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Abstract. We describe a new approach for learning to perform class-
based segmentation using only unsegmented training examples. As in
previous methods, we first use training images to extract fragments that
contain common object parts. We then show how these parts can be
segmented into their figure and ground regions in an automatic learning
process. This is in contrast with previous approaches, which required
complete manual segmentation of the objects in the training examples.
The figure-ground learning combines top-down and bottom-up processes
and proceeds in two stages, an initial approximation followed by iterative
refinement. The initial approximation produces figure-ground labeling of
individual image fragments using the unsegmented training images. It
is based on the fact that on average, points inside the object are cov-
ered by more fragments than points outside it. The initial labeling is
then improved by an iterative refinement process, which converges in
up to three steps. At each step, the figure-ground labeling of individual
fragments produces a segmentation of complete objects in the training
images, which in turn induce a refined figure-ground labeling of the in-
dividual fragments. In this manner, we obtain a scheme that starts from
unsegmented training images, learns the figure-ground labeling of image
fragments, and then uses this labeling to segment novel images. Our ex-
periments demonstrate that the learned segmentation achieves the same
level of accuracy as methods using manual segmentation of training im-
ages, producing an automatic and robust top-down segmentation.

1 Introduction

The goal of figure-ground segmentation is to identify an object in the image and
separate it from the background. One approach to segmentation – the bottom-up
approach – is to first segment the image into regions and then identify the image
regions that correspond to a single object. The initial segmentation mainly relies
on image-based criteria, such as the grey level or texture uniformity of image
regions, as well as the smoothness and continuity of bounding contours. One
of the major shortcomings of the bottom-up approach is that an object may be
segmented into multiple regions, some of which may incorrectly merge the object
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with its background. These shortcomings as well as evidence from human vision
[1,2] suggest that different classes of objects require different rules and criteria
to achieve meaningful image segmentation. A complementary approach, called
top-down segmentation, is therefore to use prior knowledge about the object at
hand such as its possible shape, color, texture and so on. The relative merits of
bottom-up and top-down approaches are illustrated in Fig. 1.

A number of recent approaches have used fragments (or patches) to perform
object detection and recognition [3,4,5,6]. Another recent work [7] has extended
this fragment approach to segment and delineate the boundaries of objects from
cluttered backgrounds. The overall scheme of this segmentation approach, in-
cluding the novel learning component developed in this paper, is illustrated
schematically in Fig. 2. The first stage in this scheme is fragment extraction
(F.E.), which uses unsegmented class and non-class training images to extract
and store image fragments. These fragments represent local structure of common
object parts (such as a nose, leg, neck region etc. for the class of horses) and are
used as shape primitives. This stage applies previously developed methods for
extracting such fragments, including [8,4,5]. In the detection and segmentation
stage a novel class image is covered by a subset of the stored fragments. A critical
assumption is that the figure-ground segmentation of these covering fragments
is already known, and consequently they induce figure-ground segmentation of
the object. In the past, this figure-ground segmentation of the basic fragments,
termed the fragment labeling stage (F.L.), was obtained manually. The focus
of this paper is to extend this top-down approach by providing the capacity to
learn the segmentation scheme from unsegmented training images, and avoiding
the requirement for manual segmentation of the fragments.

The underlying principle of our learning process is that class images are
classified according to their figure rather than background parts. While figure
regions in a collection of class-image samples share common sub-parts, the back-
ground regions are generally arbitrary and highly variable. Fragments are there-
fore more likely to be detected on the figure region of a class image rather than
in the background. We use these fragments to estimate the variability of regions
within sampled class images. This estimation is in turn applied to segment the
fragments themselves into their figure and background parts.

1.1 Related Work

As mentioned, segmentation methods can be divided into bottom-up and top-
down schemes. Bottom-up segmentation approaches use different image-based
uniformity criteria and search algorithms to find homogenous segments within
the image. The approaches vary in the selected image-based similarity criteria,
such as color uniformity, smoothness of bounding contours, texture etc. as well
as in their implementation.

Top-down approaches that use class-based (or object-specific) criteria to
achieve figure-ground segmentation include deformable templates [10], active
shape models (ASM) [11] and active contours (snakes) [12]. In the work on de-
formable templates, the template is designed manually for each class of objects.
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Fig. 1. Bottom-up and Top-down segmentation (two examples): Left – input images.
Middle – state-of-the-art bottom-up segmentation ([9]). Each colored region (middle-
left) represents a segment and the edge map (middle-right) represents the segments’
boundaries. Right – class-specific segmentation (white contour) as learned automat-
ically by our system. The bottom-up approach may segment objects into multiple
parts and merge background and object parts as it follows prominent image-based
boundaries. The top-down approach uses stored class-specific representation to give an
approximation for the object boundaries. This approximation can then be combined
with bottom-up segmentation to provide an accurate and complete segmentation of
the object.

