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Abstract. We demonstrate a novel method of interpreting images us-
ing an Active Appearance Model (AAM). An AAM contains a statistical
model of the shape and grey-level appearance of the object of interest
which can generalise to almost any valid example. During a training
phase we learn the relationship between model parameter displacements
and the residual errors induced between a training image and a syn-
thesised model example. To match to an image we measure the current
residuals and use the model to predict changes to the current parame-
ters, leading to a better fit. A good overall match is obtained in a few
iterations, even from poor starting estimates. We describe the technique
in detail and give results of quantitative performance tests. We antici-
pate that the AAM algorithm will be an important method for locating
deformable objects in many applications.

1 Introduction

Model-based approaches to the interpretation of images of variable objects are
now attracting considerable interest [6][8][10] [11][14] [16][19][20]. They can achieve
robust results by constraining solutions to be valid instances of a model. In ad-
dition the ability to ‘explain’ an image in terms of a set of model parameters
provides a natural basis for scene interpretation. In order to realise these bene-
fits, the model of object appearance should be as complete as possible - able to
synthesise a very close approximation to any image of the target object.
Although model-based methods have proved successful, few of the existing
methods use full, photo-realistic models which are matched directly by minimis-
ing the difference between the image under interpretation and one synthesised
by the model. Although suitable photo-realistic models exist, (e.g. Edwards et
al [8] for faces), they typically involve a large number of parameters (50-100)
in order to deal with variability in the target objects. Direct optimisation using
standard methods over such a high dimensional space is possible but slow [12].
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In this paper, we show a direct optimisation approach which leads to an
algorithm which is rapid, accurate, and robust. In our proposed method, we do
not attempt to solve a general optimisation each time we wish to fit the model to
anew image. Instead, we exploit the fact the optimisation problem is similar each
time - we can learn these similarities off-line. This allows us to find directions
of rapid convergence even though the search space has very high dimensionality.
This approach is similar to that of Sclaroff and Isidoro [18], but uses a statistical
rather than ‘physical’ model.

In this paper we discuss the idea of image interpretation by synthesis and
describe previous related work. In section 2 we explain how we build compact
models of object appearance which are capable of generating synthetic examples
similar to those in a training set. The method can be used in a wide variety of
applications, but as an example we will concentrate on interpreting face images.
In section 3 we describe the Active Appearance Model algorithm in detail and
in 4 demonstrate its performance.

1.1 Interpretation by Synthesis

In recent years many model-based approaches to the interpretation of images
of deformable objects have been described. One motivation is to achieve robust
performance by using the model to constrain solutions to be valid examples of the
object modelled. A model also provides the basis for a broad range of applications
by ‘explaining’ the appearance of a given image in terms of a compact set of
model parameters. These parameters are useful for higher level interpretation
of the scene. For instance, when analysing face images they may be used to
characterise the identity, pose or expression of a face. In order to interpret a new
image, an efficient method of finding the best match between image and model
is required.

Various approaches to modelling variability have been described. The most
common general approach is to allow a prototype to vary according to some
physical model. Bajcsy and Kovacic [1] describe a volume model (of the brain)
that also deforms elastically to generate new examples. Christensen et al [3]
describe a viscous flow model of deformation which they also apply to the brain,
but is very computationally expensive. Turk and Pentland [20] use principal
component analysis to describe face images in terms of a set of basis functions,
or ‘eigenfaces’. Though valid modes of variation are learnt from a training set,
and are more likely to be more appropriate than a ‘physical’ model, the eigenface
is not robust to shape changes, and does not deal well with variability in pose
and expression. However, the model can be matched to an image easily using
correlation based methods.

Poggio and co-workers [10] [12] synthesise new views of an object from a
set of example views. They fit the model to an unseen view by a stochastic
optimisation procedure. This is slow, but can be robust because of the quality
of the synthesised images. Cootes et al [5] describe a 3D model of the grey-level
surface, allowing full synthesis of shape and appearance. However, they do not
suggest a plausible search algorithm to match the model to a new image. Nastar



at al [16] describe a related model of the 3D grey-level surface, combining physical
and statistical modes of variation. Though they describe a search algorithm, it
requires a very good initialisation. Lades at al [13] model shape and some grey
level information using Gabor jets. However, they do not impose strong shape
constraints and cannot easily synthesise a new instance.

