees of motion blurring according to the motion specified
by ϕk, and the best match score is chosen. This, along with
the use of normalized cross-correlation, makes the likelihood
estimation robust to lighting changes and motion blur. In all
our experiments, we used n = 5. Since the appearance of
a fragment does not change drastically between consecutive
frames, normalized cross-correlation provides reliable match
scores. Unlike [7], we do not discard the transformations re-
sulting in a low match score. However, it will be seen later
that this does not significantly increase the amount of time
required for finding the MAP estimate of the transformations.

We want to assign the pairwise potentials such that neigh-
bouring patches fk and fl which do not move rigidly together
are penalized. However, we would be willing to take the
penalty when determining the MAP estimate if it results in
better match scores. Furthermore, we expect two patches
separated by an edge to be more likely to move non-rigidly
since they might belong to different segments. Thus, we de-
fine the pairwise potentials by a Potts model such that

ψ(sk, sl) =

{

1 if rigid motion,
exp(−ζ∇(fk , fl)) otherwise, (10)

where ∇(fk , fl) is the sum of the gradients of the neighbour-
ing pixels x ∈ fk and y ∈ fl, i.e. along the boundary shared
by fk and fl. We use ζ = 1.

To handle occlusion, an additional label so is introduced
for each site nk which represents the fragment fk being oc-
cluded in frame j + 1. The corresponding likelihoods and
pairwise potentials ψ(so), ψ(sk, so), ψ(so, sk) and ψ(so, so)
are modelled as constants for all k. In our experiments, we
used the values 0.1, 0.5, 0.5 and 0.8 respectively.
MAP estimation: The MAP estimate of the transformation
for each fragment is found by maximizing equation (9). We
use loopy belief propagation (LBP) to find the posterior prob-
ability of a fragment fj undergoing transformation ϕj . LBP
is a message passing algorithm similar to the one proposed
by Pearl [9] for graphical models with no loops. We describe
the algorithm briefly [15].

The message that site nk sends to its neighbour nl at iter-
ation t is given by

mt
kl(sk) =

∑

sk



ψ(sk, sl)ψ(sk)
∏

nd∈Nk\nl

mt−1

dk (sk)



 . (11)

All messages are initialized to 1, i.e. m0

kl(sk) = 1, for all
k and l. The belief (posterior) of a fragment fk undergoing
transformation ϕk after T iterations is given by

b(sk) = ψ(sk)
∏

nl∈Nk

mT
lk(sk) . (12)

The termination criterion is that the rate of change of all be-
liefs falls below a certain threshold. The label s∗k that maxi-
mizes b(sk) is selected for each fragment thus, providing us
a robust estimate of the image motion.

The time complexity of LBP is O(nH2), where n is the
number of sites in the MRF andH is the number of labels per
site, which makes it computationally infeasible for large H .
However, since the pairwise potentials of the MRF are defined
by a Potts model as shown in equation (10), the runtime of
LBP can be reduced to O(nH) using the method described
in [5].

Another limitation of LBP is that it has memory require-
ments of O(nH). To overcome this problem, we use a
variation of the coarse to fine strategy suggested in [13].
This allows us to solve O(log(H)/ log(h)) problems of h
labels instead of one problem of H labels, where h �
H . Thus, the memory requirements are reduced to O(nh).
The time complexity is reduced further from O(nH) to
O(log(H)nh/ log(h)).

