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Much of the work in vision in the last decade has examined what low-level vision tells high level vision.
Cues such as optic flow, depth of focus, and contour intersections have been shown to be useful,
reliable correlates of the 3-D structure of a scene. However, the retinal image is often ambiguous. Figure
1, for example, can be seen as either a duck or rabbit. It does not appear as a hybrid, though: only one or
the other of these interpretations is seen at any given moment. In addition, the final percept — duck or
rabbit here — often contains more structure than is available in the retinal image. The relative positions
of the two ears of the rabbit, for example, one near, one far, are not specified in the image yet they are
available in the percept and determined by our 3-D knowledge about rabbits. In these instances, the
interpretation must have been influenced by top-down processes. Clearly, top-down processing speeds
the analysis of the retinal image when familiar scenes and objects are encountered and can complete
details missing in the optic array.

Fig. 1. An ambiguous figure that can be seen as either a rabbit (apparently staring into the sky) or a
duck. The 3-D structure attributed to the various parts of the image changes in the two interpretations but
the 2-D information — the location of the contours — is unaffected.

Top-down processing requires that something be up top, of course, and there have been only vague
ideas about the representations that might be involved and the means by which they would influence
perception. Basically, the tacit assumption is that something is up top and that this something solves
otherwise puzzling visual problems. In order to start an examination of these processes, I shall describe
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a particular stimulus that can only be interpreted with the aid of top-down processing but for which there
is, initially, nothing up top.

In analyzing this stimulus, I shall concentrate on the early stages that lead from the initial 2-D
representation on the retina to object recognition. Current bottom-up approaches to vision (see Fig. 2)
assume that the 2-D representation leads to an internal 3-D model before the stimulus is identified (Marr,
1982; Biederman, 1987). Work that I have just begun takes a different approach, suggesting that object
parts and boundaries should not be explicitly identified at such an early stage and that matching of raw
2-D views may be the most effective way to make the initial memory contact (Fig. 3). The basic question
is the level at which image elements should be labeled as particular image tokens, whether edges, curves,
2-D shapes or 3-D volumetric features. This labeling commits the visual analysis to treat image elements
in specific ways in subsequent processing and it can be disadvantageous to make this commitment
prematurely.

Image = Contours = Parts = 3-D Model = Object

Fig. 2. Image analysis, as proposed by Marr (1982) and Biederman (1987) for example, proceeds
from from the image through a 3-D model before indexing memory to identify the object.

I shall examine the possibility that object recognition begins, not with the construction of a 3-D model,
but with a crude match of 2-D views to internal prototypes. The prototype that has the best match then
guides the construction of an internal 3-D model. In other words, recognition may start with a quick
table look-up process, operating on principles completely different from those implied in Figure 2. The
results of this process are then “up top”, available to initiate top-down processes.
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Fig. 3. In special cases, recognition may start with an initial match of 2-D image information against
memory prototypes which then guide the construction of a 3-D model.

Figure 3 is presented as a sketch of the components of the visual system that are relevant for this paper.
The diagram is principally concerned with the flow of shape information and not, for example, with the
analysis of the position of objects or their displacement in the scene. These analyses may form part of a
second processing system — the “where” system proposed by Mishkin, Ungerleider, and Macko
(1982). The figure does not show the direct contribution of binocular disparity, motion parallax,
convergence cues or gradients (shading, optic flow, etc.) to the 3-D model, but these are not considered
in detail in this paper.

The stimuli I shall use to examine early recognition processes are figures where shape is defined by
shadows (Fig. 4, righthand panel). There is more to this image than just contours, however: Many
people presented with only the contours (Fig. 4, lefthand panel), for example, cannot identify it. Nor can
they specify which contours might be shadow contours and which might be object contours. However,
it is essential to identify the cast shadow borders in an image (this point is discussed in more detail
below) because they are generally unrelated to the object contours and they seriously disrupt the
interpretation of the image if they are confused with object contours — as they are in the lefthand panel
of Figure 4. Clearly, any process (or person) that tries to identify parts or volumetric features in such an
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image would perform poorly without some knowledge of the object. Ishall argue that any approach that
labels the borders in this type of image before identifying the object will be faced with several spurious
borders and these extra borders will seriously disrupt the segmentation of object parts. In most natural
images, there are many redundant cues that help to identify which contours are shadow contours and
which are not. The images that I are studying are therefore not intended to be representative of natural
images but are an especially difficult type of image that humans are nevertheless able to interpret
remarkably well.
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Fig. 4. Contour information alone may be insufficient for 3-D interpretation. The left panel contains the
same contours as the right but is difficult to recognize on its own.

