
On Affine Invariant Clustering and
Automatic Cast Listing in Movies

Andrew Fitzgibbon and Andrew Zisserman

Visual Geometry Group
Department of Engineering Science, The University of Oxford

http://www.robots.ox.ac.uk/ ∼vgg

Abstract We develop a distance metric for clustering and classification algo-
rithms which is invariant to affine transformations and includes priors on the
transformation parameters. Such clustering requirements are generic to a num-
ber of problems in computer vision.
We extend existing techniques for affine-invariant clustering, and show that the
new distance metric outperforms existing approximations to affine invariant dis-
tance computation, particularly under large transformations. In addition, we in-
corporate prior probabilities on the transformation parameters. This further regu-
larizes the solution, mitigating a rare but serious tendency of the existing solutions
to diverge. For the particular special case of corresponding point sets we demon-
strate that the affine invariant measure we introduced may be obtained in closed
form.
As an application of these ideas we demonstrate that the faces of the principal
cast of a feature film can be generated automatically using clustering with ap-
propriate invariance. This is a very demanding test as it involves detecting and
clustering over tens of thousands of images with the variances including changes
in viewpoint, lighting, scale and expression.

1 Introduction

Clustering and classification problems abound in the applied sciences, in applications
from citation indexing to the study of gene function. The task of clustering is to divide a
large amount of data into disjoint subsets orclasses, such that some measure of distance
is minimized within classes, and maximized between classes. In computer vision, sev-
eral recent advances have incorporated clustering algorithms for the canonicalization of
large data sets: selecting exemplars [30], building unsupervised object recognizers [1,2],
texton generation [16,21], and learning in low-level vision [19]. What makes clustering
hard is that the measurement of distance between data is invariably corrupted by mea-
surement error in the data themselves. To overcome this, the distance measures must
include a model of the noise process underlying the measurement errors, and the clus-
tering algorithms must employ sophisticated search techniques in order to minimize the
distance.

In some problems—particularly those arising in vision applications—there is an-
other common source of variation, caused when the observed data undergo a parametr-
ized transformation. For example, changes in scale and rotation of a head in face recog-
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Fig. 1. Clustering on faces . A standard face detector has been run on 30000 frames of
the movie “Groundhog Day”, some example detections being shown here. The distance
metric developed in this paper is used in a standard clustering algorithm to extract the
principal cast list from the several thousand faces detected in a typical feature film.

nition applications that arise from variations in pose, see figure 1. Clustering algorithms
for computer vision must allow for, or be invariant to, such transformations.

Our contribution in this paper is to develop a set of distance functions which take
account of affine transformation of the data. These distance functions may either be
invariant to the transformation or contain priors based on the transformations parame-
ters. Closed form and numerical iterative solutions are given for these functions. This
enables a Bayesian maximum a posteriori (MAP) cluster estimation.

The rest of the paper is arranged as follows. First we specify the problem in detail,
and review the related literature. Section 2 develops the affine-invariant distance with
and without priors for a specific problem: the registration of 2D point sets. Section 3
develops the general form of the affine-invariant distance for image comparisons, and
shows how the prior is incorporated. Then, in section 4, the application to image clus-
tering is developed in the context of automatic cast indexing. This allows us to give
details about the implementation for a concrete application. Finally we conclude with a
discussion of current and future avenues for research.

The problem

Before reviewing the literature on transformation-invariant clustering, it will prove use-
ful to formally define the clustering problem we wish to solve. We have a data set
S of n observationsXi, and want to obtain apartition S = {S1 . . . Sk} such that
S = S1 ∪ · · · ∪ SK , and a set ofcluster centres{Xc}K

c=1 such that a cost

K∑
c=1

∑
Xi∈Sc

d(Xi, Xc) (1)

is minimized, whered(X, Y ) is adistance functionbetweenX andY .
Thus a solution to a clustering problem always involves two aspects: (1) choosing

a distance functiond(, ), (2) determining the clusters givend(, ). Research into clus-
tering and classification of data has a long literature [8], and many good algorithms



are available. Examples includeK-means [7], normalized cuts [24], minimal spanning
tree. In this work, we use the “Partition among Medoids” algorithm of Kaufman and
Rousseeuw [14], and treat the clustering routine as a black box. Some of these algo-
rithms offer automatic computation ofK, the number of cluster centres, and some re-
quire it as an input parameter. The distance metric which is the novel contribution of
this paper is independent of these issues, and may be used with any clustering algo-
rithm. Furthermore, althoughd(, ) imposes the structure of a metric space on the space
of theX, it is a property of the clustering algorithm, not the distance, whether theX
should live in a space which is also a vector space.