Fig. 2. The approach starts from a set of class (C) and non-class (NC) training images.
The first stage is fragment extraction (F.E.) that extracts a set of informative frag-
ments. This is followed by fragment-labeling (F.L.), the focus of this work, in which
each fragment is divided into figure and background. During recognition, fragments
are detected in input images (fragment detection, F.D.). The fragments’ labeling and
detection are then combined to segment the input images.

In schemes using active shapes, the training data are manually segmented to
produce aligned training contours. The object or class-specific information in
the active contours approach is usually expressed in the initial contour and in
the definition of the external force. In all of the above top-down segmentation
schemes, the class learning stage requires extensive manual intervention.

In this work we describe a scheme that automatically segments shape frag-
ments into their figure and ground relations using unsegmented training images,
and then uses this information to segment class objects in novel images from
their background. The system is given a set of class images and non-class im-
ages and requires only one additional bit for each image in this set (“class”
/ “non-class”).
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2 Constructing a Fragment Set (Fragment Extraction)

The first step in the fragment-based approach is the construction of a set of
fragments that represents the class and can be used to effectively recognize and
segment class images. We give below a brief overview of the fragment extraction
process. (further details of this and similar approaches can be found in [8,4,5].)
The construction process starts by randomly collecting a large set of candidate
fragments of different sizes extracted from images of a general class, such as
faces, cars, etc. The second step is to select from the initial pool of fragments a
smaller subset of the more useful fragments for detection and classification. These
fragments are selected using an information measure criterion. The aim is that
the resulting set be highly informative, so that a reliable classification decision
can be made based on the detection of these fragments. Detected fragments
should also be highly overlapping as well as being well-distributed across the
object, so that together they are likely to cover it completely. The approach in [8]
sets for each candidate fragment a detection threshold selected to maximize the
mutual information between the fragment detection and the class. A fragment
is subsequently detected in an image region if the similarity measure (absolute
value of the normalized linear correlation in our case) between the fragment
and that region exceeds the threshold. Candidates fj are added to the fragment
set F s one by one so as to maximize the gain in mutual information I(F s; C)
between the fragment set and the class:

fj = arg max
f

(I(F s ∪ f ; C) − I(F s; C)) (1)

This selection process produces a set of fragments that are more likely to be
detected in class compared with non-class images. In addition, the selected frag-
ments are highly overlapping and well distributed. These properties are obtained
by the selection method and the fragment set size: a fragment is unlikely to be
added to the set if the set already contains a similar fragment since the mutual
information gained by this fragment would be small. The set size is determined
in such a way that the class representation is over-complete and, on average,
each detected fragment overlaps with several other detected fragments (at least
3 in our implementation).

3 Learning the Fragments Figure-Ground Segmentation

To use the image fragments for segmentation, we next need to learn the figure-
ground segmentation of each fragment. The learning process relies on two main
criteria: border consistency and the degree of cover, which is related to the vari-
ability of the background. We initialize the process by performing a stage of
bottom-up segmentation that divides the fragment into a collection of uniform
regions. The goal of this segmentation is to give a good starting point for the
learning process – pixels belonging to a uniform subregion are likely to have the
same figure-ground labeling. This starting point is improved later (Sect. 5). A
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number of bottom-up segmentation algorithms were developed in the past to
identify such regions. In our implementation we use the algorithm developed by
[9], which is fast (less than one second for an image with 240x180 pixels) and
segments images on several scales. We used scales in which the fragments are
over-segmented (on average they divide the fragments into 9 subregions) pro-
viding subregions that are likely to be highly uniform. The algorithm was found
to be insensitive to this choice of scale (scales that give on average 4 − 16 sub-
regions produce almost identical results). We denote the different regions of a
fragment F by R1, R2, . . . , Rn. Each region in the fragment (Rj) defines a subset
of fragment points that are likely to have the same figure-ground label.