The basic idea of the coarse to fine strategy is to
group together similar labels (differing slightly only in
translation) to obtain h representative labels φk. We
now define an MRF where each site nk has h labels Sk

such that ψ(Sk) = maxϕk∈φk
ψ(sk) and ψ(Sk, Sl) =

maxϕk∈φk,ϕl∈φl
ψ(sk , sl). Using LBP on this MRF, we ob-

tain the posterior for each representative transformation. We
choose the best r representative transformations (unlike [13],
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Figure 3: Result of finding rigidly moving components between the four
pairs of consecutive frames of the video shown in Fig. 1. Each component is

shown in a different colour. For instance, for the top left image, one leg of

the person moves differently from the rest of the body while the background
remains static. The components are combined to get an initial estimate of

the shape of the segments.

which chooses only the best) with the highest posteriors for
each site. These transformations are again divided into h
representative transformations. Note that these h transforma-
tions are less coarse than the ones used previously. We repeat
this process until we obtain the most likely transformation for
each fragment fk. In our experiments, we use h = 165 and
r = 20. LBP was found to converge within 20 iterations at
each stage of the coarse to fine strategy.

Once the transformations for all the patches of frame j
have been determined, we cluster the points moving rigidly
together to obtain rigid components. Components with size
less than 100 pixels are merged with surrounding compo-
nents. We repeat this process for all pairs of consecutive
frames of the video. The kth component of frame j is rep-
resented as a set of points Cj

k. Fig. 3 shows the result of our
approach on four pairs of consecutive frames for the video
shown in Fig. 1. Next, the rigid components need to be com-
bined to get an initial estimate of the shape parameters of the
segments pi.
Combining rigid components: Given the set of all rigid
components, we want to determine the number of segments
pi present in the scene and obtain an initial estimate of their
shape ΘMi. To this end, we associate the components from
one frame to the next using the transformations obtained
above. This association is considered transitive, thereby es-
tablishing a correspondence of components throughout the
video sequence.

Next, we cluster the components, based on appearance,
using agglomerative clustering such that each cluster repre-
sents a segment of the scene. The similarity of two compo-
nents is measured using normalized cross-correlation. Some
components contain two or more segments, e.g. the leg com-
ponent in the top left image of Fig. 3 contains two half limbs
and the body component contains the head, torso and other
half limbs. We rely on every segment of the scene being
detected as an individual component in at least one frame.

Empirically, this assumption is found to be true for a large
class of scenes and camera motion. When clustering we sim-
ply let components containing more than one segment lie in a
cluster representing one of these segments. For example, the
body component in the top left image in Fig. 3 might lie in a
cluster representing the torso while the leg component might
belong to a cluster representing the upper half limb of that
leg. However, the number of clusters would still be equal to
the number of segments.

Once the clusters have been obtained, the smallest com-
ponent of each cluster gives the shape ΘMi of the segment
pi. This avoids using a component containing more than one
segment to define the shape of a segment. However, this im-
plies that the initial estimate will always be smaller than the
ground truth and thus, needs to be expanded as described in
§ 3.2.

We need to account for the error introduced in the trans-
formations when the patches are clustered to obtain the com-
ponents. Thus, we measure the similarity of each component
Cj

k in frame j with all the components of frame l that lie close
to the component corresponding to Cj

k in frame l. The initial
shape estimates of the segments, excluding the background,
obtained in this manner are shown in the top row of Fig. 4.
Note that all the segments of the person visible in the video
have been obtained using our method.
Initial estimation of parameters: Once the mattes ΘMi

are found, we need to determine the initial estimate of the
remaining parameters of the model. The transformation pa-
rameters Θ

j
T i are obtained using ϕk and the component clus-

ters. The appearance parameter ΘAi(x) is given by the mean
of Ij

i (x) over all frames j. The lighting parameters a
j
i and

b
j
i are calculated in a least squares manner using ΘAi(x)

and Ij
i (x), for all x ∈ pi. The motion parameters m

j
i are

given by Θ
j
T i and Θ

j−1

Ti . This initial estimate of parameters
is then refined by optimizing each parameter while keeping
others unchanged. We start by optimizing the shape parame-
ters ΘM as described in the next section.
3.2. Refining shape
In this section, we describe a method to refine the estimate
of the shape parameters ΘM and determine the layer num-
bers li. Given an initial coarse estimate of the segments, we
iteratively improve their shape using consistency of motion
and texture over the entire video sequence. The refinement is
carried out such that it minimizes the energy Ψ(Θ|D) of the
model.