Shadows are useful for recovering 3-D information as in the righthand panel of Figure 4, where the
surface structure is revealed only by shadows (Cavanagh & Leclerc, 1989). Even though shadows are
useful they suffer from several ambiguities in an image like Figure 4. First, it is not evident in the image
whether an area is dark because of dark pigment or because of a dark shadow (of course, the figure is
just dark pigment even though our interpretation attributes the darkness to shadows). Different kinds of
shadow contours — attached or cast, see Figure 5 and 6 — play very different roles in reconstructing
3-D structure and nothing in the high contrast images that I am using distinguishes between these two
types. Finally, the interpretation of the shadows depends critically on knowing the direction of the
illuminant and this is not specified in the image in any explicit manner. In one sense, we have to know
where the shadows are before we can identify the direction of the illuminant but we have to know the
direction of the illuminant before we can discover the shadows.

Fig. 5. Shadows have two types of borders: attached borders where the direction of the illumination is
perpendicular to the surface normal (the light just grazes the surface); and cast borders where the shadow
cast by one surface falls on a second surface. An object’s external borders are only visible where the
background and the object have a different brightnesses.

The essential goal in discovering the shadows in a figure is identifying the cast shadow borders. These
borders have a special status in images because they do not correspond to any discontinuity in the object
but to a discontinuity in the illumination. The cast shadow border is not a material border and basically
needs to be ignored in order to patch together the pieces of surface that actually belong together.



298 P. Cavanagh

Shado image Full contour

%ﬁ’ ~= L

Attached and

s

Fig. 6. The contours of the shadow image (top left) are difficult to interpret on their own (top right) but I
the attached and external contours (bottom left) are easily recognized. The cast shadow contours (bottom
right) present a meaningless jumble of lines.

I claim that the recognition of shape from shadow in a stimulus like that in Figure 4 starts with an initial
2-D matching process. The reason is that there is no alternative for these images: the stimulus cannot be
interpreted directly from image data without knowing what the object is. As mentioned above, the
interpretation of the image requires that the different types of borders — object border, cast and attached
shadow borders — be identified or parsed in the image. The only way to parse the image contours into
attached or cast borders without any top-down guidance is presented in Figure 7 and I shall show that
this parsing fails on images that we can nevertheless interpret.

Fig. 7. A line parallel to the direction of the illuminant can uniquely label the light to dark transitions
which always fall in the same sequence: external (E), attached (A), cast (C), attached, ... [e.g.
{E,A},{C,A},{C,A},...] no matter where the line is traced.

If we assume that the direction of illumination can be determined (in the extreme, all directions can be
examined until a consistent interpretation is found), then it is possible to distinguish cast from attached
shadow borders in the image and from the attached shadow borders to recover the object’s 3-D structure.
Figure 7 demonstrates that along any line parallel to the direction of illumination, borders alternate in a
fixed order. If the background is dark, the order is always external, attached, cast, attached, cast,
attached, and so on, with cast and attached repeating in pairs. Using this rule, the border type can be
identified throughout the image.



Fig. 8. In this image, some regions may be dark either because of low reflectance (R: hair, dark
glasses, lipstick) or because of shadows. Other regions are light because of high diffuse relectance (skin)
or because of specular relections (H: highlights on the glasses). The labeling scheme of Figure 7 fails
here because the light to dark transitions can no longer be uniquely identified.

