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Abstract

We present a new approach for modeling multi-modal data sets, focusing on the specific case
of segmented images with associated text. Learning the joint distribution of image regions and
words has many applications. We consider in detail predicting words associated with whole images
(auto-annotation) and corresponding to particular image regions (region naming). Auto-annotation
might help organize and access large collections of images. Region naming is a model of object
recognition as a process of translating image regions to words, much as one might translate from
one language to another. Learning the relationships between image regions and semantic correlates
(words) is an interesting example of multi-modal data mining, particularly because it is typically
hard to apply data mining techniques to collections of images. We develop a number of models
for the joint distribution of image regions and words, including several which explicitly learn the
correspondence between regions and words. We study multi-modal and correspondence extensions
to Hofmann’s hierarchical clustering/aspect model, a translation model adapted from statistical
machine translation (Brown et al.), and a multi-modal extension to mixture of latent Dirichlet allo-
cation (MoM-LDA). All models are assessed using a large collection of annotated images of real
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scenes. We study in depth the difficult problem of measuring performance. For the annotation task,
we look at prediction performance on held out data. We present three alternative measures, oriented
toward different types of task. Measuring the performance of correspondence methods is harder,
because one must determine whether a word has been placed on the right region of an image. We
can use annotation performance as a proxy measure, but accurate measurement requires hand la-
beled data, and thus must occur on a smaller scale. We show results using both an annotation proxy,
and manually labeled data.

1. Introduction

It is a remarkable fact that, while text and images are separately ambiguous, jointly they tend not to
be; this is probably because the writers of text descriptions of images tend to leave out what is visu-
ally obvious (the color of flowers, etc.) and to mention properties that are very difficult to infer using
vision (the species of the flower, say). There are a wide variety of data sets that consist of very large
numbers of annotated images. Examples include the Corel data set, most museum image collections
(for example, http://www.thinker.org/fam/ thinker.html), the web archive (http://www.archive.org),
and most collections of news photographs on the web (which come with captions). Typically, these
annotations refer to the content of the annotated image, more or less specifically and more or less
comprehensively. For example, the Corel annotations describe specific image content, but not all of
it; museum collections are often annotated with some specific material—the artist, date of acquisi-
tion, etc.—but often contain some rather abstract material as well. In this paper, we describe a series
of models that link images and text in various ways.

1.1 Practical Applications

Very large collections of images are widespread and users would like to be able to browse and to
search these collections. A broad range of computer vision methods have been used to search collec-
tions of images. Typically, images are matched based on features computed from the entire image or
from image regions. The literature is too broad to review here; there are reviews in Forsyth (1999),
Forsyth and Ponce (2002). With the exception of systems that can identify faces (Schneiderman and
Kanade, 2000), naked people (Fleck et al., 1996), pedestrians (Oren et al., 1997) or cars (Schnei-
derman and Kanade, 2000), matching is not usually directed toward object semantics. However,
user studies show a large disparity between user needs and what technology supplies (Armitage and
Enser, 1997, Enser, 1993, 1995). This work makes hair-raising reading—an example is a request
to a stock photo library for “Pretty girl doing something active, sporty in a summery setting, beach
- not wearing lycra, exercise clothes - more relaxed in tee-shirt. Feature is about deodorant so girl
should look active - not sweaty but happy, healthy, carefree - nothing too posed or set up - nice and
natural looking.”

Other user studies include the work of Ornager (1996), who studied practice at a manually
operated newspaper photo archive and Markkula and Sormunen (2000), who study practice at a
Finnish newspaper’s digital photo archive. Keister studied requests received by the National Library
of Medicine’s Archive (Keister, 1994). In this literature, authors break out the semantics of the
images requested in different ways, but from our perspective the important points are:

• that users request images both by object kinds (a princess) and identities (the princess of
Wales);
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• that users request images both by what they depict (things visible in the picture) and by what
they are about (concepts evoked by what is visible in the picture);

• that queries based on image histograms, texture, overall appearance, etc. are vanishingly
uncommon;

• and that text associated with images is extremely useful in practice—for example, newspaper
archivists index largely on captions (Markkula and Sormunen, 2000).

There are several practical applications for methods that can link text and images, however imper-
fectly:

• Automated image annotation: Numerous organizations manage collections of images for in-
ternal use. A typical workflow is described by the work of Markkula and Sormunen (2000),
who studied the image archive of a Finnish newspaper.1 Archivists receive pictures and an-
notate them with words that are likely to be useful keys for retrieving the pictures; journalists
then search the collection using these keywords. Annotation is often difficult and uncertain; it
would be attractive to have a procedure that annotated images automatically. One might auto-
annotate by predicting words with high posterior probability given an image. Examples of
automated annotation appear in Barnard et al. (2001), Barnard and Forsyth (2001) and below.

• Browsing support: Museums release parts of their collections onto the web to attract visitors
by giving them a sense of what they would see if they visited. Typically users who know a
collection well wish to search it, and those who don’t, prefer to browse (Frost et al., 2000).
This means it would be attractive to organize the collection in a way that made sense to
visitors, and so supported browsing. Collecting together images that looked similar and were
similarly annotated would be a good start. Fitting a probability model with an appropriate
structure yields quite useful clusters, as described in Barnard et al. (2001).

• Auto-illustrate: Commercial image collections can’t supply an attractive service to a casual
user, because searching the collection is typically difficult and expensive. A tool that could
automatically suggest images to illustrate blocks of text might expose value in the collection
by making it possible for casual users to get reasonable results cheaply. Auto-illustration
is possible if one can obtain images with high probability given text (Barnard et al., 2001,
Barnard and Forsyth, 2001).

1.2 Annotation, Correspondence and Recognition

One can currently use words to search for pictures (it is often productive to use a sequence of terms
and then ‘jpg’ or ‘jpeg’ as a query to Google). There are a variety of ways to use words and pictures
simultaneously. The most straightforward is to search using a simple conjunction of keywords and
image region features, a facility provided in Blobworld (Carson et al., 2002). Webseer (Swain
et al., 1996) uses similar ideas for query of images on the web, but also indexes the results of
a few automatically estimated image features. These include whether the image is a photograph
or a sketch and notably the output of a face finder. Going further, Cascia et al. integrate some

1. Also see Enser’s work (Armitage and Enser, 1997, Enser, 1993, 1995) on various image archives, which use roughly
the same procedure.
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text and histogram data in the indexing (La Cascia et al., 1998). Others have also experimented
with using image features as part of a query refinement process (Chen et al., 1999, 2000). Srihari
and others have used text information to disambiguate image features, particularly in face finding
applications (Srihari et al., 1994, Srihari, 1991, Srihari and Burhans, 1994).

We are not aware of general probability models that link text and images, however. Such a
model would offer the usual benefits of probability models over boolean queries—one doesn’t need
to know exactly the right search terms to get useful results—but might offer more. One is that one
might predict text given images. There are two ways to do this. Firstly, one might attempt to predict
annotations of entire images using all information present. We refer to this task asannotation.
Secondly, one might attempt to associate particular words with particular image substructures—that
is, to infercorrespondence.

Few data sets contain correspondence information, probably because it is difficult to create such
data sets. Normally, one has a collection of images, each of which has a collection of associated
words. This can be seen as a form of classification problem, where instead of having labeled ex-
amples one has labeled bags of examples—an image is “positive” if it contains a tiger somewhere
amongst all the other stuff and “negative” if it doesn’t. Maron and Ratan (1998) and Maron (1998)
used multiple-instance learning to train classifiers to identify particular keywords from image data
using such bags. Rather than attempt to sort out all correspondences between image structures and
words directly, they build classifiers for each word separately. Satoh and Kanade (1997) used co-
occurrence models for automatically associating faces with names in video. Finally, perhaps closest
to our work on predicting words for regions is the work of Mori et al. (1999), where co-occurrence
statistics are collected for words and image areas defined by a fixed grid.