3.1 Degree of Cover

The main stage of the learning process is to determine for each region whether
it is part of the figure or background. In our fragment-based scheme, a region
Rj that belongs to the figure, will be covered on average by significantly more
fragments than a background region Ri, for two reasons. First, the set of ex-
tracted fragments is sufficiently large to cover the object several times (7.2 on
average in our scheme). Second, the fragment selection process extracts regions
that are common to multiple training examples and consequently most of the
fragments come from the figure rather than from background regions. Therefore,
the number of fragments detected in the image that cover a fragment’s region
Rj can serve to indicate whether Rj belongs to the figure (high degree of cover)
or background (low degree of cover). The average degree of cover of each region
over multiple images, (denoted by rj), can therefore be used to determine its
figure-ground label. The value rj is calculated by counting the average number
of fragments overlapping with the region over all the class images in the training
set. The higher rj , the higher its likelihood to be a figure region (in our scheme,
an average of 7.0 for figure points compared with 2.2 for background points).
The degree of cover therefore provides a powerful tool to determine the figure-
ground segmentation of the fragments. Using the degree of cover rj j = 1, . . . , n,
for the n regions in the fragment, we select as the figure part all the regions with
rj ≥ r̄ for some selected threshold r̄. That is, the figure part is defined by:

P (r̄) =
⋃

{j:rj≥r̄}
Rj (2)

In this manner, all the regions contained in a chosen figure part P (r̄) have
a degree of cover higher or equal to r̄, while all other regions have a degree of
cover lower than r̄. The segmentation of the fragment into figure and background
parts is therefore determined by a single parameter, the degree of cover r̄. Since
r̄ = rk for some k = 1, . . . n, the number of possible segmentations is now reduced
from 2n to n. This stage, of dividing the fragment into uniform regions and then
ranking them using the degree of cover, is illustrated in Fig. 3. We next show
how to choose from these options a partition that is also consistent with edges
found in image patches covered by the fragment.
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(a) (b) (c) (d)

Fig. 3. Degree of cover: a fragment segmented into uniform regions (a) is detected on
a given object (b). The degree of cover by overlapping fragments (also detected on the
object) indicates the likelihood of a region to be a figure sub-region, indicated in (d)
by the brightness of the region.

3.2 Border Consistency

The degree of cover indicates the likelihood of a fragment region to belong to
the figure part. We next determine the boundary that optimally separates figure
from background regions (such a boundary will exist in the fragment, unless
it is an internal fragment). A fragment often contains multiple edges, and it is
not evident which of these corresponds to the figure-ground boundary we are
looking for. Using the training image set, we detect the fragment in different
class-images. We collect the image patches where the fragment was detected,
and denote this collection by H1, H2, . . . , Hk. Each patch in this collection, Hj ,
is called a fragment hit and Hj(x, y) denotes the grey level value of pixel (x, y)
in this hit. In each one of these hits we apply an edge detector. Some edges, the
class-specific edges, will be consistently present among hits, while other edges
are arbitrary and change from one hit to the other. We learn the fragment’s
consistent edges by averaging the edges detected in these hits. Pixels residing on
consistent edges will get a high average value, whereas pixels residing on noise
or background edges will get a lower average, defined by:

D(x, y) =
1
k

k∑

j=1

edge(Hj(x, y)) (3)

Where edge(·) is the output of an edge detector acting on a given image. By the
end of this process D(x, y) is used to define the consistent edges of the fragment
(see also Fig. 4).

We differentiate between three types of edges seen in this collection of hits.
The first, defined here as the border edge, is an edge that separates the figure
part of the fragment from its background part. This is the edge we are looking
for. The second, defined here as an interior edge, is an edge within the figure part
of the object. For instance, a human eye fragment may contain interior edges
at the pupil or eyebrow boundaries. The last type, noise edge, is arbitrary and
can appear anywhere in the fragment hit. It usually results from background
texture or from artifacts coming from the edge detector. The first two types of
edges are the consistent edges and in the next section we show how to use them
to segment the fragment.
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=⇒
H1 H2 H3 . . . Hk

. . .

=⇒

Fig. 4. Learning consistent edges. Fragment (top left) and the consistent boundary lo-
cated in it (bottom right). To detect the consistent boundary, fragment hits (H1, . . . Hk)
are extracted from a large collection of training class images where the fragment is
detected (Top row shows the hit location in the images, middle row shows the hits
themselves). An edge detector is used to detect the edge map of these hits (bottom
row). The average of these edge maps gives the consistent edge (bottom right ).