However, this parsing only works in an image where the borders are all shadow borders. If the image
also contains reflectance and highlight borders (shown as R and H in Figure 8), no consistent labeling is
possible. Shadow borders cannot be distinguished from reflectance or highlight borders in the image
even if the direction of the illuminant is known. Therefore, the image contours cannot be parsed. The
image is nevertheless recognizable. I conclude that some information other than that available in the
image must guide the intcrgrctation. But this cannot be true either since most people perceive the
righthand panel of Figure 8 as a face without being told what it is beforehand. There is no other
information available. Even if I want to invoke top-down processing, there is nothing up top!
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Fig. 9. The contours of the shadow image (top right) contain an easily recognized subset that can match
to characteristic contours of a face prototype.

How can we get knowledge about the object before we recognize it? I suggest that a very different type
of process performs a rapid, crude match against the image data to identify the type of stimulus. This
hypothesis or prototype then guides the interpretation of the image. Note that even though the contours
of shadow figures such as those in Figure 4, 7 and 8 are difficult to recognize, there is sufficient contour
information in them for a match to simple prototypes in memory. As we saw in Figure 6, there is a
subset of contours in these figures that is easily recognizable: the attached shadow and external contours.
It cannot be known beforehand which contours are attached shadows and which are cast but a matching
process that is capable of recognizing subsets of contours in the presence of irrelevant contours could
extract the best match.
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Figure 9, for example, contains some characteristic contours of the object mixed in with, and
indistinguishable from, many irrelevant cast shadow contours. An initial 2-D match is therefore
advantageous only if image information can be matched to memory prototypes without first selecting
which subset of image contours must be object contours. Matched filtering techniques developed for 2-D
recognition in the 1960s demonstrate possible methods for performing the necessary steps: identify
targets based on a partial set of contours in the presence of unrelated contours (Bieringer, 1973; Van der
Lugt, 1964); specify which contours participated in the match; fill in the missing contours (Collier &
Pennington, 1966); and identify the residual image contours unrelated to the matched object (Caulfield,
1974, residual contours must then be explained by other scene components such as shadows, and other,
occluding objects). This match process must be able to match against all possible prototypes
simultaneously. It is probably most reasonable to think of storing only a small set of characteristic
protoptypes — a face, a car, a cylinder etc. — and not a prototype for each possible instance of these
broad classes.

Thus a rough 2-D match could select the best candidate object — a face, boot, hat, or whatever. The 3-D
information stored with this prototype could then guide the construction of an internal 3-D model —
verifying that it is consistent with the image contours and resolving ambiguities of shadow borders,
occluded objects and incomplete contours. A match between a subset of the image contours (and these
will only be among the external and attached shadow contours such as, in Figure 10, the nose profile or
the lips) has the important consequence of identifying the residual contours — the contours not explained
by the prototype. A second process must then “explain” these residuals. On the right in Figure 10, the
residual contours might be attributed to shadows or material boundaries or to other objects that are
occluding the object that matched the prototype. These hypotheses for the residuals must then be verified
in the image to see whether the original hypothesis can be maintained; for example, if a residual contour
is to be interpreted as a shadow border, the image should be darker on the shadow side of the border.
Figure 11 depicts this process for one piece of residual contour from the right side of Figure 10.
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Fig. 10. The image contours include the informative attached shadow and external contours on the left
and the more or less irrelevant cast shadow borders on the right. Only the contours on the left can be
expected to participate in a match to a simple prototype although certainly not all those shown here would
be involved — perhaps only the nose, eyes, lips and ear contours. Those that don’t participate in the
match are the residuals that must be explained through different assignments in the scene. These will
always include the cast shadow contours shown on the right.

If there is insufficient support in the image for the 3-D aspects of the initial prototype, it would be
discarded. This is the probable fate of a face prototype for the top image of Fig. 10 — there are no dark
regions to support 3-D shadow explanations of the many contours that are not characteristic face (lips,
nose, forehead, etc.) contours. The prototype with the next best 2-D match would then be selected to
guide the 3-D modeling. However, there is no other obvious 3-D prototype for this particular image. The
only remaining explanation is that the contours are all material borders so that the enclosed areas are seen
as separate 2-D islands.
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Fig. 11. Each residual contour must be explained by an additional scene property. If the particular
contour shown as a thick line in the ear area is to be labeled as a cast shadow border, the adjacent region
to the right must be darker than that to the left.