Cootes et al [6] model shape and local grey-level appearance, using Active
Shape Models (ASMs) to locate flexible objects in new images. Lanitis at al
[14] use this approach to interpret face images. Having found the shape using
an ASM, the face is warped into a normalised frame, in which a model of the
intensities of the shape-free face is used to interpret the image. Edwards at
al [8] extend this work to produce a combined model of shape and grey-level
appearance, but again rely on the ASM to locate faces in new images. Our new
approach can be seen as a further extension of this idea, using all the information
in the combined appearance model to fit to the image.

In developing our new approach we have benefited from insights provided
by two earlier papers. Covell [7] demonstrated that the parameters of an eigen-
feature model can be used to drive shape model points to the correct place. The
AAM described here is an extension of this idea. Black and Yacoob [2] use local,
hand crafted models of image flow to track facial features, but do not attempt
to model the whole face. The AAM can be thought of as a generalisation of this,
in which the image difference patterns corresponding to changes in each model
parameter are learnt and used to modify a model estimate.

In a parallel development Sclaroff and Isidoro have demonstrated ‘Active
Blobs’ for tracking [18]. The approach is broadly similar in that they use image
differences to drive tracking, learning the relationship between image error and
parameter offset in an off-line processing stage. The main difference is that Active
Blobs are derived from a single example, whereas Active Appearance Models use
a training set of examples. The former use a single example as the original model
template, allowing deformations consistent with low energy mesh deformations
(derived using a Finite Element method). A simply polynomial model is used to
allow changes in intensity across the object. AAMs learn what are valid shape
and intensity variations from their training set.

Sclaroff and Isidoro suggest applying a robust kernel to the image differences,
an idea we will use in later work. Also, since annotating the training set is the
most time consuming part of building an AAM, the Active Blob approach may
be useful for ‘bootstrapping’ from the first example.

2 Modelling Appearance

In this section we outline how our appearance models were generated. The ap-
proach follows that described in Edwards et al [8] but includes extra normalisa-
tion and weighting steps. Some familiarity with the basic approach is required
to understand the new Active Appearance Model algorithm.

The models were generated by combining a model of shape variation with
a model of the appearance variations in a shape-normalised frame. We require



a training set of labelled images, where key landmark points are marked on
each example object. For instance, to build a face model we require face images
marked with points at key positions to outline the main features (Figure 1).

Fig. 1. Example of face image labelled with 122 landmark points

Given such a set we can generate a statistical model of shape variation (see
[6] for details). The labelled points on a single object describe the shape of that
object. We align all the sets into a common co-ordinate frame and represent
each by a vector, x. We then apply a principal component analysis (PCA) to
the data. Any example can then be approximated using:

x =%+ P,b, (1)

where X is the mean shape, P is a set of orthogonal modes of variation and
b, is a set of shape parameters.

To build a statistical model of the grey-level appearance we warp each exam-
ple image so that its control points match the mean shape (using a triangulation
algorithm). We then sample the grey level information g;, from the shape-
normalised image over the region covered by the mean shape. To minimise the
effect of global lighting variation, we normalise the example samples by applying
a scaling, a, and offset, 3,

g = (gim — A1)/ (2)

The values of o and 3 are chosen to best match the vector to the normalised
mean. Let g be the mean of the normalised data, scaled and offset so that the
sum of elements is zero and the variance of elements is unity. The values of «a
and f required to normalise g;,, are then given by

a=gimg, b= (gim-l)/n (3)

where n is the number of elements in the vectors.
Of course, obtaining the mean of the normalised data is then a recursive
process, as the normalisation is defined in terms of the mean. A stable solution



can be found by using one of the examples as the first estimate of the mean,
aligning the others to it (using 2 and 3), re-estimating the mean and iterating.
By applying PCA to the normalised data we obtain a linear model:

g=g+Pyb, (4)

where g is the mean normalised grey-level vector, P, is a set of orthogonal
modes of variation and b, is a set of grey-level parameters.

The shape and appearance of any example can thus be summarised by the
vectors b, and by. Since there may be correlations between the shape and grey-
level variations, we apply a further PCA to the data as follows. For each example
we generate the concatenated vector

Wb W, PT(x — %) )
b — s™s — 8 s _ 5
( b, ) ( LACES) )
where W is a diagonal matrix of weights for each shape parameter, allowing

for the difference in units between the shape and grey models (see below). We
apply a PCA on these vectors, giving a further model

b=Qc (6)

where Q are the eigenvectors and c is a vector of appearance parameters
controlling both the shape and grey-levels of the model. Since the shape and
grey-model parameters have zero mean, ¢ does too.