Background

The problem we investigate in this paper is the following: we wish to cluster a data
set under an affine invariant distance function including priors on the affine transfor-
mation. Invariant approaches to unsupervised clustering have taken a number of routes.
In a vector space, the techniques which have been used for robustification of principal
components analysis [5] and to include some transformation invariance [9] could be ap-
plied to clustering, but these solutions are expensive to compute, and many interesting
computer vision problems do not have data which may be linearly combined.

In a metric space, attention must concentrate on the distance function in order to
obtain invariance. Simardet al.[26,27] describe the modification required. The key idea
is that the clustering will be independent of the transformation parameters if the distance
metric is transformation invariant.

In spaces which are not metric, it is possible [22,23] to obtain transformation invari-
ance by artificially introducing transformed copies of each datum into the dataset. For
example Scḧolkopf [23] adds transformation invariance to a support-vector classifier
by carefully adding examples to the dataset which are transformed copies of the ini-
tially selected support vectors. However, this strategy is impractical—unless the range
of transformations is very small indeed—because of the enormous expansion in the size
of the feature space, and a consequent increase in the cost of the clustering algorithms.
Also, although this technique can be adapted to other classifiers, it cannot easily be
made to work for unsupervised clustering.

The work in this paper concentrates on the common computer vision case, in which
the points of interest may be considered to lie in a metric space.

2 Point sets

In this section we will illustrate the problem for the case of a set of 2D pointsX =
{xi}, i = 1 . . . N in correspondence with another set of of 2D pointsX ′ = {x′i}, i =
1 . . . N . The correspondences{xi ↔ x′i} are known. We will demonstrate the be-
haviour of the affine invariant distance function in comparing and clustering shapes.

We are searching for a set of corresponding points{x̂i ↔ x̂′i} which are close
to the supplied points{xi ↔ x′i}, and are exactly mapped by an affine transformation
x̂′i = Ax̂i+t, whereA is a2×2 matrix andt a 2-vector. For the moment we will neglect
the prior p(A, t) on the affine parameters. Then our aim is to compute the distance



functiondA(X, X ′),

dA({xi}, {x′i})2 = min
a,{x̂i}

N∑
i

(
(xi − x̂i)2 + (yi − ŷi)2 + (x′i − x̂′i)

2 + (y′i − ŷ′i)
2
)
(2)

wherea is a 6-vector specifying the 6 parameters of the affine transformation. Note,
computingdA involves also estimating the points{x̂}, i = 1 . . . N and affine transfor-
mationa – a total of2N +6 parameters – and the distance is the minimum over all these
parameters. We are only interested in the distance, so for our purposes the points{x̂}
and transformationa are “nuisance parameters”. It will be seen below that the distance
can be computed without explicitly solving for these nuisance parameters.

In a practical situation this problem might arise in computing the affine transfor-
mation between two images of a planar object. The points{xi}, {x′i} would be the
measured points on the object in the first and second images respectively.

If it is assumed the measured points are corrupted by additive Gaussian noise in their
position, then minimizing the cost in (2) gives the maximum likelihood estimate of the
transformationa and points{x̂i}, {x̂′i}; and the distancedA() is known as reprojection
error [10]. The distancedA is a generalization from similarity to affine transformations
of the “Procrustean” distance of Mardia [6].

If we concatenate the set of 2D points into a single2N -vector, so that forX =
(x1

>,x2
> . . .xN

>)> etc, then (2) becomes

dA(X,X′)2 = min
a,X̂

(X− X̂)2 + (X′ − X̂
′
)2 (3)

Note a (2× 2) affine transformation on the 2D spacex does not result in a (2N × 2N )
general affine transformation on the2N dimensional spaceX. Instead the correspond-
ing transformation matrix is block diagonal with the2× 2 matrixA defining the block.
The corresponding pointŝX ↔ X̂

′
are constrained to lie on a six-dimensional hyper-

plane (a subspace) inR2N . Figure 2 gives a geometric picture of the vectors involved
and the constraint surface.