Correspondence is a peculiar feature of object recognition. Current theories of object recogni-
tion reason either in terms of geometric correspondence and pose consistency; in terms of template
matching via classifiers; or by search to establish the presence of suggestive relations between tem-
plates. A detailed review of these strategies appears in Forsyth and Ponce (2002). There has been
little work to address object recognition at a broad scale. For example, not much is known on how
to recognize thousands of different objects from data sets that are practically available. Little can
be said about what is easy and what is hard to recognize using a particular set of features. It is
reasonable to hope that these questions can be discussed if one sees object recognition as a process
by which one uses a huge data set to learn to put image structures and words in correspondence.

This paper explores a variety of latent variable models that can be used for auto-illustration,
annotation and correspondence. The first step is to represent image information; Section 2 describes
the representation we have adopted. In Section 3 we describe a series of models that link words and
image data, without explicit encoding of correspondence between words and regions. These models
are appropriate for auto-illustration and annotation.

There is an analogy between learning a correspondence model that can associate words with
image regions and learning a lexicon, which suggests it is possible to build a process that uses
rather little supervisory input. In effect, one builds a model using unsupervised methods, marks
up the model’s output, and refits. This is a standard process in the machine translation literature
(a good guide is Melamed’s thesis, 2001; see also Jurafsky and Martin, 2000, and Manning and
Schütze, 1999). In Section 4 we describe a model that uses a vector quantized representation of
image regions to yield a problem exactly analogous with lexicon learning. This is the simplest
model that learns correspondence explicitly. It has the disadvantage that the representation of image
regions is obtained independent of the text annotation. This ignores potentially important data
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about what image differences are important. More sophisticated correspondence models use text
data while simultaneously clustering representations of image regions (Section 5).

Part of this paper’s role is to compare numerous models, meaning that there are several different
variants of each type of model. To keep track of them all, each is allocated an acronym, which
appears in bold the first time it is used. Annotation performance is fairly straightforward to evaluate
automatically and so large data sets can be used, but correspondence performance is rather more
difficult to evaluate. Since large data sets giving correspondence don’t exist, we are obliged to
evaluate correspondence manually; this means evaluation can’t be done on a large scale. Section 6
describes our methods of evaluation, and Section 7 gives extensive comparison of the methods.

2. Input Representation and Preprocessing

Each image is segmented using normalized cuts (Shi and Malik, 2000). This segmenter has the
occasional tendency to produce small, typically unstable regions. We represent the 8 largest regions
in each image by computing, for each region, a set of 40 features. The features represent, rather
roughly, major visual properties:

• Size is represented by the portion of the image covered by the region

• Position is represented using the coordinates of the region center of mass normalized by the
image dimensions

• Color is (redundantly) represented using the average and standard deviation of (R,G,B),
(L,a,b) and (r=R/(R+G+B), g=G/(R+G+B)) over the region.

• Texture is represented using the average and variance of 16 filter responses. We use 4 dif-
ference of Gaussian filters with different sigmas, and 12 oriented filters, aligned in 30 degree
increments. See Shi and Malik (2000) for additional details and references on this approach
to texture.

• Shape is represented by the ratio of the area to the perimeter squared, the moment of inertia
(about the center of mass), and the ratio of the region area to that of its convex hull.

We will refer to a region, together with the features, as a blob. We make no claim that the im-
age features adopted are canonical. They are chosen to be computable for any image region, and
be independent of any recognition hypothesis. We expect that better or worse behavior would be
available using different sets of image features. It remains an interesting open question to construct
feature sets that (a) offer very good performance for a particular vision task and (b) can depend on
an emerging object hypothesis in an interesting and efficient way.

3. Annotation Models

We present two classes of models for the joint distribution of text and blobs, and show how they are
applied to annotate images.

3.1 Multi-Modal Hierarchical Aspect Models

Our first model is a multi-modal extension of Hofmann’s hierarchical model for text (Hofmann,
1998, Hofmann and Puzicha, 1998). This model combines the aspect model with a soft clustering
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Figure 1: Multi-modal extension of a hierarchical model for text.

model. As shown in Figure 1, images and co-occurring text are generated by nodes arranged in a tree
structure. The nodes generate both image regions using a Gaussian distribution, and words using a
multinomial distribution. Each cluster is associated with a path from a leaf to the root. Nodes close
to the root are shared by many clusters, and nodes closer to leaves are shared by few clusters. This
means that in a properly fitted model, nodes closer to the root tend to emit items (words or regions)
shared by a large number of data elements, and the nodes closer to the leaves each emit items more
specific to small numbers of data elements.

Potentially, both the vertical structure (aspects), and horizontal structure (clusters), can help
model the distributions of interest. Our implementation supports all tree topologies, including the
degenerate “linear” topology where there are no branches and therefore only one cluster, as well
as topologies which have no vertical structure and thus all modeling is through clustering. In the
experiments we consider a binary tree, and the linear case with a comparable number of nodes.

To the extent that an image is in a given cluster, it is generated by the nodes on that path. Taking
all clusters into consideration, a document is modeled by a sum over the clusters, weighted by the
probability that the document is in the cluster. The process for generating the set of observationsD
associated with a document,d, can be described by:

p(D|d) = ∑
c

p(c) ∏
w∈W

[
∑

l

p(w|l,c)p(l|d)

] Nw
Nw,d

∏
b∈B

[
∑

l

p(b|l,c)p(l|d)

] Nb
Nb,d

, (1)

wherec indexes clusters,w indexes the words in documentd, b indexes the image regions in doc-
umentd, andl indexes levels.D is the set of observations for the document,W is the set of words
for the document,B is the set of blobs for the document, withD = W ∪B. The exponentsNw

Nw,d
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and Nb
Nb,d

are introduced to normalize for differing numbers of words and blobs in each image.Nw,d

denotes the number of words in documentd, while Nw denotes the maximum number of words in
any document. This normalization works fine for the Corel data because there is not much variance
in Nw,d. The same applies for blobs. This choice essentially makes an image with only the word
“sun” comparable with one with the words “sun” and “clouds,” by duplicating the word “sun” for
the first image.

For word emission probabilities,p(w|l,c), we use frequency tables, and for blob emission prob-
abilities, p(b|l,c), we use a Gaussian distribution with diagonal covariance over the features for
the regions. To stabilize training, we translate and scale the region feature data to have zero mean
and unit variance. The model parameters are converted into the original data space once training is
complete. We also limit the variance of the Gaussian distribution to be at least 0.001 in the training
data space. Similarly, the word frequency is forced to be at least a small value greater than zero
(0.01 / vocabulary size), but here the goal is simply to avoid the need to do certain computations in
log space.p(l|d) is a training document specific prior over the nodes on the path from the leaf to
the root (vertical weights).

We will refer to this asmodel I-0 in the results (I for “independent”). Following Barnard et al.
(2001) and Barnard and Forsyth (2001), we also experiment with allowing a cluster dependent level
structure. Herep(l|d) is replaced withp(l|c,d) (model I-1). Notice that these models are not true
generative models because the joint probability distribution of the image items is described in terms
of p(l|d) or p(l|c,d) which are specific to the documents in the training set. This makes the model
powerful for search applications. However, prediction is difficult for documents not in the training
set. One can marginalize out the training data, as in Blei et al. (2002). An alternative is to estimate
the mixing weights using a cluster specific average computed during training. This latter strategy
appears to work well, suggesting that the set of vertical nodes used to model a document is more
significant than the mixing weights.