Note that the linear nature of the model allows us to express the shape and
grey-levels directly as functions of ¢

x=x+P;W;Qsc , g=g+ PgQgc (7)

a=(a) ©

An example image can be synthesised for a given c by generating the shape-
free grey-level image from the vector g and warping it using the control points
described by x.

where

2.1 Choice of Shape Parameter Weights

The elements of b, have units of distance, those of b, have units of intensity, so
they cannot be compared directly. Because P, has orthogonal columns, varying
b, by one unit moves g by one unit. To make b, and b, commensurate, we must
estimate the effect of varying b, on the sample g. To do this we systematically
displace each element of b, from its optimum value on each training example,
and sample the image given the displaced shape. The RMS change in g per
unit change in shape parameter b, gives the weight ws to be applied to that
parameter in equation (5).



2.2 Example: Facial Appearance Model

We used the method described above to build a model of facial appearance. We
used a training set of 400 images of faces, each labelled with 122 points around
the main features (Figure 1). From this we generated a shape model with 23
parameters, a shape-free grey model with 114 parameters and a combined ap-
pearance model with only 80 parameters required to explain 98% of the observed
variation. The model uses about 10,000 pixel values to make up the face patch.

Figures 2 and 3 show the effects of varying the first two shape and grey-
level model parameters through +3 standard deviations, as determined from
the training set. The first parameter corresponds to the largest eigenvalue of
the covariance matrix, which gives its variance across the training set. Figure 4
shows the effect of varying the first four appearance model parameters, showing
changes in identity, pose and expression.

Fig. 2. First two modes of shape variation Fig. 3. First two modes of grey-level vari-
(3 sd) ation (+3 sd)

Fig. 4. First four modes of appearance variation (%3 sd)



2.3 Approximating a New Example

Given a new image, labelled with a set of landmarks, we can generate an approx-
imation with the model. We follow the steps in the previous section to obtain b,
combining the shape and grey-level parameters which match the example. Since
Q is orthogonal, the combined appearance model parameters, ¢ are given by

c=Q"b (9)

The full reconstruction is then given by applying equations (7), inverting
the grey-level normalisation, applying the appropriate pose to the points and
projecting the grey-level vector into the image.

For example, Figure 5 shows a previously unseen image alongside the model
reconstruction of the face patch (overlaid on the original image).

Fig. 5. Example of combined model representation (right) of a previously unseen face
image (left)

3 Active Appearance Model Search

We now address the central problem: We have an image to be interpreted, a full
appearance model as described above and a reasonable starting approximation.
We propose a scheme for adjusting the model parameters efficiently, so that
a synthetic example is generated, which matches the new image as closely as
possible. We first outline the basic idea, before giving details of the algorithm.

3.1 Overview of AAM Search

We wish to treat interpretation as an optimisation problem in which we minimise
the difference between a new image and one synthesised by the appearance
model. A difference vector I can be defined:

SI=T; — I, (10)



where I; is the vector of grey-level values in the image, and I,,, is the vector
of grey-level values for the current model parameters.

To locate the best match between model and image, we wish to minimise the
magnitude of the difference vector, A = |6I|2, by varying the model parameters,
c. Since the appearance models can have many parameters, this appears at
first to be a difficult high-dimensional optimisation problem. We note, however,
that each attempt to match the model to a new image is actually a similar
optimisation problem. We propose to learn something about how to solve this
class of problems in advance. By providing a-priori knowledge of how to adjust
the model parameters during during image search, we arrive at an efficient run-
time algorithm. In particular, the spatial pattern in §I, encodes information
about how the model parameters should be changed in order to achieve a better
fit. In adopting this approach there are two parts to the problem: learning the
relationship between §I and the error in the model parameters, dc and using this
knowledge in an iterative algorithm for minimising A.

3.2 Learning to Correct Model Parameters

The simplest model we could choose for the relationship between I and the
error in the model parameters (and thus the correction which needs to be made)
is linear:

dc = AéI (11)

This turns out to be a good enough approximation to achieve acceptable
results. To find A, we perform multiple multivariate linear regression on a sample
of known model displacements, dc, and the corresponding difference images, 1.
We can generate these sets of random displacements by perturbing the ‘true’
model parameters for the images in which they are known. These can either be
the original training images or synthetic images generated with the appearance
model. In the latter case we know the parameters exactly, and the images are
not corrupted by noise.