We now turn to computing the distance. It will be seen that the distance may be
computed in closed form by a simple algorithm.

Algorithm for computing the distance dA({xi}, {x′i}):
1. Translate the point set{xi} so that its centroid is zero, i.e. compute the centroid

1
N

∑
i xi and subtract it from eachxi.

2. Similarly translate the point set{x′i} so that its centroid is also zero.
3. Form theN × 4 matrixM with rows(xi

>,x′i
>) = (xi, yi, x

′
i, y

′
i).

4. Form the Singular Value Decomposition ofM = UDV>, whereD is a diagonal matrix
with diagonal elementsσ1, σ2, σ3, σ4 (the singular values) followed by zero’s.

5. Then the required distancedA({xi}, {x′i})2 = σ2
3 + σ2

4 .
6. If required the pointŝxi, x̂

′
i may be obtained as(

x̂i

x̂′i

)
=

[
I4×4 − v3v3

> − v4v4
>](

xi

x′i

)
wherevi are the columns ofV.
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Fig. 2. Affine invariant distance measure (AIDM). The points X and X′ in R2N are the
supplied vectors. We seek the points X̂ and X̂

′
which are closest to X and X′ respec-

tively, but are related exactly by an affine transformation. The hyperplane π represents all
the points that can be reached by the affine action on X̂ (or equivalently on X̂

′
). It is the

orbit of the affine group, specified by six parameters. The distance dA(X,X′)2 = d2+d′2.
It is evident that the distance is minimized by finding the hyperplane spanned by the
affine action which minimizes the perpendicular distance to the supplied points X and
X′, and that the points X̂ and X̂

′
are the projections of X and X′ respectively onto this

plane.

The proof uses the property of the SVD that the closest fitting rank 2 column space
to M is given by the first two columns ofU, but is omitted here for lack of space. The
result is closely related to the factorization algorithm [28], though here applied to a
single view, instead of multiple views, and for structure restricted to a plane [12].

2.1 Application to shape matching

Suppose we wish to cluster the six polygonal shapes in figure 3(b). Each polygon (2 ex-
amples each of a unit square, a rotated and scaled square, and a triangle) is defined by
four points, and the correspondence between the points of each polygon is known. If Eu-
clidean distance is measured between the points (after registering the shapes’ centroid)
then there are three pairings which have a small distance, and these are the pairing of
the square with the square, triangle with triangle and rotated square with rotated square
(see table 1). However, if affine invariant distance is measured between the shapes then
all four squares may be clustered, but the triangles are still distinct. Indeed if there is no
noise added to the points then the affine invariant distance between the square and its
rotated and scaled version is zero.

2.2 Including priors on the transformation

Of course, in practical computer vision applications, one is rarely concerned about in-
variance to all of the transformations which a particular parametrization admits. For
example, in digit recognition one wishes to maintain invariance to small differences in
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Fig. 3. Shape space. (a) Two shapes (“exemplars”) defined by four points. (b) Affine
observations of the exemplars: the observations are generated by applying an affine
transformation (which is the identity in four of the cases shown) and then adding Gaus-
sian noise with σ = 0.05 independently to each point. There are six observations, shown
in three superimposed pairs. The square and rotated square are in the same affine
equivalence class.

rotation, scaling and translation of letters, but not to allow a “6” to be rotated into a
“9” [27]. Thus we wish to includea priori knowledge in the form of prior probability
distributionsp(a) on the transformation parameters in the distance function.

If the generative model which produces the point sets is an affine transformation
followed by additive Gaussian noise on the point’s location, then the distancedA(X,X′)
is the (negative) log-likelihood thatX andX′ are observations of the objectX̂ (which
represents the affine equivalence class). As this is a log-likelihood, a prior must also
be included in the distance function as a (negative) log-likelihood, i.e. as− log p(a).
In this way, by Bayes, the distance is related to the posterior probability that the two
observations are in the same affine equivalence class given a prior on the transformation
between observation pairs.