3.3 Determining the Figure-Ground Segmentation

In this section we combine the information supplied by the consistent edges
computed in the last step with the degree of cover indicating the likelihood of
fragment regions to be labeled as figure. The goal is to divide each fragment F ,
into a figure part P , and a complementary background part P c in an optimal
manner. The boundary between P and P c will be denoted by ∂P . As mentioned,
the set of consistent edges includes both the figure-ground boundary in the
fragment (if such exists), as well as consistent internal boundaries within the
object. Therefore, all the consistent edges should be either contained in the figure
regions, or should lie along the boundary ∂P separating P from the background
part P c. A good segmentation will therefore maximize the following functional:

P = arg max
P (r̄)




∑

(x,y)∈P (r̄)

D(x, y) + λ
∑

(x,y)∈∂P (r̄)

D(x, y)



 (4)

The first term in this functional is maximized when the fragment’s figure part
contains as many as possible of the consistent edges. The second term is maxi-
mized when the boundary ∂P separating figure from ground in the fragment is
supported by consistent edges. The parameter λ (λ = 10 in our implementation)
controls the relative weights of the two terms.

Solving this problem is straightforward. As noted in (2), there are n possible
values for r̄, and each defines a possible segmentation of the fragment into a figure
part P (r̄) and background P c(r̄). It is therefore necessary to check which of the n



322 E. Borenstein and S. Ullman

(a) (b) (c) (d) (a) (b) (c) (d)

(1) (2)

Fig. 5. Stages of fragment figure-ground segmentation (two examples). Given a frag-
ment (a), we divide it into regions likely to have same figure-ground label. We then use
the degree of cover to rank the likelihood of each region to be in the figure part of the
fragment (b). Next,the fragment hits are used to determine its consistent edges (c). In
the last stage, the degree of cover and the consistent edges are used to determine the
figure-ground segmentation of the fragment (d).

options maximizes (4). This procedure alone produces good segmentation results,
as discussed in the results section. The overall process is illustrated in Fig. 5. The
figure depicts the stages of labeling two fragments that are difficult to segment.
Note that by using the degree of cover and border consistency criteria it becomes
possible to solve problems that are difficult to address using bottom-up criteria
alone. Some parts of the contours (Fig. 5(1)) separating the figure from the
background are missing in the fragment but are reconstructed by the consistent
edges. Similarly, using the border consistency and degree of cover criteria, it is
possible to group together dissimilar regions (eg. the black and white regions of
the horse head in Fig. 5(2))

4 Image Segmentation by Covering Fragments

Once the figure-ground labels of the fragments are assigned, we can use them
to segment new class images in the following manner. The detected fragments
in a given image serve to classify covered pixels as belonging to either figure or
background. Each detected fragment applies its figure-ground label to “vote”
for the classification of all the pixels it covers. For each pixel we count the
number of votes classifying it as figure versus the number of votes classifying it
as background. In our implementation, the vote of each fragment had a weight
w(i). This value was set to the class-specificity of the fragment; namely the ratio
between its detection rate and false alarms rate. The classification decision for
the pixel was based on the voting result:

S(x, y) =
{

+1 if
∑

i w(i)Li(x, y) > 0
−1 if

∑
i w(i)Li(x, y) ≤ 0 (5)

Where
∑

i w(i)Li(x, y) is the total votes received by pixel (x, y), and
Li(x, y) = +1 when the figure-ground label of detected fragment Fi votes for
pixel(x, y) to be figure, Li(x, y) = −1 when it votes for the pixel to be back-
ground. S(x, y) denotes the figure-ground segmentation of the image: figure pix-
els are characterized by S(x, y) = +1 and background pixels by S(x, y) = −1.
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The segmentation obtained in this manner can be improved using an additional
stage, which removes fragments that are inconsistent with the overall cover using
the following procedure. We check the consistency between the figure-ground la-
bel of each fragment Li and the classification of the corresponding pixels it covers,
given by S(x, y), using normalized linear correlation. Fragments with low cor-
relation (we used 0.65 as threshold) are regarded as inconsistent and removed
from the cover. In the new cover, the figure-ground labels of covering fragments
will consistently classify overlapping regions. The voting procedure (5) is applied
again, this time only with the consistent fragments, to determine the final figure-
ground segmentation of the image. The construction of a consistent cover can
thus be summarized in two stages. In the first stage, all detected fragments are
used to vote for the figure or ground labeling of pixels they cover. In the second
stage, inconsistent fragments that “vote” against the majority are removed from
the cover and the final segmentation of the image is determined.