As well as perturbations in the model parameters, we also model small dis-
placements in 2D position, scale, and orientation. These four extra parameters
are included in the regression; for simplicity of notation, they can be regarded
simply as extra elements of the vector dc. To retain linearity we represent the
pose using (sg, Sy, tz,ty) where s, = scos(d), s, = ssin(f). In order to obtain
a well-behaved relationship it is important to choose carefully the frame of ref-
erence in which the image difference is calculated. The most suitable frame of
reference is the shape-normalised patch described in section 2.

We calculate a difference thus: Let ¢ be the known appearance model pa-
rameters for the current image. We displace the parameters by a known amount,
dc, to obtain new parameters ¢ = dc + cg. For these parameters we generate the
shape, x, and normalised grey-levels, g, using (7). We sample from the image,
warped using the points, x, to obtain a normalised sample g;. The sample error
is then 6g = gs — gm-



The training algorithm is then simply to randomly displace the model param-
eter in each training image, recording dc and §g. We then perform multi-variate
regression to obtain the relationship

Jc = Adg (12)

The best range of values of dc to use during training is determined experi-
mentally. Ideally we seek to model a relationship that holds over as large a range
errors, dg, as possible. However, the real relationship is found to be linear only
over a limited range of values. Our experiments on the face model suggest that
the optimum perturbation was around 0.5 standard deviations (over the training
set) for each model parameter, about 10% in scale and 2 pixels translation.

Results For The Face Model We applied the above algorithm to the face
model described in section 2.2. After performing linear regression, we can cal-
culate an R? statistic for each parameter perturbation, dc; to measure how well
the displacement is ‘predicted’ by the error vector dg. The average R? value for
the 80 parameters was 0.82, with a maximum of 0.98 (the 1st parameter) and a
minimum of 0.48.

We can visualise the effects of the perturbation as follows. If a; is the it"
row of the regression matrix A, the predicted change in the i** parameter, dc;
is given by

(SC»L' = ai.ég (13)

and a; gives the weight attached to different areas of the sampled patch
when estimating the displacement. Figure 6 shows the weights corresponding to
changes in the pose parameters, (sz, sy, tz, ty). Bright areas are positive weights,
dark areas negative. As one would expect, the z and y displacement weights are
similar to z and y derivative images. Similar results are obtained for weights
corresponding to the appearance model parameters

Fig. 6. Weights corresponding to changes in the pose parameters, (Sq, Sy, tz,ty)

Perturbing The Face Model To examine the performance of the prediction,
we systematically displaced the face model from the true position on a set of 10
test images, and used the model to predict the displacement given the sampled



error vector. Figures 7 and 8 show the predicted translations against the actual
translations. There is a good linear relationship within about 4 pixels of zero.
Although this breaks down with larger displacements, as long as the prediction
has the same sign as the actual error, and does not over-predict too far, an itera-
tive updating scheme should converge. In this case up to 20 pixel displacements
in z and about 10 in y should be correctable.
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We can, however, extend this range by building a multi-resolution model
of object appearance. We generate Gaussian pyramids for each of our training
images, and generate an appearance model for each level of the pyramid. Figure
9 shows the predictions of models displaced in x at three resolutions. L0 is the

base model, with about 10,000 pixels. L1 has about 2,500 pixels and L2 about
600 pixels.
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Fig. 9. Predicted dz vs actual dz for 3 levels of a Multi-Resolution model. L0: 10000
pixels, L1: 2500 pixels, L2: 600 pixels. Errorbars are 1 standard error

The linear region of the curve extends over a larger range at the coarser
resolutions, but is less accurate than at the finest resolution. Similar results are
obtained for variations in other pose parameters and the model parameters.



3.3 Iterative Model Refinement

Given a method for predicting the correction which needs to made in the model
parameters we can construct an iterative method for solving our optimisation
problem.

Given the current estimate of model parameters, cg, and the normalised
image sample at the current estimate, g5, one step of the iterative procedure is
as follows:

— Evaluate the error vector 6go = g5 — €m

— Evaluate the current error Ey = |dgo|?

— Compute the predicted displacement, e = Adgo

—Setk=1

— Let ¢; = ¢g — kdc

— Sample the image at this new prediction, and calculate a new error vector,
og1

— If |6g1|* < Eo then accept the new estimate, c1,

— Otherwise try at k = 1.5, k = 0.5, k = 0.25 etc.

This procedure is repeated until no improvement is made to the error, |dg|?,
and convergence is declared.

We use a multi-resolution implementation, in which we iterate to convergence
at each level before projecting the current solution to the next level of the model.
This is more efficient and can converge to the correct solution from further away
than search at a single resolution.