This observation led to the alternative model—first described in Barnard et al. (2001)—which
is generative. This model—which we callmodel I-2—gives

p(D) = ∑
c

p(c) ∏
w∈W

[
∑

l

p(w|l,c)p(l|c)
] Nw

Nw,d

∏
b∈B

[
∑

l

p(b|l,c)p(l|c)
] Nb

Nb,d

. (2)

Model Fitting. All of these models are fit using the expectation maximization algorithm (Demp-
ster et al. (1977)). The update equations are very similar to those in Hofmann and Puzicha (1998),
except of course, the probability expressions now include parts both for word and region occur-
rences. For model I-0, we estimate the vertical mixing weights for each document as in Hofmann
and Puzicha (1998). For model I-1, we estimate the vertical mixing weights for each document
giveneach cluster. For model I-2, the update equations for the vertical mixing weights are simpler,
as we just need to compute a cluster dependent average, rather than estimating quantities for each
document. This can be a significant memory saving if the number of documents is large.

Image Based Word Prediction. To predict words from images we assume that we have a new
document with a set of observed blobs,B. We wish to computep(w|B) ∝ p(w,B) for each word,w,
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in our vocabulary:

p(w|B) ∝ ∑
c

p(c)p(w|c)p(B|c)

= ∑
c

p(c)

[
∑

l

p(w|l,c)p(l|c)
]
∏
b∈B

[
∑

l

p(b|l,c)p(l|c)
] Nb

Nb,d

. (3)

In the case of models I-0 and I-1 we drop the document index,d, from the vertical weights, as
we are normally interested in applying (3) to documents outside the training set. Further note that
for model I-0, p(l|c) is replaced byp(l). For the vertical weights we either use cluster specific
average mixing weights (labeled “ave-vert” in the results), or estimatep(l|d) by p(l|B) (labeled
“doc-vert”). In previous work we instead estimatedp(l|d) by refitting the model based onB, but
this is more expensive and does not give better results. Marginalizing out the training data worked
at least as well as “ave-vert” on small data sets, but it is very expensive to compute on data of the
scale of interest, and thus we do not report results here.

3.2 Mixture of Multi-Modal Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) (Blei et al., 2002) is a generative probabilistic model for inde-
pendentcollections of data where each collection is modeled by a randomly generated mixture over
latent factors. For example, in text modeling, a collection of words makes up a document and LDA
provides a model of independently generated documents (a corpus).

As a generative model, LDA can readily be used as a module in a mixture model. Furthermore,
LDA is extendable to multi-modal data. In particular, the mixture of multi-modal LDA model
(MoM-LDA) assumes that each image and corresponding words were generated by the following
process:

1. Choose one ofJ mixture componentsc ∼ Multinomial(η).

2. Conditioned on the mixture component, choose a mixture overJ factors,θ∼ Dir(αc).

3. For each of theN words:

(a) Choose one ofK factorszn ∼ Multinomial(θ).
(b) Choose one ofV wordswn from p(wn|zn,c,β), the conditional probability ofwn given

the mixture component and latent factor.

4. For each of theM blobs:

(a) Choose a factorsm ∼ Multinomial(θ).
(b) Choose a blobbm from p(bm|sm,c,µ,Σ), a multivariate Gaussian distribution with diag-

onal covariance, conditioned on the factorsm and the mixture componentc.

This is depicted as a graphical model in Figure 2. The parameters to MoM-LDA are

• A J-dimensional multinomial parameterη.

• A J×K matrixα whereαc is is theJ-dimensional Dirichlet parameter conditioned on mixture
component.
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Figure 2: The mixture of multi-modal latent Dirichlet allocation model. The outer plate represents
the repetition ofI images. Each image hasM blobs andN words. The parameters of the
model are not depicted, for simplicity.

• A J ×K ×V matrix β whereβcz is the distribution over words conditioned on the mixture
component and hidden factor.

• A J ×K ×D matrix µ and aJ ×K ×D matrix Σ whereµcs andΣcs are parameters to theD-
dimensional multivariate Gaussian distribution over blobs, conditioned on the mixture com-
ponent and hidden factor.

Maximum likelihood estimates of the Dirichlet, word multinomials, and Gaussian parameters can
be obtained by the EM algorithm with a variational E step.

Given an image and a MOM-LDA, we cancompute both an approximate posterior over mix-
ture components and, for each mixture component, an approximate posterior Dirichlet over factors.
Using these parameters, we perform image based word-prediction by finding the corresponding
distribution over words. Letφ denote the approximate posterior over mixture components, andγc
denote the corresponding approximate posterior Dirichlet. The distribution over words given an
image (that is, a collection of blobs) is:

p(w|b) =
J

∑
c=1

p(c|φ)
K

∑
z=1

p(w|z)
∫

p(z|θ)p(θ|γc)dθ.

The integral overθ is easily computed; it is the expectation of thezth component ofθ∼ Dir(γc):∫
p(z|θ)p(θ|γc)dθ =

γcz

∑K
y=1γcy

.

MoM-LDA is similar to the I-0 model in that it derives its predictive abilities from the higher
level mixture componentc. The underlying LDA is useful as a joint model but, on its own, cannot
accurately predict words from images. This is due to the implicit assumption that words and blobs
are exchangeable and thus can be generated in any order. This issue is described in Blei and Jordan
(2002), where the authors derive a LDA-based model of annotated data that is based onpartial
exchangeability. Images are generated first, and words are subsequently generated from the images.
The resulting model can predict words from images without resorting to higher level multinomial
mixture components.
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4. Simple Correspondence Models

It is natural to want to build models that can predict words for specific image regions, rather than
for a whole image. There are several simple ways to do so. The simplest is to vector-quantize rep-
resentations of image regions, and then directly exploit the analogy with statistical lexicon learning.
In fact, hierarchical aspect models and MoM-LDA can yield correspondence information, too.

4.1 Discrete Data Translation

In machine translation a lexicon links discrete objects (words in one language) to discrete objects
(words in the other language). We must come up with a lexicon given an aligned bitext, which
consists of many small blocks of text in both languages, which are known to correspond in meaning.
A traditional example is Hansard for the Canadian parliament, where each speaker’s remarks in
French and in English correspond in meaning. Assuming an unknown one-one correspondence
between words, coming up with a joint probability distribution linking words in the two languages
is a missing data problem (Brown et al., 1993). It is straightforward to create analogous image data.
We use K-means to vector-quantize the set of features representing an image region. Each region
then gets a single label (blob token).

We now have an aligned bitext consisting of the blobs and the words for each image. We must
construct a joint probability table linking word tokens (the abstract model of a word, as opposed to
an instance) to blob tokens. In the current work, we use all keywords associated with each image.
Because the data set does not provide explicit correspondences, we have a missing data problem
which is easily dealt with as an application of EM (see Duygulu et al., 2002 for details). We label
this approach asdiscrete-translation.

4.2 Correspondence from a Hierarchical Clustering Model

Our hierarchical clustering models do not model the relationships between specific image regions
and words explicitly. However, they do encode this correspondence to some extent through co-
occurrence because there is a advantage to having “topics” collect at the nodes. For example, if the
word “tiger” always co-occurs with an orange stripy region and never otherwise, then these items
will likely be generated by a shared node, as there are far fewer nodes than observations. Thus we
have the following simple word prediction method for a single blob,b:

p(w|b) ∝ ∑
c

p(c)∑
l

p(l)p(w|l,c)p(b|l,c). (4)

We can further consider the effect of the other regions through what they say about the cluster
membership by replacing the cluster prior,p(c) with p(c|B). We label these strategies as “region-
only” and “region-cluster” in the results. Notice that using (4) is not quite the same as replacing
the set of blobs,B, in (3) with the single blob of interest,b. Here we insist that the word and the
region come from the same node, whereas in (3) they come from the same cluster, but possibly from
different nodes associated with that cluster. Thus to get correspondence from I-0, I-1, and I-2, we
use the models differently from how they are trained.
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5. Integrating Correspondence and Hierarchical Clustering

None of the methods described above are wholly satisfactory for learning correspondence. By
vector-quantizing image regions independent of words, we are perversely ignoring potentially use-
ful training data. We should not expect too much from the other methods, because they are being
compelled to reveal information they were not trained to represent. However, there is a relationship
between clustering and correspondence. For example, in translating from English to French, the
word “sun” might be translated to “soleil,” but if the surrounding words are computer related, then
the word “sun” should remain unchanged, as it is likely a brand of computer. Similarly, a gray patch
is more likely to be pavement in a city scene than a jungle scene. This suggests building explicit cor-
respondence information into our existing hierarchical clustering models. Building correspondence
models involves strengthening the relationship between words and image regions.