5 Improving the Figure-Ground Labeling of Fragments

The figure-ground labeling of individual fragments as described in Sect. 3 can be
iteratively refined using the consistency of labeling between fragments. Once the
labeled fragments produce consistent covers that segment complete objects in
the training images, a region’s degree of cover can be estimated more accurately.
This is done using the average number of times its pixels cover figure parts in
the segmented training images, rather than the average number of times its pix-
els overlap with other detected fragments. The refined degree of cover is then
used to update the fragment’s figure-ground labeling as described in Sect. 3.3,
which is then used again to segment complete objects in the training images.
(As the degree of cover becomes more accurate, we can also use individual pixels
instead of bottom-up subregions to define the fragment labeling.) This iterative
refinement improves the consistency between the figure-ground labeling of over-
lapping fragments since the degree of cover is determined by the segmentation
of complete objects and the segmentation of complete objects is determined by
the majority labeling of overlapping fragments. This iterative process was found
to improve and converge to a stable state (within 3 iterations), since majority
of fragment regions are already labeled correctly by the first stage (see results).

6 Results

We tested the algorithm using three types of object classes: horse heads, hu-
man faces and cars. The images were highly variable and difficult to segment,
as indicated by the bottom-up segmentation results (see below). For the class
of horse heads we ran three independent experiments. In each experiment, we
constructed a fragment set as described in Sect. 2. The fragments were extracted
from 15 images chosen randomly from a training set of 139 class images (size
32x36). The selected fragments all contained both figure and background pixels.
The selection process may also produce fragments that are entirely interior to
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the object, in which case the degree of cover will be high for all the figure regions.
We tried two different sizes for the fragment set: in one, we used 100 fragments,
which on average gave a cover area that is 7.2 times larger than the average area
of an object; in the second, we used the 40 most informative fragments within
each larger set of 100 fragments. These smaller sets gave a cover area that was
3.4 times the average area of an object. We initialized the figure-ground labels
of the fragments using the method described in Sect. 3. We used the fragments
to segment all these 139 images, as described in Sect. 4, and then used these
segmentations to refine the figure-ground labels of the fragments, as described
in Sect. 5. We repeated this refinement procedure until convergence, namely,
when the updating of figure-ground labels stabilized. This was obtained rapidly,
after only three iterations.

The fragments selected in these experiments all contained both figure and
background pixels. The selection process may also produce fragments that are
entirely interior to the object, in which case the degree of cover will be high for
all the figure regions.

To evaluate the automatic figure-ground labeling in these experiments, we
manually segmented 100 horse head images out of the 139 images, and used
them as a labeling benchmark. The benchmark was used to evaluate the quality
of the fragments’ labeling as well as the relative contribution of the different
stages in the learning process. We performed two types of tests: in the first
(labeling consistency), we compared the automatic labeling with manual figure-
ground labeling of individual fragments. For this comparison we evaluated the
fraction of fragments’ pixels labeled consistently by the learning process and by
the manual labeling (derived from the manual benchmark).

In the second type of test (segmentation consistency), we compared the seg-
mentation of complete objects as derived by the automatically labeled fragments;
the manually labeled fragments; and a bottom-up segmentation. For this com-
parison we used the fraction of covered pixels whose labeling matched that given
by the benchmark. In the case of bottom-up segmentation, segments were labeled
such that their consistency with the benchmark is maximal . The output of the
segmentation (given by using [9]) was chosen so that each image was segmented
into a maximum of 4 regions. The average benchmark consistency rate was 92%
for the case of automatically labeled fragments, 92.5% for the case of manually
labeled fragments and 70% for the labeled bottom-up segments. More detailed
results from these experiments are summarized in Table 1. The results indicate
that the scheme is reliable and does not depend on the initial choice of frag-
ments set. We also found that the smaller fragment sets (40th most informative
within each bigger set) give somewhat better results. This indicates that the
segmentation is improved by using the most informative fragments. The auto-
matic labeling of the fragments is highly consistent with manual labeling, and its
use gives segmentation results with the same level of accuracy as these obtained
using fragments that are labeled manually. The results are significantly better
than bottom-up segmentation algorithms.

Another type of experiment was aimed at verifying that the approach is
general and that the same algorithm applies well to different classes. This was
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Table 1. Results. This table summarizes the results of the first two type of tests we
performed (labeling and segmentation consistency).