Examples of Active Appearance Model Search We used the face AAM to
search for faces in previously unseen images. Figure 10 shows the best fit of the
model given the image points marked by hand for three faces. Figure 11 shows
frames from a AAM search for each face, each starting with the mean model
displaced from the true face centre.

Fig. 10. Reconstruction (left) and original (right) given original landmark points

As an example of applying the method to medical images, we built an Ap-
pearance Model of part of the knee as seen in a slice through an MR image.
The model was trained on 30 examples, each labelled with 42 landmark points.
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Fig. 11. Multi-Resolution search from displaced position

Figure 12 shows the effect of varying the first two appearance model parameters.
Figure 13 shows the best fit of the model to a new image, given hand marked
landmark points. Figure 14 shows frames from an AAM search from a displaced
position.

Fig.12. First two modes of ap- Fig. 13. Best fit of knee model to new image given
pearance variation of knee model  ]andmarks



Initial 2 its Converged (11 its)

Fig. 14. Multi-Resolution search for knee

4 Experimental Results

To obtain a quantitative evaluation of the performance of the algorithm we
trained a model on 88 hand labelled face images, and tested it on a different set
of 100 labelled images. Each face was about 200 pixels wide.

On each test image we systematically displaced the model from the true
position by +15 pixels in = and y, and changed its scale by £10%. We then
ran the multi-resolution search, starting with the mean appearance model. 2700
searches were run in total, each taking an average of 4.1 seconds on a Sun Ultra.
Of those 2700, 519 (19%) failed to converge to a satisfactory result (the mean
point position error was greater than 7.5 pixels per point). Of those that did
converge, the RMS error between the model centre and the target centre was
(0.8, 1.8) pixels. The s.d. of the model scale error was 6%. The mean magnitude
of the final image error vector in the normalised frame relative to that of the
best model fit given the marked points, was 0.88 (sd: 0.1), suggesting that the
algorithm is locating a better result than that provided by the marked points.
Because it is explicitly minimising the error vector, it will compromise the shape
if that leads to an overall improvement of the grey-level fit.

Figure 15 shows the mean intensity error per pixel (for an image using 256
grey-levels) against the number of iterations, averaged over a set of searches
at a single resolution. In each case the model was initially displaced by up to
15 pixels. The dotted line gives the mean reconstruction error using the hand
marked landmark points, suggesting a good result is obtained by the search.

Figure 16 shows the proportion of 100 multi-resolution searches which con-
verged correctly given starting positions displaced from the true position by up
to 50 pixels in z and y. The model displays good results with up to 20 pixels
(10% of the face width) displacement.

5 Discussion and Conclusions

We have demonstrated an iterative scheme for fitting an Active Appearance
Model to new images. The method makes use of learned correlation between
model-displacement and the resulting difference image. Given a reasonable initial
starting position, the search converges quickly. Although it is slower than an
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Active Shape Model [6], since all the image evidence is used, the procedure should
be more robust than ASM search alone. We are currently investigating further
efficiency improvements, for example, sub-sampling both model and image.

The algorithm can be thought of as a differential optic low method, in which
we learn the patterns of changes associated with varying each parameter. Like
differential optic flow, it can only cope with relatively small changes (though the
training phase makes it more robust). To deal with larger displacements we are
exploring techniques akin to correlation -based optic flow, in which sub-regions
of the model are systematically displaced to find the best local correction.

We are attempting to find the parameters ¢ of some vector valued model
v(c) which minimises A = |v;;,, — v(c)|?, where v;,,, may vary as c varies. With
no other information, this would be difficult, but could be tackled with general
purpose algorithms such as Powells, Simplex, Simulated Annealing or Genetic
Algorithms [17]. However, by obtaining an estimate of the derivative, g—’c‘ we can
direct the search more effectively. The algorithm described above is related to
steepest gradient descent, in which we use our derivative estimate, combined
with the current error vector, to determine the next direction to search. It may
be possible to modify the algorithm to be more like a conjugate gradient descent
method, or to use second order information to use the Levenberg-Marquardt

algorithm [17], which could lead to faster convergence.

The nature of the search algorithm makes it suitable for tracking objects
in image sequences, where it can be shown to give robust results [9]. In the
experiments above we have examined search from relatively large displacements.
In practise, a good initial starting point can be found by a variety of methods.
We could use an ASM, which by searching along profiles can converge from large
displacements. Alternatively we could train a rigid eigen-feature type model [15]
[4] which can be used to locate the object using correlation. A few iterations of
the AAM would then refine this initial estimate.



We anticipate that the AAM algorithm will be an important method of lo-

cating deformable objects in many applications.
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