If we can use a zero-mean Gaussian prior ona, we may writep(a) = exp(−a>Λa).
Although the process need not be zero-mean, we assume for simplicity that it is. Given
this prior then, the distance function of equation (3) is extended to

dA(X,X′)2 = min
a,X̂

(X− X̂)2 + (X′ − X̂
′
))2 + a>Λa (4)

In this synthetic example, we assume a more complex distribution for the affinities.
The prior used isp(A, t) = exp(−|1− det A|), whereA is the2× 2 matrix of the affine
transformation̂x′i = Ax̂i + t, computed between the point sets. The prior in this case
simply measures the relative change in areas of the shapes. Table 1 shows the effect of
applying the distance function (3) between the pairs of shapes of figure 3b. Without the
prior the square and ‘rotated and scaled square’ are in the same equivalence class, but
including the prior breaks the symmetry.

3 Images

For many vision applications, the primary datum is the vector of greylevels represent-
ing an image or an image patch, with an associated parametrized transformation, to



(a) Euclidean (b) Affine (c) Affine with priors

Table 1. Image intensity represents the distance measured between pairs of shapes
from figure 3b, where dark indicates a low distance. (Note the shapes are first translated
so that their centroids are coincident). (a) Euclidean distance . The only clusters are on
the diagonal, for example the two noisy versions of the square form a cluster, but the
square and rotated square do not. (b) Affine invariant distance dA measured between
the shapes. Note that distances cluster into the two equivalence classes. (c) Affine
distances with priors on the transformation parameters (see text). The effect of the
prior is to break the symmetry (the affine equivalence of the sets). The distances now
cluster again into three equivalence classes.

which invariance is sought. Given an image represented as a column vectorI, the im-
age mapped by the transformation with parametersa is writtenT (a; I). Note that under
many common transformations, this transformation is linear in the image graylevels,
despite being nonlinear ina.

As in (2) we seek to estimate an imageI0 which maps exactly under this induced
transformation but minimizes the distance to the measured imagesI, I′.

dA(I, I′)2 = min
a,a′,I0

(I− T (a; I0))2 + (I′ − T (a′; I0))2 (5)

where we have specified here the sub-space by a pointI0 which is transformed to esti-

mateÎ by one transformation parametrized bya, and is transformed to estimateÎ
′

by
another transformation parametrized bya′. In order to cluster a set of images, we will
computedA pairwise in the set, and apply a standard metric-space clustering algorithm.

Note that this formulation of the distance is essentially that of estimating the affine
transformation which best aligns the two images, and reporting the squared error be-
tween the aligned and original images. This is a problem with a long history, and two
basic approaches may be discerned:direct [13] and feature-based[29]. The distance
metric in this paper is a purely direct method without any feature correspondences.

3.1 AIDM: Affine invariant distance measure

In general, the transformation will not be linear in the parametersa, so we shall linearize
about the origin. Expanding in terms of derivatives ofI with respect to the 6 parameters
of the affine transformation, we calculate aN× 6 Jacobian matrixD = ∇aT (a; I), and



similarly from I′ calculateD′. Then to a first order approximation (5) becomes

dA(I, I′)2 = min
a,a′,I0

(I− (I0 + Da))2 + (I′ − (I0 + D′a′))2 (6)

Collecting the parametersI0,a anda′ into a single vector of unknownsx = [I>0 ,a>,a′>]>,
this is equal to

dA(I, I′)2 = min
x

([
I
I′

]
−

[
1 D 0
1 0 D′

]
x
)2

= min
x

‖m− Mx‖2 (7)

Where1 is anN ×N identity matrix. Finally, differentiating with respect tox and
solving gives the solution for the minimizingx asx = M+m, whereM+ = (M>M)−1M>

is the Moore-Penrose pseudoinverse ofM. Substituting thisx into (7) gives the desired
distance.

If the affine transformation is small, then this first order approximation is often
sufficient. In general though we are seeking the true solution to (5). This solution may be
obtained in the standard manner by a pyramid search and the linearization employed on
the various levels of the pyramid. An alternative is to use a good non-linear minimizer
(such as Levenberg-Marquardt) to search for the global solution of (5) directly. In the
next section we shall show how including the priors on the transformation parameters
is analogous to using a Levenberg-Marquardt-like algorithm.