5.1 Linking Word Emission and Region Emission Probabilities with Mixture Weights

In this approach, image regions are modeled as in the independent model, but the words are not emit-
ted conditioned on the regions. To implement this strategy by having the vertical mixture weights
for the regions carries over to that for the words. Thus if a node contributes little to the region
emission for an image, then that node will also contribute little to the word emission. Correspon-
dence is still implicit, and is calculated using (4) above, and thus this is not a true correspondence
method. More formally, we consider the wordsW and the regionsS in D = B∪W to be handled
asymmetrically.

p(D|d) = ∑
c

p(c) ∏
w∈W

[
∑

l

p(w|l,c)p(l|B,c,d)

] Nw
Nw,d

∏
b∈B

[
∑

l

p(b|l,c)p(l|d)

] Nb
Nb,d

, (5)

where we stipulate that

p(l|B,c,d) ∝ ∑
b∈B

p(l|b,c,d).

Notice that we have chosen to compute the distribution inherited by the words on a cluster by cluster
basis (we usep(l|B,c,d) instead ofp(l|B,d)). We denote this model byD-0 (D for dependent). In
analogy with the independent case, we can consider cluster dependent level distributions, using
p(l|c,d) instead ofp(l|d) to getD-1, or we can drop the dependency on the training set, usingp(l)
instead ofp(l|d) to getD-2.

To use the model for annotation, we again estimatep(l|d) by p(l|B) (“doc-vert”), and use this
to compute the word posterior. For labeling regions, applying (4) to predict the words for a par-
ticular blob makes more sense than with the independent models because now words are emitted
conditioned on blobs. As described later, if we wish to use such a model for annotation, we simply
sum the contributions of all the blobs. Interestingly, this gives almost the same equations for word
prediction (equivalent if there is only once cluster, as in the linear topology).
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5.2 Paired Word and Region Emission at Nodes

Our second method further tightens the relationship between the regions and words. Here we assume
that the observed words and regions are emitted in pairs so thatD = {(w,b)i} and (1) becomes:

p(D|d) = ∑
c

p(c) ∏
(w,b)∈D

[
∑

l

p((w,b)|l,c)p(l|d)

]
. (6)

We will refer to this as ModelC-0 (C for “correspondence”). Models I-1 and I-2 are similarly
modified to get modelsC-1 andC-2. Equation (6) evaluates the likelihood assuming a proposed
correspondence. Since we are most interested in training on data where the correspondence is not
provided, we need to estimate correspondence as part of the training process. We have experimented
with several methods for doing so, discussed below. Regardless, this additional step is added before
the E step in the model fitting process, and the assignment is then used in the estimation of the
expectation of the indicator variables. All methods for computing the correspondence assume that
the probability that a word and a segment correspond can be estimated by the probability that they
are emitted from the same node. Usingw ⇔ b to denote that the word,w, and the region,b,
correspond, we use, in the case of C-0:

p(w ⇔ b) ≈∑
c

p(c)∑
l

p((w,b)|l,c)p(l|d). (7)

Here we have made the choice that the proposed correspondence should be shared over all cluster
hypotheses. Doing so makes intuitive sense, and significantly reduces the number of correspondence
estimates that are required. Note that training is no longer pure gradient descent (the log-likelihood
can decrease a small amount as the training process iterates). For true gradient descent, we would
need to marginalize over possible correspondences, and this is impractical. Instead, we approximate
the sum with that obtained by a maximal, or close to maximal match (this approximation is common
in the literature on statistical learning of lexicons, see for example Melamed, 2001).

We have experimented with several possible strategies for estimating matches from (7). In this
work we report results using graph matching (Jonker and Volgenant, 1987). This algorithm gives
a polynomial time method to assign edges to a bipartite graph so that each vertex is connected to
only vertex, and the sum of costs associated with each possible edge is minimized. Our costs are
negative log probabilities from (7), so that likelihood is maximized.

Regardless of the matching strategy, we need to deal with differing numbers of words and re-
gions. In our implementation, we first ensure that there are more regions than words by repeating
the region collection if needed. Then we ensure that there are sufficient words by repeating the word
collection until there are as many words as regions.

5.3 Correspondence Models, NULL, Fertility and Refusal to Predict

Correspondence comes with a variety of annoying difficulties which we have skated over above.
The primary issue is the choice of correspondence model. Should there be a one-one map between
regions and words (usually impossible, because of the numbers are different)? In the work described
here, we require regions to be linked to words; there is no option of deciding that a region corre-
sponds to no word. This forces models of image regions corresponding to particular words to cope
with a large pool of outliers. This problem could, in principle, be handled by appending a special
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word, NULL, to the text of each data item and a special image region, NULL, to the image regions
of each data item. This is a traditional solution in the machine translation literature; the tendency
of single words in some languages to generate more than one word in others (a property referred to
as “fertility”) can be modeled explicitly in this framework (Brown et al., 1993, Melamed, 2001). In
our limited experience, such models are not easy to fit to our data sets, because of a tendency to fit a
model where every word is generated by the NULL image regions and every image region generates
the NULL word. This is clearly a matter to be resolved by a prior model of deletion of words or
image regions, respectively. One complication is that the probability that an annotation is absent is
not independent of the annotation—annotators always mention “tigers,” but only sometimes men-
tion “people.” A simple strategy that offers some benefits of directly modeling NULL words is to
refuse to predict an annotation when the annotation with the highest probability given the region has
too low a probability; this discourages predictions by regions whose identity is moot. This is crude,
because it doesn’t mitigate the effect of all the outliers in the fitting process.

6. Evaluation Methods

Our annotation models can be used on two different kinds of data. First, we can try to annotate
images which were well represented in the original data set, for example, annotating images arriving
at an archive. Second, we can try to annotate images from a collection which is not well represented
by the original training data, for example, performing object recognition.

Correspondence models present further difficulties. The issue now is whether we predict appro-
priate words for each particular region. Typically, the only way to obtain an accurate answer to this
question is to look at the picture. This form of manual evaluation is very difficult to do for a satisfac-
tory number of images. A less strict, but nonetheless informative, test is to determine the annotation
performance for a correspondence model, on the grounds that poor annotation performance implies
poor correspondence performance (crucially, the contrapositive is not necessarily true).