The distribution of the RGB values obtained by project-
ing the segment into all frames is given by the histogram Hi.
This is required to compute the likelihood term in equation
(2). The histograms Hi are obtained using the RGB values
Ij

i (x). Given the mattes ΘMi and the appearance parame-
ters ΘAi, the energy of the model can be calculated using
equation (2). Obviously, the optimum mattes Θ∗

Mi are those
which minimize Ψ(Θ|D).
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We take advantage of efficient algorithms for multi-way
graph cuts which minimize an energy function over point la-
bellings h of the form

Ψ̂ =
∑

x∈X

Dx(hx) +
∑

x,y∈N

Vx,y(hx, hy), (13)

under fairly broad constraints on D and V . Here Dx(hx)
is the cost for assigning the label hx to point x and
Vx,y(hx, hy) is the cost for assigning labels hx and hy to
the neighbouring points x and y respectively.

Specifically, we make use of two algorithms: αβ-swap
and α-expansion [3]. The αβ-swap algorithm iterates over
pairs of segments, pα and pβ. At each iteration, it refines
the mattes of pα and pβ by swapping the values of ΘMα(x)
and ΘMβ(x) for some points x. The α-expansion algo-
rithm iterates over segments pα. At each iteration, it assigns
ΘMα(x) = 1 for some points x. Note that α-expansion
never reduces the number of points with label α.

In [7] we described an approach for refining the shape pa-
rameters of the LPS model where all the segments are re-
stricted to lie in one reference frame. In that case, it was suf-
ficient to refine one segment at a time using the α-expansion
algorithm alone. Since in our layered representation this re-
striction no longer holds true, this method would lead to in-
correct results as wrongly labelled points would never be re-
labelled. Hence, we extend our earlier approach using both
α-expansion and αβ-swap algorithms.

We define the limit Li of a segment pi as the set of points
x which lie within a distance of 25 from the current shape of
pi. Given segment pi, let pk be a segment such that the limit
Li of pi overlaps with pk in at least one frame j of the video.
Such a segment pk is said to be surrounding the segment pi.
The number of surrounding segments pk is quite small for
objects such as humans and animals which are restricted in
motion. For example, the head segment of the person shown
in Fig. 1 only overlaps with the torso segment and the back-
ground.

We iterate over segments and refine the shape of one seg-
ment pi at a time. At each iteration, we perform an αβ-swap
for pi and each of its surrounding segments pk. This relabels
all the points which were wrongly labelled as belonging to
pi. We then perform an α-expansion algorithm to expand pi

to include those points x in its limit which move rigidly with
pi. During the iteration refining pi, we consider three possi-
bilities for pi and its surrounding segment pk: li = lk, li > lk
or li < lk. If li < lk, we assign Pr(Ij

i (x)|x ∈ pi) = const

for frames j where x is occluded by a point in pk. We choose
the option which results in the minimum value of Ψ(Θ|D).
We stop iterating when further reduction of Ψ(Θ|D) is not
possible. This provides us with a refined estimate of ΘM

along with the layer number li of the segments.
Fig. 4 shows the result of refining the shape parameters of

the segments by the above method using the initial estimates.

Note that even though the torso is partially occluded by the
arm and the backleg is partially occluded by the front leg
in every frame, their complete shape has been learnt using
overlapping binary mattes. Next, the appearance parameters
corresponding to the refined shape parameters are obtained.

Figure 4: The refined mattes of the layered representation of a person
using multi-way graph cuts. The shape of the head is re-estimated after one

iteration. The next iteration refines the torso segment. Subsequent iterations

refine the half limbs one at a time. Note that the size of the mattes is equal
to that of a frame of the video but smaller mattes are shown here for clarity.

