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Sequential Decision Problems

Agent

Environment

Action, 𝑎State, 𝑠

(Discrete / Continuous) (Discrete / Continuous)

(Fully observable / Partially observable)



Example: Digital Marketing
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Example: Educational Games



Example: Decision Support Systems



Example: Gridworld



Example: Mountain Car



Reinforcement Learning Algorithms

• Sarsa

• Q-learning

• LSPI

• Fitted Q Iteration

• REINFORCE

• Residual Gradient

• Continuous-Time Actor-Critic

• Value Gradient

• POWER

• PILCO

• LSPI

• PIPI

• Policy Gradient

• DQN

• Double Q-Learning

• Deterministic Policy Gradient

• NAC-LSTD

• INAC

• Average-Reward INAC

• Unbiased NAC

• Projected NAC

• Risk-sensitive policy gradient

• Natural Sarsa

• PGPE / PGPE-SyS

• True Online

• GTD/TDC

• ARP

• GPTD

• Auto-Actor Auto-Critic

• Approximate Value Iteration



If you apply an existing method, do 
you have confidence that it will work?



Notation

• 𝑠: State

• 𝑎: Action

• 𝑆𝑡 , 𝐴𝑡: State, and action at time 𝑡

• 𝜋 𝑎 𝑠 = Pr 𝐴𝑡 = 𝑎 𝑆𝑡 = 𝑠

• 𝜏 = (𝑆0, 𝐴0, 𝑆1, … , 𝑆𝐿 , 𝐴𝐿)

• 𝐺 𝜏 ∈ [0,1]

• 𝜌 𝜋 = 𝐄 𝐺 𝜏 𝜏 ∼ 𝜋]



Two Goals:

• High confidence off-policy evaluation (HCOPE)

• Safe Policy Improvement (SPI)

Historical Data, 𝒟

Proposed Policy, 𝜋𝑒

Confidence Level, 𝛿

1 − 𝛿 confidence lower bound on 𝜌 𝜋𝑒

Historical Data, 𝒟

Performance baseline, 𝜌−

Confidence Level, 𝛿

An improved* policy, 𝜋

*The probability that 𝜋’s performance is below 𝜌− is at most 𝛿



High Confidence Off-Policy Evaluation

• Historical data: 𝒟 = 𝜏𝑖 , 𝜋𝑖 : 𝜏𝑖 ∼ 𝜋𝑖 𝑖=1
𝑛

• Evaluation policy, 𝜋𝑒

• Confidence level, 𝛿

• Compute HCOPE(𝜋𝑒|𝒟, 𝛿) such that

Pr 𝜌 𝜋𝑒 ≥ HCOPE(𝜋𝑒|𝒟, 𝛿) ≥ 1 − 𝛿

Historical Data, 𝒟

Proposed Policy, 𝜋𝑒

Confidence Level, 𝛿

1 − 𝛿 confidence lower bound on 𝜌 𝜋𝑒



Importance Sampling

• We would like to estimate
𝜃 ≔ 𝐄 𝑓 𝑥 𝑥~𝑝

• Monte Carlo estimator:
• Sample 𝑋1, …𝑋𝑛 from 𝑝 and set:

 𝜃𝑛 ≔
1

𝑛
 

𝑖=1

𝑛

𝑋𝑖

• Nice properties
• The Monte Carlo estimator is strongly consistent:

 𝜃𝑛

𝑎.𝑠.
𝜃

• The Monte Carlo estimator is unbiased for all 𝑛 ≥ 1:

𝐄  𝜃𝑛 = 𝜃



Importance Sampling

• We would like to estimate
𝜃 ≔ 𝐄 𝑓 𝑥 𝑥~𝑝

• … but we can only sample from a distribution, 𝑞, not 𝑝.

• Assume: if 𝑞 𝑥 = 0 then 𝑓 𝑥 𝑝 𝑥 = 0. Then:

𝐄 𝑓 𝑥 𝑥~𝑝 =  𝑥∈supp(𝑝) 𝑝 𝑥 𝑓(𝑥)

=  𝑥∈supp(𝑞) 𝑝 𝑥 𝑓(𝑥)

=  𝑥∈supp(𝑞)
𝑞(𝑥)

𝑞(𝑥)
𝑝 𝑥 𝑓(𝑥)

=  𝑥∈supp(𝑞) 𝑞 𝑥
𝑝(𝑥)

𝑞(𝑥)
𝑓(𝑥)

= 𝐄
𝑝(𝑥)

𝑞(𝑥)
𝑓 𝑥 𝑥~𝑞



Importance Sampling

• We would like to estimate
𝜃 ≔ 𝐄 𝑓 𝑥 𝑥~𝑝

• Importance sampling estimator:
• Sample 𝑋1, …𝑋𝑛 from 𝑞 and set:

 𝜃𝑛 ≔
1

𝑛
 

𝑖=1

𝑛
𝑝(𝑋𝑖)

𝑞(𝑋𝑖)
𝑋𝑖

• Nice properties (under mild assumptions)
• The importance sampling estimator is strongly consistent:

 𝜃𝑛

𝑎.𝑠.
𝜃

• The importance sampling estimator is unbiased for all 𝑛 ≥ 1:

𝐄  𝜃𝑛 = 𝜃



Importance Sampling

𝜌 𝜋𝑒 = 𝐄𝜏~𝜋𝑒
𝐺 𝜏 = 𝐄𝜏~𝜋𝑏

Pr(𝜏|𝜋𝑒)

Pr(𝜏|𝜋𝑏)
𝐺 𝜏

Probability of trajectory

Evaluation Policy, 𝜋𝑒

Behavior Policy, 𝜋𝑏



Importance Sampling for Reinforcement 
Learning

• 𝜌 𝜋𝑒 = 𝐄𝜏~𝜋𝑒
𝐺 𝜏 = 𝐄𝜏~𝜋𝑏

Pr(𝜏|𝜋𝑒)

Pr(𝜏|𝜋𝑏)
𝐺 𝜏

•
Pr(𝜏|𝜋𝑒)

Pr(𝜏|𝜋𝑏)
𝐺 𝜏 =

 𝑡=0
𝐿 Pr 𝑆𝑡|past Pr 𝐴𝑡|past,𝜋𝑒

 𝑡=0
𝐿 Pr 𝑆𝑡|past Pr 𝐴𝑡|past,𝜋𝑏

𝐺 𝜏

=
 𝑡=0

𝐿 Pr 𝐴𝑡|past,𝜋𝑒

 𝑡=0
𝐿 Pr 𝐴𝑡|past,𝜋𝑏

𝐺 𝜏

=
 𝑡=0

𝐿 𝜋𝑒 𝐴𝑡 𝑆𝑡)

 𝑡=0
𝐿 𝜋𝑏 𝐴𝑡 𝑆𝑡)

𝐺 𝜏

•  𝜌 𝜋𝑒 , 𝜏, 𝜋𝑏 =  𝑡=0
𝐿 𝜋𝑒 𝐴𝑡 𝑆𝑡)

𝜋𝑏 𝐴𝑡 𝑆𝑡)
𝐺 𝜏

(D. Precup, R. S. Sutton, and S. Dasgupta, 2001)



Per-Decision Importance Sampling

• Use importance sampling to estimate each 𝑅𝑡.
• Still and unbiased and strongly consistent estimator of 𝜌(𝜋𝑒).

• Often has lower variance than ordinary importance sampling.



Historical Data, 𝒟

Proposed Policy, 𝜋𝑒

Confidence Level, 𝛿

1 − 𝛿 confidence lower bound on 𝜌 𝜋𝑒

Historical Data, 𝒟

Proposed Policy, 𝜋𝑒

 𝜌 𝜋𝑒, 𝜏𝑖 , 𝜋𝑖 𝑖=1
𝑛

 𝜌 𝜋𝑒, 𝜏, 𝜋𝑏 =  

𝑡=0

𝐿
𝜋𝑒 𝐴𝑡 𝑆𝑡)

𝜋𝑏 𝐴𝑡 𝑆𝑡)
𝐺 𝜏

1 − 𝛿 confidence lower bound on 𝜌 𝜋𝑒Confidence Level, 𝛿

?



Chernoff-Hoeffding Inequality

• Let 𝑋1, … , 𝑋𝑛 be 𝑛 independent identically distributed random 
variables such that:
• Xi ∈ [0, 𝑏]

• Then with probability at least 1 − 𝛿:

𝐸 𝑋𝑖 ≥
1

𝑛
 

𝑖=1

𝑛

𝑋𝑖 −𝑏
ln  1 𝛿

2𝑛



𝜌 𝜋𝑒 = 𝐸  𝜌 𝜋𝑒, 𝜏𝑖 , 𝜋𝑖 ≥
1

𝑛
 

𝑖=1

𝑛

 𝜌 𝜋𝑒, 𝜏𝑖 , 𝜋𝑖 − 𝑏
ln  1 𝛿

2𝑛

With probability at least 1 − 𝛿:

𝐸 𝑋𝑖 ≥
1

𝑛
 

𝑖=1

𝑛

𝑋𝑖 −𝑏
ln  1 𝛿

2𝑛



Historical Data, 𝒟

Proposed Policy, 𝜋𝑒

Confidence Level, 𝛿

1 − 𝛿 confidence lower bound on 𝜌 𝜋𝑒

Historical Data, 𝒟

Proposed Policy, 𝜋𝑒

 𝜌 𝜋𝑒, 𝜏𝑖 , 𝜋𝑖 𝑖=1
𝑛

 𝜌 𝜋𝑒, 𝜏, 𝜋𝑏 =  

𝑡=0

𝐿
𝜋𝑒 𝐴𝑡 𝑆𝑡)

𝜋𝑏 𝐴𝑡 𝑆𝑡)
𝐺 𝜏

1 − 𝛿 confidence lower bound on 𝜌 𝜋𝑒Confidence Level, 𝛿

?