6.1 Measuring Annotation Performance

We can measure annotation performance by comparing the words predicted by various models with
words actually present for held-out data. In most data sets, including ours, image annotations typ-
ically omit some obviously appropriate words. However, since our purpose is to compare methods
this is not a significant problem as each model must cope with the same set of missing annotations.
Performance comparisons can be carried out automatically and therefore on a substantial scale. We
express prediction performance relative to predictions obtained using the empirical word frequency
of the training set. Matching the performance empirical density is required to demonstrate non-
trivial learning. Doing substantially better than this on the Corel data is difficult. The annotators
typically provide several common words (for example, “sky,” “water,” “people”), and fewer less
common words (for example, “tiger”). This means that annotating all images with, say, “sky,” “wa-
ter,” and “people” is quite a successful strategy. Performance using the empirical word frequency
would be reduced if the empirical density was flatter. Thus for this data set, the increment of per-
formance over the empirical density is a sensible indicator. We look at word prediction on held out
data, and rank models using three measures.
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6.1.1 MEASURING THE QUALITY OF WORD POSTERIORDISTRIBUTION

As our models are predictive in nature, we estimate the Kullback-Leibler (KL) divergence between
the computed predictive distribution,q(w|B), and the target distribution,p(w). Unfortunately, the
target distribution is not known, and for this we simply assume that the actual words should be
predicted uniformly, and that all other words should not be predicted at all. By definition, the error
contribution for one document with this measure,E(model)

KL , is given by:

E(model)
KL = ∑

w ∈ vocabulary

p(w) log
p(w)

q(w|B)
. (8)

To further smoothq(w|B), we add the minimum of the empirical word distribution and renormalize.
To compute a combined measure for a group of images, we simply average the quantity in (8) over
that set. We can relate this to the conditional log likelihood (normally computed on held out data).
If there areK words for the image under consideration, Sincep(w) = 1/K for w ∈ observed, and 0
otherwise, and we declare 0log0

q = 0,

E(model)
KL =

1
K ∑

w ∈ observed

log
p(w)

q(w|B)

= constant − 1
K ∑

w ∈ observed

logq(w|B).

When averaged over the images in the held out set, this is essentially the held out log likelihood,
conditioned on the image regions, weighted so that each image contributes roughly the same, re-
gardless of the number of words it has. As mentioned above, we express performance relative to
that using the empirical word distribution of the test data, and we further arrange it so that larger
values correspond to better performance. Specifically, we report:

EKL =
1
N ∑

data

(
E(empirical)

KL −E(model)
KL

)
.

which is negative when the model is worse than the prior and positive when it is better. This
adjustment has several benefits. First, it is immediately clear when we are doing well (the number is
positive), and second, it reduces the variance of values computed on different sets, as the difficulty
of the set is partly reflected inE(empirical)

KL .

6.1.2 HOW WELL DO MODELS PREDICT WORDS?

On the whole, a better fitting model should predict a better set of words, but we need some concrete
measurement of the goodness of the omitted words. The difficulty here is that one needs a loss
function, and traditional zero-one loss is highly misleading. For most conceivable applications,
certain errors (“cat” for “tiger”) are less offensive than others (“car” for “vegetable”). Because the
number of classes that we can predict is large (the size of the vocabulary), we normalize the correct
and incorrect classifications.

Specifically, we computeE(model)
NS = r/n−w/(N − n) whereN is the vocabulary size,n is the

number of actual words for the image,r is the number of words predicted correctly, andw is the
number of words predicted incorrectly. This score gives a value of 0 for both predicting everything
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and predicting nothing, and 1 for predicting exactly the actual word set (no false positives, no false
negatives). The score for predicting exactly the complement of the actual word set is -1. As in the
KL case, we report the difference of this error and that for the empirical word distribution, such that

larger values correspond to better performance (that isE(model)
NS −E(empirical)

NS )

The number of words predicted,r + w, can be determined by the algorithm on a case by case
basis. Thus one benefit of this measure over simply counting the number of correct words in a fixed
number of guesses is that it can be used to reward a good estimate of how many words to predict.
The word prediction scores reported here are based on predicting all words which exceed a certain
probability threshold.

As is clear from Figure 4, a value for the threshold which maximizes the performance of the
comparison method (training data word frequency) is also a good value for most other methods of
word prediction, and therefore we used this value computed on training data for the reported results.
Finally, we report the results using a simpler but related word prediction measure,E(model)

PR = r/n,
based on then best words. Thus if there are three keywords, “sky,” “water,” and “sun,” thenn = 3,
and we allow the models to predict 3 words for that image. The range of this score is clearly from
0 to 1.

6.2 Measuring Correspondence Performance

Measuring the performance of methods that predict a specific correspondence between regions and
words is difficult, because images must be checked by hand. This limits the size of the pool that can
be used, and also means that measurements may contain significant noise (it is surprisingly difficult
to establish, and stick to, an exact policy about what regions should carry, say, the label “people”).
However, we can use a region based method for annotation by summing over the word posteriors for
all the regions. Furthermore, we can reasonably expect that a method that cannot predict annotations
accurately is unlikely to predict correspondence well. This means that annotation measures offer a
plausible proxy.

6.2.1 USING ANNOTATION AS A PROXY

We report results using both the image based and region based word prediction methods. For the im-
age based methods, we can (and do) compute the annotations in the natural way. However, a second
strategy is to use these methods as region based methods, and then compute the image annotations
as for the region based methods. Recall that all our annotation models can provide correspon-
dence, despite not being explicitly trained to do so (we identify this by the suffixes “region-only”
and “region-cluster”). When we compute region word posteriors using the image based annotation
methods, the word posteriors do not necessarily sum to one because there is no requirement in these
models that each region emits any word. However, we enforce this requirement by normalizing the
posteriors for each region before summing them. The annotation performance of correspondence
models can be assessed by marginalizing out the correspondence from the model, and then testing
the model as an annotation model. This means that the measures of error described above apply in a
straightforward fashion. Notice that this does not test the correspondence component of the model,
but a model that performs poorly by this measure is likely to be unhelpful as a correspondence
model.
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6.2.2 MANUAL CORRESPONDENCESCORING

To corroborate the above measure, we also score some correspondence results by hand. While this
method directly looks at the correspondence, it does require human judgment. We hand labeled
each region in a number of images with every appropriate word in the vocabulary. We insisted
that the region has a plausible visual connection to the chosen words. Thus the word “ocean” for
“coral” would be judged incorrectly because the ocean is transparent. Other difficulties include
words like “landscape” and “valley” which normally apply to larger areas than our regions, and
“pattern” which can arguably be designated as correct whenever it appears, but we scored it as
incorrect because “pattern” recognition isn’t particularly helpful. Some regions could not be linked
with any vocabulary term, and these regions were omitted from consideration in computing the
scores. Producing the labeled data set is clearly a time consuming and error prone process, and thus
we are only able to use this ground truth for a modest number of images (50 images for each of ten
test sets). With the hand labeled set, we are able to compute the same measures as for the image
annotation case, although over a much smaller test set.

7. Experiments

For our experiments we used images from 160 CD’s from the Corel image data set. Each CD has 100
images on one relatively specific topic such as “aircraft.” From the 160 CD’s we drew samples of 80
CD’s, and these sets were further divided up into training (75%) and “standard” held out (25%) sets.
The images from the remaining CD’s formed a more difficult “novel” held out set. Predicting words
for these images is difficult, as we can only reasonably expect success on quite generic regions
such as “sky” and “water”—everything else is noise. Each such sample was given to each process
under consideration, and the results of 10 of such samples were averaged. This controls for both
the input data and EM initialization. Images were segmented using N-Cuts (Shi and Malik, 2000).
We excluded words which occurred less than 20 times in the test set, which yielded vocabularies
of the order of 155 words. We used a modest selection of features for each segment, including
size, position, color, oriented energy (12 filters), and a few simple shape features. For the discrete
translation model, we used 500 clusters for vector quantization. For linear topologies we used 500
nodes, and the trees were binary trees with 9 levels (511 nodes). For the MoM-LDA method, we
used 50 mixture components and 10 latent factors.