3.3. Updating appearance
Once the mattes ΘMi of the segments are obtained, the ap-
pearance of a point x ∈ pi, i.e. ΘAi(x) is calculated as the
mean of Ij

i (x) over all frames j. The refined shape and ap-
pearance parameters help in obtaining a better estimate for
the transformations as described in the next section.

3.4. Refining the transformations
Finally, the transformation parameters ΘT and the lighting
parameters ΘL are refined by searching over putative trans-
formations around the initial estimate, for all segments at
each frame j. For each putative transformation, parameters
{aj

i ,b
j
i} are calculated in a least squares manner. The param-

eters which result in the smallest SSD are chosen. When re-
fining the transformation, we searched for putative transfor-
mations by considering translations of upto 5 pixels, scales
between 0.9 and 1.1 and rotations between −0.15 and 0.15
radians around the initial estimate. In the next section, we
demonstrate the application of the learnt model for segmen-
tation.

4. Results
We now present results for motion segmentation using the
learnt layered representation of the scene. The method is ap-
plied to different types of object classes (such as jeep, hu-
mans and cows), foreground motion (pure translation, piece-
wise similarity transforms) and camera motion (static and
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panning) with static backgrounds. We use the same parame-
ter values in all our experiments.

Our assumption that segments are always mapped using
only simple geometric transformations is not always true.
This would result in gaps between segments in the generated
frame. In order to deal with this, we relabel points around
the boundary of segments. This relabelling is performed by
using the α-expansion algorithm. The cost Dx(hx) of as-
signing point x around the boundary of pi to pi is the inverse
log likelihood of its observed RGB values in that frame given
by the histogram Hi. The cost Vx,y(hx, hy) of assigning two
different labels hx and hy to neighbouring points x and y is
directly proportional to Bi(x,y) for that frame.

Fig. 5 shows the segmentations obtained by generating
frames using the learnt representation by projecting all seg-
ments other than those belonging to layer 0. Fig. 5(a)
and 5(b) show the result of our approach on simple scenar-
ios where each layer of the scene consists of segments which
are undergoing pure translation. Despite having a lot of flex-
ibility in the putative transformations by allowing for various
rotations and scales, the initial estimation recovers the correct
transformations, i.e. those containing only translation. Note
that the transparent windshield of the jeep is (correctly) not
recovered in the M.A.S.H. sequence as the background layer
can be seen through it. For the sequence shown in Fig. 5(b)
the method proves robust to changes in lighting condition.
Not surprisingly, it learns the correct layering for the seg-
ments corresponding to the two people.

Fig. 5(c) and 5(d) show the motion segmentation obtained
for two videos, each of a person walking. In both cases, the
body is divided into the correct number of segments (head,
torso and seven visible half limbs). Our method recovers well
from occlusion in these cases. For such videos, the feet of a
person are problematic as they tend to move non-rigidly with
the leg in some frames. Note that the grass in Fig. 5(d) has
similar intensity to the person’s trousers. Thus, recovering
the correct transformation of the legs is difficult.

Fig. 5(e) and 5(f) are the segmentations of a cow walking.
Again, the body of the cow is divided into the correct num-
ber of segments (head, torso and eight half limbs). The cow
in Fig. 5(e) undergoes a slight out of plane rotation in some
frames, which causes some bits of grass to be pulled into the
segmentation. The video shown in Fig. 5(f) is taken from a
poor quality analog camera. However, our algorithm proves
robust enough to obtain the correct segmentation. Note that
when relabelling the points around the boundary of segments
some parts of the background, which are similar in appear-
ance to the cow, get included in the segmentation.