Large set Small set
Ex.1 Ex.2 Ex.3 Ex.1 Ex.2 Ex.3

Initial Labeling
Labeling consistency (sect. 3) 83% 88% 80% 86% 90% 93%
auto. vs. benchmark Final Labeling

(Sect. 5) 88% 91% 89% 93% 97% 95%
fragments labeled

Segmentation automatically 90% 90% 92% 90% 90% 90%
consistency fragments labeled

manually 92% 91% 94% 91% 95% 92%
Bottom-up

Segmentation 70%

demonstrated using two additional classes: human faces and side view images of
cars. For these classes we did not evaluate the results using a manual benchmark,
but as can be seen in Fig. 6, our learning algorithm gives a similar level of
segmentation accuracy as obtained with manually labeled fragments. Examples
of the final segmentation results on the three classes are shown in Fig. 6. It is
interesting to note that shadows, which appeared in almost all the training class
images, were learned by the system as car parts.

The results demonstrate the relative merits of top-down and bottom-up seg-
mentation. Using the top-down process, the objects are detected correctly as
complete entities in all images, despite the high variability of the objects shape
and cluttered background. Boundaries are sometimes slightly distorted and small
features such as the ears may be missed. This is expected from pure top-down
segmentation, especially when fragments are extracted from as few as 15 train-
ing images. In contrast, bottom-up processes can detect region boundaries with
higher accuracy compared with top-down processes, but face difficulty in group-
ing together the relevant regions and identifying figure-ground boundaries – such
as the boundaries of horse-heads, cars and human faces in our experiments.

7 Discussion and Conclusions

Our work demonstrates that it is possible to learn automatically how to segment
class-specific objects, giving good results for both the figure-ground labeling
of the image fragments themselves as well as the segmentation of novel class
images. The approach can be successfully applied to a variety of classes. In
contrast to previous class- and object-based approaches, our approach avoids the
need for manual segmentation as well as minimizing the need for other forms
of manual intervention. The initial input to the system is a training set of class
and non-class images. These are raw unsegmented images, each having only one
additional bit of information which indicates the image as class or non-class. The
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Fig. 6. Results. Rows 1-2,4-5,7-8 show figure-ground segmentation results, denoted by
the red contour. The results in rows 1,4,7 are obtained using the automatic figure-
ground labeling of the present method. The results in rows 2,5,8 are obtained using a
manual figure-ground labeling of the fragments. Rows 3,6,9 demonstrate the difficulties
faced in segmenting these images into their figure and background elements using a
bottom-up approach [9]: segments are represented by different colors.
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system uses this input to construct automatically an internal representation for
the class that consists of image fragments representing shape primitives of the
class. Each fragment is automatically segmented by our algorithm into figure and
background parts. This representation can then be effectively used to segment
novel class images.

The automatic labeling process relies on two main criteria: the degree of cover
of fragment regions and the consistent edges within the fragments. Both rely on
the high variability of background region compared with the consistency of the
figure regions. We also evaluated another natural alternative criterion based on
a direct measure of variability: the variability of a regions’ properties (such as
its grey level values) along the fragment’s hit samples. Experimental evaluation
showed that the degree of cover and border consistency were more reliable cri-
teria for defining region variability – the main reason being that in some of the
fragment hits, the figure part was also highly variable. This occurred in partic-
ular when the figure part was highly textured. In such cases, fragments were
detected primarily based on the contour separating the figure from background
region, and the figure region was about as variable as the background region. It
therefore proved advantageous to use the consistency of the separating boundary
rather than that of the figure part.

Another useful aspect is the use of inter-fragment consistency for iterative
refinement: the figure-ground segmentation of individual fragments is used to
segment images, and the complete resulting segmentation is in turn used to
improve the segmentation of the individual fragments.

The figure-ground learning scheme combined bottom-up and top-down pro-
cesses. The bottom-up process was used to detect homogenous fragment regions,
likely to share the same figure-ground label. The top-down process was used to
define the fragments and to determine for each fragment its degree of cover and
consistent edges likely to separate its figure part from its background part. This
combination of bottom-up and top-down processes could be further extended. In
particular, in the present scheme, segmentation of the training images is based
on the cover produced by the fragments. Incorporating similar bottom-up crite-
ria at this stage as well could improve object segmentation in the training images
and consequently improve the figure-ground labeling of fragments. As illustrated
in Fig. 6, the top down process effectively identifies the figure region, and the
bottom-up process can be used to obtain more accurate object boundaries.
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