7.1 Annotation Results

We first looked a performance of the hierarchical clustering based methods as a function of the num-
ber of EM iterations used to train the models. This is important to check for over-fitting, especially
for the models which are not truly generative. We take one preemptive strategy to reduce fitting
problems. We train the models on a subset of the data for a few iterations, and use that model as the
starting point for training on another subset of the data. This is repeated 5 times, to obtain an initial
point for training the full data. Preliminary experiments indicated that there was generally a slight
benefit for doing so. We have yet to experiment either with tempering the training as suggested
in Hofmann and Puzicha (1998) or stochastic versions of EM (Celeux et al., 1995).
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7.1.1 THE NUMBER OF TRAINING ITERATIONS, AND OVER FITTING

Figure 3 plots performance in terms of KL divergence-based error for several models as a function
of the number of training iterations. We limit the plots to 30 iterations, but we have verified that
the trend established by the first 30 iterations holds even if the training continues for hundreds of
iterations. In general, the results indicate that over-fitting is not a big problem.

As one would expect, performance on the training set generally improved with the number of
iterations, with one exception. In the case of I-0, with several inference procedures, performance on
the training set reached a peak and then decreased. This is because the methods used for reasonably
fast inference were necessarily ad hoc, as I-0 is not generative. Similar behavior is also possible (but
intuitively less likely) with D-0 and C-0; we did not observe this behavior for these models. For the
held out sets, we found that most of the possible benefit was reached after 10 iterations of the training
algorithm, and in many cases, dropped off after that (most severely in the case of I-0). As one would
also expect, the performance on the novel set—containing images from CD’s not represented in the
training set—dropped much faster than that of the standard held out set. Evaluating the model on
the novel sets is a test of its ability to learn properties of the data that generalize to very different
images. For simplicity the rest of the results reported in this paper are for 10 iterations (except
MoM-LDA which was run to convergence). 10 iterations is roughly optimal for the standard held
out data, and sub-optimal for the novel held out data (5 iterations would give better results).

7.1.2 SCORING ANNOTATIONS WITH THE NORMALIZED SCORE, AND THE EFFECT OF

REFUSAL TO PREDICT

Next we studied the behavior of our normalized score measure (a score comparing the predicted
words with those actually present, as in 6.1.2) as a function of the minimal probability required to
predict words (Figure 4). With this measure predicting either no words or all words gives zero.
Therefore, as expected, the general behavior is to go from zero to some peak, and then to drop down
to zero again. The peak found using the training data empirical word distribution is used to set a
conservative refuse to predict level used for Table 2.

7.1.3 COMPARISON OFMODELS USINGDIFFERENT SCORES

We provide comprehensive annotation results in Table 1 (for the prediction score of 6.1.2, PR,
E(model)

PR −E(empirical)
PR ), Table 2 (for the normalized score of 6.1.2, NS,E(model)

NS −E(empirical)
NS ) and

Table 3 (for the KL score of 6.1.1,E(model)
KL − E(empirical)

KL ). Models I-1 and D-1 are omitted, as
there performance is similar to that of models I-0 and D-0. (I-1 (D-1) is a bit better than I-0 (D-1)
on training data, slightly better on held out data, and slightly worse on the novel set. This is not
surprising given that I-I (D-I) has more parameters than I-0 (D-0)). For the linear topologies, we
give results for only one of the four inference methods used in the case of clusters. The ”ave-vert”
method does not make sense without more than one cluster (and gives poor results), and the other
three methods are equivalent in the case of a single cluster.

Close study reveals that the results are far from consistent across the three measures. Taking a
broad view, the hierarchical clustering based methods give surprisingly similar results when paired
with a reasonable inference strategy (note error estimates provided in parenthesis). Perhaps surpris-
ingly, results with linear arrangements of the nodes are also roughly comparable. This is discussed
further below.
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Figure 3: Annotation performance using the KL-divergence between predictive density and the em-
pirical word occurrence density, for 4 models as a function of the number of training iter-
ations. Performance is relative to that for the empirical word distribution, with the vertical
axis being the extent to which using one of the models is better than using the empiri-
cal distribution (bigger is better). The results are the average of 10 runs with different
training and test sets. Performance is shown using three different test sets: the training
set, a held out set, and a held out set which is substantially different in character from the
training set. Notice that for I-0, the performance on the training set actually decreases
with increasing iterations after the peak. This is due to the ad hoc inference methods
introduced to efficiently compute the required distribution despite the fact that the model
is not truly generative. These plots show that for our task, most of the benefit is obtained
after 10 iterations.
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Figure 4: Normalized word prediction performance versus refuse to predict level for 4 model.
When a single value is required (as in Table 4) we use a refuse to predict level for which
the empirical word distribution gives the maximum (x=25). The results for the training
and held out sets when using the empirical distribution are very close and the curves are
essentially on top of one another. The refuse to predict level is the probability of word
emission which decreases exponentially from left to right (p = 10−(x/10)), where x is the
“ level” recorded on the x axis). As x increases (and p decreases), the number of words
predicted increases, and, performance first increases, and then decreases. All methods
illustrated here perform significantly better than prediction based on training word fre-
quency at all refuse to predict levels.
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Method Training data Held out data Novel data
linear-I-0-doc-vert 0.130 (0.003) 0.095 (0.003) 0.057 (0.003)
binary-I-0-ave-vert 0.130 (0.005) 0.082 (0.004) 0.023 (0.005)
binary-I-0-doc-vert 0.152 (0.005) 0.094 (0.004) 0.034 (0.005)
binary-I-0-region-cluster 0.157 (0.005) 0.099 (0.004) 0.038 (0.005)
binary-I-0-region-only 0.140 (0.005) 0.099 (0.003) 0.037 (0.006)
binary-I-2-ave-vert 0.141 (0.005) 0.087 (0.003) 0.023 (0.004)
binary-I-2-doc-vert 0.137 (0.005) 0.090 (0.004) 0.036 (0.004)
binary-I-2-region-cluster 0.141 (0.005) 0.099 (0.004) 0.039 (0.004)
binary-I-2-region-only 0.133 (0.005) 0.104 (0.004) 0.040 (0.005)
linear-D-0-doc-vert 0.147 (0.002) 0.102 (0.002) 0.059 (0.004)
binary-D-0-ave-vert 0.126 (0.005) 0.081 (0.003) 0.024 (0.005)
binary-D-0-doc-vert 0.160 (0.005) 0.094 (0.003) 0.037 (0.005)
binary-D-0-region-cluster 0.166 (0.005) 0.100 (0.003) 0.040 (0.005)
binary-D-0-region-only 0.143 (0.005) 0.103 (0.003) 0.038 (0.005)
binary-D-2-ave-vert 0.143 (0.005) 0.088 (0.003) 0.021 (0.005)
binary-D-2-doc-vert 0.173 (0.005) 0.102 (0.003) 0.036 (0.005)
binary-D-2-region-cluster 0.177 (0.005) 0.108 (0.003) 0.039 (0.005)
binary-D-2-region-only 0.152 (0.005) 0.108 (0.003) 0.036 (0.005)
linear-C-0-region-only 0.103 (0.003) 0.067 (0.002) 0.035 (0.005)
binary-C-0-ave-vert 0.115 (0.004) 0.070 (0.003) 0.015 (0.005)
binary-C-0-doc-vert 0.137 (0.003) 0.078 (0.002) 0.025 (0.004)
binary-C-0-region-cluster 0.142 (0.003) 0.085 (0.002) 0.030 (0.005)
binary-C-0-region-only 0.128 (0.003) 0.085 (0.003) 0.032 (0.005)
discrete-translation 0.129 (0.004) 0.073 (0.003) 0.029 (0.005)
MoM-LDA 0.053 (0.002) 0.050 (0.002) 0.038 (0.002)

Table 1: Image annotation performance for some of the methods developed in the text. Methods
I-0 and I2 use hierarchical clustering models with cluster conditional independence, D-0
and D-2 increases the dependence of word emission on blobs, C-0 integrates strict corre-
spondence, discrete-translation is the discrete translation method, and MoM-LDA is latent
Dirichlet allocation with 50 mixture components and 10 factors. The values are the in-
crease in the annotation word list prediction score (measure PR) over that computed using
the empirical word distribution (about 0.19). There are on average about 3 words to pre-
dict, so a value of 0.1 (good result on held out data) corresponds to predicting about 0.9
of them, as opposed to 0.6 with the empirical distribution. Predicting words for images
from the novel CD’s is very difficult, but all methods consistently do a little better than
the empirical distribution on this task. Errors (shown in parentheses) were estimated from
the variance of the word prediction process over 10 different test sets, with at least 1000
samples in each set being averaged for the result for each set.