Timing: The initial estimation takes approximately 5 min-
utes for every pair of frames: 3 minutes for computing the
likelihood of the transformations and 2 minutes for MAP es-
timation using LBP. The shape parameters of the segments
are refined by minimizing the energy Ψ(Θ|D) as described

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5: Motion segmentation results. In each case, the left image
shows the various segments obtained in different colours. The top row shows
the original video sequence while the segmentation results are shown in the
bottom row. (a): A 10 frame video sequence taken from ‘M.A.S.H.’. The
video contains a jeep undergoing translation against a static background
while the camera pans to track the jeep. (b): A 40 frame sequence taken
from a still camera (courtesy Nebojsa Jojic [6]). The scene contains two
people undergoing pure translation in front of a static background. The re-
sults show that the layering is learnt correctly. (c): A 40 frame sequence
taken from a still camera (courtesy Hedvig Sidenbladh [11]). The scene
consists of a person walking against a static background. The correct lay-
ering of various segments of the person is learnt. (d): A 57 frame sequence
taken from a panning camera of a person walking against a static back-
ground (courtesy Ankur Agarwal [1]). Again, the correct layering of the
segments is learnt. (e): A 44 frame sequence of a cow walking taken from a
panning camera. All the segments, along with their layering, are learnt. (f):
A 30 frame sequence of a cow walking against a static (homogeneous) back-
ground (courtesy Derek Magee [8]). The video is taken from a still analog
camera which introduces a lot of noise.
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in § 3.2. The graph cut algorithms used have, in practice, a
time complexity which is linear in the number of points in the
binary matte ΘMi. It takes less than 1 minute to refine the
shape of each segment. Most of the time is taken up in calcu-
lating the various terms which define the energy Ψ(Θ|D) as
shown in equation (2). The algorithm converged after at most
2 iterations through each segment. All timings provided are
for a C++ implementation on a 2.4 GHz processor.
Ground truth comparison: The segmentation perfor-
mance of our method was assessed using eight manually seg-
mented frames (four each from the challenging sequences
shown in Fig. 5(c) and 5(f)). Out of 80901 ground truth
foreground pixels and 603131 ground truth background pix-
els in these frames, 79198 (97.89%) and 595054 (98.66%)
were present in the generated frames respectively. Most er-
rors were due to the assumption of piecewise parametric mo-
tion and due to similar foreground and background pixels.
Sensitivity of parameters: When determining rigidity of
two transformations or clustering fragment to obtain compo-
nents, we allow for the translations to vary by one pixel in
x and y directions to account for errors introduced by dis-
cretization of putative transformations. Fig. 6(a) shows the
effects of not allowing for slight variations in the translations.
As expected, it oversegments the body of the person. How-
ever, allowing for more variation does not undersegment as
different components move quite non-rigidly for a large class
of scenes and camera motion. Fig. 6(b) and (c) shows the ef-
fects of setting λ1 and λ2 to zero, thereby not encouraging
spatial continuity.

(a) (b) (c)
Figure 6: (a) Result of finding rigidly moving components between four
consecutive frames from the video shown in Fig. 1 without allowing for slight
variation in translations (see text). (b)-(c) The appearance and shape of
segments learnt without encouraging spatial continuity. While (b) indicates
that the method works well for simple cases where the foreground and back-
ground differ significantly (e.g. see Fig. 5(b)), the result in (c) shows that the
segmentation starts to include parts of the background if it is homogeneous
(e.g. see Fig. 5(a)).

5. Summary and Conclusions
The algorithm proposed in this paper achieves extremely
good motion segmentation results. Why is this? We believe
that the reasons are two fold. Incremental improvements in
the Computer Vision field have now ensured that: (i) We can
use an appropriate generative model which accounts for mo-
tion, changes in appearance, layering and spatial continuity.
The model is not too strong so as to undersegment, and not
too weak so as to oversegment; (ii) We have more power-
ful modern algorithmic methods such as LBP and graph cuts
which avoid local minima better than previous approaches.

However, there is still more to do. As is standard in meth-
ods using layered representation, we have assumed that the
visual aspects of the objects do not change throughout the
video sequence. At the very least we need to extend the
model to handle the varying visual aspects objects present
in the scene, e.g. front, back and 3/4 views, in addition to the
side views. The restriction of rigid motion within a segment
can be relaxed using non-parametric motion models.
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