Advantages of including the prior

The transformation priors may be writtenx>Λxx, so if priors are included the mini-
mization (7) becomes instead

dA(I, I′)2 = min
x

‖Mx− m‖2 + ‖Λ
1
2
xx‖2 (8)

A linear solution may be obtained as above by differentiating with respect tox and
solving to givex = (M>M + Λ)−1M>m. Now the numerical advantages of including
the prior become apparent: ifM is poorly conditioned, the Newton stepx = M+m can
placex, and henceI0, far from the data pointsI, I′, and assign a large value tod(I, I′).
Whether one computes the pseudoinverse directly from the Moore-Penrose formula or
via the SVD, poor conditioning ofM>M will generally imply an erroneous step. With the
prior, the computation invertsM>M+Λ rather thanM>M. We assume that the information
matrixΛ is positive definite (as it is the inverse of a covariance matrix), so the smallest
eigenvalue of the matrix to be inverted is bounded away from zero. Hence the computed
step is actively constrained to lie close to the initial estimate.

A useful comparison is with schemes for nonlinear optimization. The computa-
tion of (5) under the tangent distance approximation of [26,31] is effectively a Gauss-
Newton update for the hidden parametersI0, a anda′. The convergence properties of
such schemes are well known [3,4,20]: where the approximation is good, it gives excel-
lent convergence; but where the linearization is not valid, the update can be drastically



Fig. 4. Test sequence. A selection of the 251 faces detected on a 2000 frame sequence
from the film “Groundhog Day”. The start and end frame of the sequence are shown in
figure 7. There are four principal cast members in this sequence, and some significant
distractors. If the face detector fires on background clutter (e.g. the television on the
bottom left) it will generally do so reliably, giving a large consistent cluster. Lighting and
head orientation changes are significant, so the distance metric must be robust to these
effects.

wrong. Modern optimization techniques invariably regularize the Gauss-Newton update
usingtrust regionstrategies [3,4], and thus gain improved convergence. Including the
prior in (8) confers similar advantages on AIDM, as will be shown in the applications
which follow, and in the distance matrices in figure 6.

4 Application

As an example of the application of the the proposed invariant distance function, we
consider the problem of automatically extracting the principal cast members from a
movie sequence. This application is a challenging analogue to the clustering of digits
problem [15], and requires the full power of the affine invariant distance as well as
the incorporation of motion priors in order to achieve useful results. This is because,
although movies are generally well photographed, the actors’ faces tend to be seen in
quite varied positions and under lighting conditions that are not typical of more tradi-
tional mugshot or security applications. Figures 1, 4 and 5 show some examples.

To give an idea of the magnitude of the task: a feature length film contains of the
order of 150K frames and a principal cast of perhaps 20, with each character appearing
in 1000s of frames. In the examples shown here, we generally subsample temporally by
a factor of five, so that we are dealing with datasets of the order of 30000 frames.

The strategy of the algorithm is to detect faces in each frame of the movie, and
cluster the detected faces to obtain a representative set which summarizes the faces
of the cast, and of course, associates the cast members with the scenes in which they
appear.

In the following sections we will describe the steps involved in clustering for a test
sequence of 2000 frames with 251 detected faces from the film ’Groundhog Day”. See
figure 4.



Fig. 5. Pre-processing . Upper set: original (raw) extracted faces. Lower set: faces after
bandpass filtering and feathering. Variations in lighting across the image are removed,
and boundary effects are diminished.

Face detection:Face detection is an area that has seen significant progress in recent
years, and impressive systems have been built [11]. In this application we used a well-
engineered local implementation [18] of the Schneiderman and Kanade [22] face de-
tector. Parameters were set to obtain a true positive rate of about 80% of frontal faces,
which induces a false detection rate of about 0.01 faces per frame. This detector ob-
tains scale and translation invariance by oversampling. The output comprises the image
plane translation of the face template centre, and the scale at which the maximum re-
sponse was recorded. The detected faces are rescaled to81× 81 pixels, and stored with
their frame number and position. Examples of the output are shown in figure 1. Plots
of the recovered image-plane position (shown in figure 7) illustrate the strong temporal
coherence of the detector outputs, a constraint we will incorporate via priors into the
clustering.