In general, the range of results support the key notion that word prediction is facilitated by
honoring the compositional nature of images and associated text. That is, words are generally
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Method Training data Held out data Novel data
linear-I-0-doc-vert 0.301 (0.005) 0.174 (0.007) 0.081 (0.007)
binary-I-0-ave-vert 0.294 (0.006) 0.154 (0.006) 0.064 (0.008)
binary-I-0-doc-vert 0.325 (0.006) 0.160 (0.007) 0.065 (0.008)
binary-I-0-region-cluster 0.332 (0.006) 0.168 (0.007) 0.068 (0.008)
binary-I-0-region-only 0.234 (0.006) 0.160 (0.006) 0.062 (0.008)
binary-I-2-ave-vert 0.331 (0.006) 0.164 (0.008) 0.068 (0.007)
binary-I-2-doc-vert 0.322 (0.006) 0.170 (0.008) 0.074 (0.008)
binary-I-2-region-cluster 0.324 (0.006) 0.179 (0.008) 0.076 (0.008)
binary-I-2-region-only 0.228 (0.006) 0.163 (0.006) 0.068 (0.007)
linear-D-0-doc-vert 0.321 (0.005) 0.167 (0.006) 0.076 (0.008)
binary-D-0-ave-vert 0.284 (0.007) 0.151 (0.007) 0.061 (0.008)
binary-D-0-doc-vert 0.321 (0.007) 0.157 (0.007) 0.064 (0.008)
binary-D-0-region-cluster 0.330 (0.006) 0.166 (0.008) 0.067 (0.008)
binary-D-0-region-only 0.239 (0.006) 0.162 (0.007) 0.064 (0.007)
binary-D-2-ave-vert 0.312 (0.005) 0.162 (0.003) 0.066 (0.005)
binary-D-2-doc-vert 0.358 (0.005) 0.172 (0.003) 0.069 (0.005)
binary-D-2-region-cluster 0.360 (0.005) 0.179 (0.003) 0.072 (0.005)
binary-D-2-region-only 0.248 (0.005) 0.167 (0.003) 0.066 (0.005)
linear-C-0-region-only 0.240 (0.005) 0.124 (0.007) 0.046 (0.006)
binary-C-0-ave-vert 0.252 (0.006) 0.143 (0.007) 0.060 (0.008)
binary-C-0-doc-vert 0.281 (0.006) 0.148 (0.006) 0.054 (0.007)
binary-C-0-region-cluster 0.290 (0.006) 0.157 (0.007) 0.064 (0.007)
binary-C-0-region-only 0.233 (0.006) 0.163 (0.006) 0.071 (0.006)
discrete-translation 0.318 (0.005) 0.111 (0.007) 0.016 (0.008)
MoM-LDA 0.125 (0.005) 0.107 (0.005) 0.041 (0.007)

Table 2: Image annotation performance for some of the methods developed in the text. The values
are the increase in the normalized classification score (measure NS) over that computed
using the empirical word distribution (about 0.425). The refuse to predict level corresponds
very roughly to predicting 80 percent of the words; the increase of 0.160 (typical for our
held out data results) corresponds to reaching this level with about 40 guesses as compared
with roughly 70 for the empirical distribution (vocabulary size is around 155, depending
on the test set). See the caption for Table 1 for additional details.

associated with pieces of images, not the entire image. Building representations for those pieces
which incorporate both word and region features is a much cleaner approach to word prediction than
attempting to represent all images. (The set of objects is much smaller than the set of all common
arrangements of objects).

When we look at the effect of topology, one important observation can be made: Methods
which use image clustering are very reliant on having images which are close to the training data.
As discussed above, we included clustering in some of the models to exploit context. However, our
results indicate that forcing images into clusters is too strong a condition for doing so. Although
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Method Training data Held out data Novel data
linear-I-0-doc-vert 1.235 (0.02) 0.688 (0.02) 0.258 (0.01)
binary-I-0-ave-vert 1.210 (0.03) 0.563 (0.02) 0.060 (0.01)
binary-I-0-doc-vert 1.385 (0.02) 0.587 (0.02) 0.061 (0.02)
binary-I-0-region-cluster 1.429 (0.03) 0.651 (0.02) 0.094 (0.02)
binary-I-0-region-only 1.061 (0.02) 0.684 (0.02) 0.160 (0.02)
binary-I-2-ave-vert 1.367 (0.03) 0.608 (0.02) 0.084 (0.01)
binary-I-2-doc-vert 1.320 (0.03) 0.627 (0.02) 0.129 (0.01)
binary-I-2-region-cluster 1.342 (0.03) 0.694 (0.02) 0.156 (0.01)
binary-I-2-region-only 1.016 (0.02) 0.709 (0.02) 0.211 (0.01)
linear-D-0-doc-vert 1.376 (0.02) 0.714 (0.02) 0.268 (0.01)
binary-D-0-ave-vert 1.169 (0.03) 0.550 (0.02) 0.057 (0.01)
binary-D-0-doc-vert 1.417 (0.03) 0.601 (0.02) 0.074 (0.01)
binary-D-0-region-cluster 1.466 (0.03) 0.669 (0.02) 0.105 (0.02)
binary-D-0-region-only 1.086 (0.02) 0.700 (0.02) 0.175 (0.02)
binary-D-2-ave-vert 1.310 (0.005) 0.627 (0.003) 0.089 (0.005)
binary-D-2-doc-vert 1.589 (0.005) 0.674 (0.003) 0.102 (0.005)
binary-D-2-region-cluster 1.613 (0.005) 0.739 (0.003) 0.132 (0.005)
binary-D-2-region-only 1.155 (0.005) 0.747 (0.003) 0.180 (0.005)
linear-C-0-region-only 0.980 (0.02) 0.472 (0.02) 0.106 (0.01)
binary-C-0-ave-vert 1.020 (0.02) 0.516 (0.02) 0.071 (0.01)
binary-C-0-doc-vert 1.205 (0.02) 0.541 (0.02) 0.042 (0.01)
binary-C-0-region-cluster 1.254 (0.02) 0.601 (0.02) 0.104 (0.01)
binary-C-0-region-only 1.015 (0.02) 0.643 (0.02) 0.179 (0.01)
discrete-translation 1.347 (0.02) 0.433 (0.002) -0.072 (0.01)
MoM-LDA 0.452 (0.01) 0.401 (0.01) 0.171 (0.01)

Table 3: Image annotation performance for some of the methods developed in the text as measured
by the reduction of the KL divergence from that computed using the empirical distribution
(roughly 4.8). We use these numbers largely for comparison—an intuitive absolute scale
is not readily available. See the caption for Table 1 for additional details.

clustering improved the training set results, it slightly degraded performance on the held out images
from the same CD’s. For the novel CD’s, clustering significantly reduces performance. This is quite
understandable in light of the discussion in the previous paragraph, but the degree of degradation—
especially in the case of held out images from the same CD’s as training—was unexpected.

The performance of the discrete-translation was worse than that for the most similar non-discrete
model (linear-D-0-doc). This is consistent with our belief that it is better to simultaneously learn
the models for the blobs and their linkage to words. The performance on the three different data
sets indicates that there may be overfitting problems as well. This in turn may be due to the fact that
errors due to early quantization are artifacts of the training data.