The memory prototypes required for this inital 2-D match are quite unlike those required by recent
approaches (Marr, 1982; Biederman, 1987) where memory prototypes are object-centered and can serve
to identify any arbitrary 2-D view of an object in the scene. In contrast, if the initial match is based on
stored 2-D views, each object prototype would have to have numerous 2-D views as part of its
representation in memory. The number of necessary views would have to be especially large if size- and
orientation-invariant coding is not used by the visual system (although see Cavanagh, 1984, 1985). In
one sense, this is not an insurmountable problem even in the worst case since 2-D matching is ideally
suited to the massively parallel processes hypothesized in neural net memory systems (Anderson,
Silverstein, Ritz & Jones, 1978; Kohonen, 1977).

Note that the 2-D views bundled together as memory prototypes are viewer-centered (see Fig. 14). There
is evidence that the visual system does, in fact, operate on viewer-centered representations and not 3-D
object models when accessing memory. Rock and his colleagues (Rock, DeVita & Barbeito, 1981; Rock
& DeVita, 1987) have demonstrated that views of wire-frame objects seen from different directions are
reliably identified only when they have the same retinal projection, indicating that 2-D viewer-centered
representations may mediate recognition.

In the test figures that I have used, top-down processing operates from a rough prototype for the object
in the image and, in cases where there is no other source, the prototype is provided by a 2-D match to the
image. The model of recognition therefore has three stages: first, a 2-D match of the image against
memory prototypes selects the “best” prototype; second, this prototype guides the construction of a 3-D
model, checking the image for consistent support as the interpretation develops in detail; finally, the
completed 3-D model corresponds to recognition.
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Fig. 12. The analysis of the image depicted on three levels: the displayed image which remains
unchanged after its initial presentation; the analysis steps of extracting image contours, matching to
memory prototypes, identifying the residual contours not contained in the prototype, and checking image
for support for local interpretations of each residual contour; finally, the prototype is available to direct
top-down processing following the match to memory. The face prototype fails in this test image
containing only contours since no support can be found for 3-D interpretations of the residuals (e.g.
shadow borders or occluding objects).
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FIG. 13. In this example, the contour image is replaced in the display with a filled image just prior to
verifying the residuals. Brightness levels are appropriate for shadow explanations of the residuals so the
3-D structure of the prototype is accepted even though only contours were presented initially.
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If this model of early recognition is correct, it has an interesting and unexpected consequence. If the
contour version of a shadow figure (e.g. the lefthand panel of Figures 4, 7, or 8) is presented, the 2-D
match to the prototype should occur even if the figure is not recognized. The match occurs as shown in
Figure 12, but it is rejected later because of lack of support for the residuals. It may be possible
therefore, to switch the image from a contour version to a filled version at the appropriate moment and
obtain recognition in the same total time — as if the filled version were present from the start (Figure
13). I have begun experiments to test this prediction.

In summary, what’s up top? In the examples that I have presented here, it appears that some type of
rough prototype may be the representation that guides the interpretation of the image. In most natural
images where many redundant cues are available, the prototype may be chosen based on 3-D
information. In the high-contrast images that I have used, no 3-D information is available from the image
either directly or through pictorial cues such as perspective, contour intersections, or deep concavities. I
claimed that for these images an initial 2-D match selected the best prototype to guide image
interpretation. This initial match does not constitute recognition, however, and an experiment was
suggested to demonstrate that this early match occurs even for stimuli that cannot themselves be
recognized. The stored prototypes may be limited to basic object types, some as complex as a face and
others as simple as a cylinder, but do not require a prototype for each instance of a class.
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Fig. 14. Memory prototypes include a set of 2-D views from several viewpoints and 3-D knowledge
about the object such as directions of curvature along the object contours that are visible in the various
2-D views as well as identification of the parts. Prototypes for those parts would contain additional
information as well. The prototypes could be identified from 3-D information available in the image or in
its absence from a 2-D match to individual views. Once the prototype is identified, it guides the
completion of the 3-D model of the object.
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