Variations in pose and lighting:The principal sources of variation in this application
arise from changes in illumination and in facial pose. Images can be normalized for
illumination by applying a bandpass filter to the extracted face regions, and scaling the
windows’ intensities to have mean zero and variance 1. In addition, faces are feathered
by multiplying them with a Gaussian centred at the centre of the image. In detail the
filters used are:

– Bandpass:B = I ∗Gσ=1 − I ∗Gσ=4



(a) (b) (c)

Fig. 6. Distance matrices for the test sequence . For this sequence, the faces are nat-
urally clustered, and large dark blocks in the distance matrix indicate the clusters. (a)
Multiresolution tangent distance [31]. (b) AIDM without priors. (c) AIDM with deformation
prior. In this case, the distance computed by the Newton methods (b,c) is visibly better
defined than (a). The improvement due to deformation priors (c) over (b) is not visu-
ally obvious, but amounts to a small percentage reduction in the number of divergence
failures (individual bright pixels in all matrices).

– Feather:F (x, y) = B(x, y) exp−
(

r(x,y)
.5

)2

Examples of this pre-processing are shown in figure 5.

Affine invariant clustering:The distance was computed using a multiscale technique [31]
on a Gaussian pyramid, with the finest scale corresponding toσ = 2 pixels. The affine-
invariant distance was computed by iterating the solution of (8), with up to five iterations
allowed. Implemented in unoptimized MATLAB , evaluation of the distance for a single
pair of faces takes about half a second. With a typical movie returning several thousand
face detections, computation of the complete distance matrix would be impractical. In
order to accelerate the process, we pruned the face set using a Euclideank-medoids
algorithm [14] on the affinely distorted faces, withk chosen to return a few hundred
faces. Then computation of the affine-invariant distance matrix on the reduced set re-
quires compute time only of the order of a few hours—certainly less than the initial
face detection stage. Finally, thek-medoids algorithm is applied to the affine-invariant
distance matrix and the topK cluster centres extracted, for a user-specifiedK.

Figure 6 shows some example distance matrices, computed with the tangent dis-
tance approximation to affine invariance, and our new Newton methods. In this exam-
ple, the new metrics improve the signal-to-noise ratio of the clusters, as evidenced by
the dark squares in the new distance matrices. Examples of the effect on the clustering
output are shown in figure 9.



Fig. 7. Temporal coherence . (Left) Two example frames from an 80 sec extract from the
test movie. (Right) Image-plane x coordinate of detected faces over that range. Although
there are two actors in shot for much of the sequence, they are frequently not detected
because the face goes into a profile view. However we can see that, starting at frame
3000, there are two faces in shot, “A” at x ≈ 200 and “B” at x ≈ 500 (to the right of the
frame). For the first 400 frames, B faces the camera, giving a long consistent trace, and
A alternates her gaze between B and the viewer. From 3400 to 3550, both talk to each
other in profile, so there are no detections, and then A takes over the straight-to-camera
slot.

4.1 Clustering including priors

Two classes of priors will be included: priors on the transformation between any pair
of frames; and priors on the transformation between contiguous frames. We will first
describe these two classes, and how they are learnt from images, and then show their
effectiveness in improving clustering. The resultant distance matrices are shown in fig-
ure 8.

Deformation priors:The prior on the affine transform parameters is learnt by manually
selecting the eyes and the centre of the mouth in 200 randomly chosen faces, computing
the affine transformations which maps between these, and fitting a single 6D Gaussian
distribution to the resulting transformation parameters. This prior is generic to all of the
pairwise comparisons, and simply represents the likelihood that the face detector will
tend to detect faces in only a small number of poses. Including this prior into the dis-
tance metric has only a small effect on the computed distance in almost all cases. How-
ever, in cases where the Newton method might diverge, producing an extreme affine
correction, this prior will tend to regularize the computation. In the 2000-frame test se-
quence, this occurs in about 1% of the comparisons, all of which are repaired by the
deformation prior.

Temporal coherence prior – speed:An important additional constraint in the analysis
of image sequences is that provided by the motion of the detected faces. In movies
particularly, the faces generally move little from frame to frame, so that there is ana



(a) (b) (c)

Fig. 8. Distance matrices with and without priors . (a) Affine-invariant distance metric
with deformation priors only. (b) Matrix of speed prior contributions only. This can be pre-
computed without any iteration as it is based solely on the image locations reported by
the face detector. (c) Combined deformation and speed priors. The notable contribution
of the speed prior in this case (strong narrow white bars) is the increase in dissimilarity
between detections which are spatially separated, but temporally close – e.g. two actors
in the same scene.

priori restriction on the speed at which objects can move. A typical assumption might
be that the image velocity vectorẋ = dx/dt is drawn from a zero-mean distribution
which decays monontonically away from the origin. Figure 7 gives an indication of the
stability of the face detector’s position reports on a studio-bound shot. In outdoor or
crowd scenes the variance is somewhat higher.