The results for the MoM-LDA model are worth noting. While the performance on the training
data is worse than for the other models, the annotation results are only slightly poorer than the other
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models when the test data resembles the training data, and are competitive with the other models
when the test data are novel. Thus MoM-LDA shows a strong resistance to overfitting. Moreover,
given that the MoM-LDA model that we used has far fewer clusters than the I0 and I1 models
(MoM-LDA has 50 mixture components and 10 LDA factors, versus 256 mixture components and
9 aspect model factors for I0 and I1), further study of larger-scale MoM-LDA models is warranted.

Exploiting context is important to remove ambiguities but our results indicate that we need to
explore more subtle approaches for doing so. Of course, clustering is warranted for many applica-
tions such as browsing and search where characterization of the training set is important. However,
for recognition, something else is needed to deal with ambiguity. If we think of recognition as iden-
tifying the sky in an image of a jet, having been exposed to sky only in jungle scenes, then it is clear
that trying to put the jet image into an inappropriate cluster should yield poor results.

7.2 Correspondence Results

Figure 6 shows region annotations for a few sample images. For this result we labeled each region
with the maximal probability word, using model C-2. In Table 4 we provide quantitative correspon-
dence results computed over 50 images from each of the 10 held out sets. Results for each of the
three error measures is provided. For region based word prediction, it is perhaps most reasonable to
predict only a few words for each region. This process is most closely studied with the simple key-

word prediction error, E(model)
PR −E(empirical)

PR . Here the results suggest that the methods which have
been developed to learn correspondence do in fact do better at this task, relative to the performance
on the annotation proxy. For, example, using the PR measure, linear-C-0-region-only scores 0.067
with the annotation proxy, which is significantly exceeded by the performance of linear-I-0-region-
cluster (same as linear-I-0-doc-vert) which scores 0.094. Using the correspondence measure, they
are comparable.

Although the paired word-blob emission approach had the intended effect of improving corre-
spondence performance over annotation performance, we are disappointed that its correspondence
performance is still matched by several methods, and significantly bettered by at least one of them.
We expect that we need to integrate NULL’s properly into this approach. There are two possible
benefits: First, the model should no longer be compelled to predict words that it cannot predict
and second, the joint probability table may be fitted more accurately because the fitting process
should be protected from a large number of outliers caused by forcing each region to correspond
to some word. Currently, for both correspondence and annotation, linear-D-0-region-only (same as
linear-D-0-doc-vert), appears to be the best overall choice, taking all measures and data sets into
account.

8. Discussion

We have compared a variety of methods for predicting words from pictures. Each of these methods
can predict some words rather well, and some can predict correspondence well for some words,
too. There are practical applications for such methods. Furthermore, they offer an intriguing way to
think about object recognition. A great deal remains to be done.

A large variety of other models and fitting methods appear natural. For example, one might
model the conditional distribution of image features, given a word, as a Gaussian; there would be
one such Gaussian per word. Fitting a model of this form presents some practical difficulties, but
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Figure 5: Specific word precision and recall using the discrete translation model. For each word,
the task was to predict it for the images where it was a keyword, and not to predict it
otherwise. A word is predicted if it is the maximal word predicted by any of the blobs in
the image. Precision is the total number of correct predictions over all images, divided
by the number of predictions made (duplicate predictions count as a single prediction).
Recall is the total number of correct predictions divided by the number of occurrences
as a keyword. Results are the average over the 10 held out data sets. In (a) and (b)
the relationship between precision and recall is modulated by the refuse to predict level
which changes along the curves. As the level increases, fewer words are predicted, and
recall goes down, but the words which are predicted are predicted with more certainty,
and precision goes up. In (a) we show the results for some words with good performance,
and (b) we show some words with poor performance. Because the scales are the same,
the curves for the poorly predicted words are all located in the bottom left corner. In
(c) the refuse to predict level is fixed, but we show the performance for the words as a
scatter plot. These figures show that we do quite well on a modest set of words, and that
performance on the rest is limited.
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Figure 6: Examples of region based annotation using C-2-pair-only on held out data. The first two
rows are good results. The left image on row 3 has some good labels, but the three water
labels are likely due more to that word being common in training than the region features.
The next two images have lots of correct words for the image (good annotation), but most
words are not on the right region (poor correspondence). Specifically, on the car image the
tires are labeled “ tracks,” which belongs elsewhere. On the horse image neither “horse”
nor “mares” is in the right place. The last bottom right image is an example is complete
failure.
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Method PR measure
linear-I-0-region-only 0.099 (0.02)
binary-I-0-region-cluster 0.101 (0.01)
binary-I-0-region-only 0.103 (0.01)
binary-I-2-region-cluster 0.101 (0.01)
binary-I-2-region-only 0.093 (0.01)
linear-D-0-region-only 0.132 (0.01)
binary-D-0-region-cluster 0.096 (0.01)
binary-D-0-region-only 0.104 (0.01)
binary-D-2-region-cluster 0.103 (0.01)
binary-D-2-region-only 0.092 (0.01)
linear-C-0-region-only 0.101 (0.01)
discrete-translation 0.066 (0.01)

Table 4: Correspondence performance as measured over 10 sets of 50 manually annotated images
from the held out set using the PR measure. All values are relative to the performance
using the empirical distribution (about 0.094). For this task, the PR is arguably the most
indicative measure as it corresponds to forcing each region to only emit a small number of
words (the number of alternative labels). The NS measure is not appropriate because the
refuse to predict level was calibrated under different conditions. Note that for comparison
with the annotation results, linear-I-0-region-only and linear-I-0-doc-vert give the same
results, as do linear-D-0-doc-vert and linear-D-0-region-only.

our initial experiments suggest it might be worthwhile. One might attempt to use model selection
methods of one form or another to suggest synonymous words—the Corel data set contains both
“ train” and “ locomotive”—or words effectively synonymous given our features—“ jet,” “ plane” and
“bird,” say. One might also use model selection methods to search for appropriate feature sets. Note
that there is no particular reason that features need to be independent of identity; an improved model
would predict some bits of a word’s index using a fixed feature set, and then predict other bits using
features conditioned by the first bits.

The Corel data set is relatively simple because the annotations are nouns selected from a rela-
tively small vocabulary. Many data sets contain free text annotations. It is a simple matter to tag
all nouns, throw away all other text, and regard the result as an annotation. Much more might be
possible; for example, one might wish to do some natural language processing to identify candidate
annotations that appear to refer to the picture.

Performance is almost certainly affected by the correspondence model used; currently, we re-
quire that each region generate a word and that all words be accounted for. One might require
one-one correspondence between words and a subset of regions, or insert a NULL as above. This
slightly modifies the formulation of the EM fitting methods.

We currently have little information about the effect of supervision, but we expect that quite
small supervisory input might lead to significant changes in the model. This is because missing
correspondence information can generate symmetries in the incomplete data log-likelihood. For
example, if “ tiger” and “grass” always appear together, there is no way to determine which is which;
but annotating a small number of images will break this symmetry, and could cause a substantial
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change in the model. A reasonable measure of performance of a model (and an associated fitting
algorithm) is the quantity of supervisory input required to achieve a particular level of performance
on some reference collection.

Large scale evaluation of correspondence models is genuinely difficult. The problem is impor-
tant. In the not-too-distant future, there will be recognition systems that can manage vocabularies
that are large enough that manual checking of labeled images is an unsatisfactory test. How can one
tell how well such a system works? Our current strategy is to investigate methods that obtain ex-
trapolated estimates of correspondence performance from proxies applied to test sets with carefully
chosen properties. The key issue seems to be the entropy of the labels; if it is hard to predict the sec-
ond word from the first word for each data item in the test collection, then annotation performance
is likely to predict correspondence performance.
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