Historical Data, 𝒟

Proposed Policy, 𝜋𝑒

Confidence Level, 𝛿

1 − 𝛿 confidence lower bound on 𝜌 𝜋𝑒

Historical Data, 𝒟

Proposed Policy, 𝜋𝑒

 𝜌 𝜋𝑒, 𝜏𝑖 , 𝜋𝑖 𝑖=1
𝑛

 𝜌 𝜋𝑒, 𝜏, 𝜋𝑏 =  

𝑡=0

𝐿
𝜋𝑒 𝐴𝑡 𝑆𝑡)

𝜋𝑏 𝐴𝑡 𝑆𝑡)
𝐺 𝜏

1 − 𝛿 confidence lower bound on 𝜌 𝜋𝑒Confidence Level, 𝛿

Concentration
Inequality

1

𝑛
 

𝑖=1

𝑛

 𝜌 𝜋𝑒 , 𝜏𝑖 , 𝜋𝑖 − 𝑏
ln  1 𝛿

2𝑛



Example: Mountain Car



Example: Mountain Car

• Using 100,000 trajectories

• Evaluation policy’s true performance is 0.19 ∈ [0,1].

• We get a 95% confidence lower bound of:

−5,831,000



What went wrong?

 𝜌 𝜋𝑒 , 𝜏, 𝜋𝑏 =  

𝑡=0

𝐿
𝜋𝑒 𝐴𝑡 𝑆𝑡

𝜋𝑏 𝐴𝑡|𝑆𝑡
𝐺 𝜏



What went wrong?

𝐸 𝑋𝑖 ≥
1

𝑛
 

𝑖=1

𝑛

𝑋𝑖 −𝑏
ln  1 𝛿

2𝑛

𝑏 ≈ 109.4

Largest observed importance weighted return: 316.



Another problem:

 𝜌 𝜋𝑒 , 𝜏, 𝜋𝑏 =  

𝑡=0

𝐿
𝜋𝑒 𝐴𝑡 𝑆𝑡

𝜋𝑏 𝐴𝑡| 𝑆𝑡
𝐺 𝜏

• One behavior policy
• Independent and identically distributed

• More than one behavior policy
• Independent



Conservative Policy Iteration

• ≈ 1,000,000 trajectories for a 
single policy improvement.

(S. Kakade and J. Langford, 2002)



PAC-RL

• ≈ 1017 time steps to guarantee 
convergence to a near-optimal 
policy.

(T. Lattimore and M. Hutter, 2012)



Thesis

High Confidence Off-Policy Evaluation (HCOPE)

and

Safe Policy Improvement (SPI)

are tractable using a practical amount of data.





Historical Data, 𝒟

Proposed Policy, 𝜋𝑒

Confidence Level, 𝛿

1 − 𝛿 confidence lower bound on 𝜌 𝜋𝑒

Historical Data, 𝒟

Proposed Policy, 𝜋𝑒

 𝜌 𝜋𝑒, 𝜏𝑖 , 𝜋𝑖 𝑖=1
𝑛

 𝜌 𝜋𝑒, 𝜏, 𝜋𝑏 =  

𝑡=0

𝐿
𝜋𝑒 𝐴𝑡 𝑆𝑡)

𝜋𝑏 𝐴𝑡 𝑆𝑡)
𝐺 𝜏

1 − 𝛿 confidence lower bound on 𝜌 𝜋𝑒Confidence Level, 𝛿

Concentration
Inequality

1

𝑛
 

𝑖=1

𝑛

 𝜌 𝜋𝑒 , 𝜏𝑖 , 𝜋𝑖 − 𝑏
ln  1 𝛿

2𝑛











Extending Maurer’s Inequality

• First Key Idea:
• Generalize: random variables with different ranges.

• Specialize: random variables with the same mean.



Extending Maurer’s Inequality

• Second Key Idea:
• Removing the upper tail only decreases the expected value.





Tradeoff



Threshold Optimization

• Use 20% of the data to optimize 𝑐.

• Use 80% to compute lower bound with optimized 𝑐.



Given 𝑛 samples, 𝒳 ≔ 𝑋𝑖 𝑖=1
𝑛 , predict what the lower bound would 

be if computed from 𝑚 samples, rather than 𝑛.





CUT Chernoff-
Hoeffding

Maurer Anderson Bubeck et al.

95% 
Confidence 

lower bound 
on the mean

0.145 −5,831,000 −129,703 0.055 −.046



Digital Marketing Example

• 10 real-valued features

• Two groups of campaigns to choose between

• User interactions limited to 𝐿 = 10

• Data collected from a Fortune 20 company

• Data was not used directly.
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Example: Digital Marketing
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Example: Digital Marketing
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Example: Digital Marketing
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Example: Digital Marketing
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Example: Digital Marketing
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Example: Digital Marketing



We can now evaluate policies proposed by RL algorithms without the 
need to execute them and in a way that instills users with confidence 
that the new policy will actually work.