To incorporate this knowledge, we can augment the distance computation between
two faces. Each81 × 81 face window in the pairI, I ′ is associated with its locationp
or p′ in the full frame, and the time (frame number) at which it was detectedt or t′.
Then, for any pair, a speed estimate is given bys(I, I ′) = ‖p′ − p‖/|t′ − t|. This is
converted to a log-likelihood via a kernel functionE, and added to the image distance,
which then contains three terms

dA(I, I′)2 = min
a,a′,I0

(I−T (a; I0)2 +(I′−T (a′; I0)2− log p(a−1a′)+E(s(I, I ′)) (9)

Because the dependence ofs on a is weak in our examples, the motion cost is simply
added to the AIDM matrix before clustering. It was empirically determined that an
effective form for the error was an arctangent sigmoidE(x) = tan−1 x. Figure 8 shows
the AIDM matrix before and after incorporating the motion constraint.

An effect of this prior is to increase the distance between faces across shot bound-
aries, since generally faces are not in precisely the same position in such frames and
consequently the speed is large. A prior could also be included on whether the same
face appears in contiguous shots.

Clustering: The distance matrix has been computed, and incorporates both deformation
and speed priors. Clustering is now performed using the “Partition among Medoids”
algorithm [14]. Because this algorithm has a run time which is greater than quadratic in
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Fig. 9. Clusters for the test sequence . (a) Clusters computed using tangent distance.
(b) Clusters computed using AIDM with both deformation and speed priors. The number
of clusters was set a priori at four. The tangent distance clusters are poor, showing very
little within-cluster coherence. The AIDM clusters correctly extract the main two char-
acters, and the third cluster center is the third character, although that cluster includes
some spurious background.

the number of data, a hierarchical strategy was employed. Given ann-element dataset
and a requirement fork clusters, the algorithm divides the set intoN subsets, which
can be clustered in reasonable time. Each subset is clustered to obtaink medoids, and
the process repeated over theNk cluster centres. Figure 10 shows the results of the
algorithm on 2111 faces detected in “Groundhog Day”.

5 Discussion

We have presented a new affine invariant distance metric which efficiently manages pri-
ors on the transformation parameters, and shown how the use of such priors regularizes
clustering problems in a controllable way. Previous efficient approaches usedad hoc
regularizers and did not include priors, while previous approaches incorporating priors
were expensive to compute. The new technique is analogous to the use of “trust region”



Fig. 10. Principal cast list of “Groundhog Day” . Cluster centres under AIDM with
priors. Duplicates have not been suppressed, so actors can appear multiple times, with
different expressions.

Fig. 11. Principal cast list of “The Player” . Top 40 cluster centres from 2899 detected
faces on every fifth frame (35641 frames).

and Levenberg-Marquardt strategies in nonlinear optimization. The power of this met-
ric for unsupervised clustering has been demonstrated by automatically extracting the
principal cast from a movie.

The primary difficulty with the current versions of the algorithm is a poor tolerance
to changes in expression of the characters. Relaxing the distance threshold will result
in merging of clusters containing different characters. Future investigations will include
improvements to the tolerance to expression change and other hard cases (see figure 12).
In particular we intend to learn the noise distribution in the manner of [25].

Clustering invariant to certain classes of transformations is an interesting strategy to
investigate for many vision problems. Here we have investigated face detection which
may be considered as a very strongly defined interest region operator. A similar exam-
ple would be a building facade detector, where invariant clustering would be expected
to determine the sides of the building. More generally, affine invariant clustering on
2D appearance would (partially) remove 3D viewpoint effects and determine clusters
corresponding to the aspects of an object. Finally, affine invariant clustering on filter re-
sponses will enable viewpoint variant and invariant textons [17] to be learnt from single
images of general curved surfaces, instead of, as now, from images of textured planes.



Fig. 12. Difficult cases . Examples (from “The Player”) where the plain AIDM has dif-
ficulty. Lighting change is handled reasonably well by our preprocessing. Modification
of (5) to include a robust kernel goes some way to handling the problems of occlusion.
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