High Confidence Off-Policy Evaluation (HCOPE)

Philip Thomas

CMU 15-899E, Real Life Reinforcement Learning, Fall 2015

Sequential Decision Problems

Example: Digital Marketing

Example: Educational Games

Example: Decision Support Systems

Example: Gridworld

(1,1) Initial	(2,1)	(3,1)	(4,1)
(1,2)	(2,2) $R_t = -10$	(3,2)	(4,2)
(1,3)	(2,3)	(3,3)	(4,3)
(1,4)	(2,4) $R_t = 1$	(3,4)	(4,4) Terminal $R_t = 10$

Example: Mountain Car

Reinforcement Learning Algorithms

- Sarsa
- Q-learning
- LSPI
- Fitted Q Iteration
- REINFORCE
- Residual Gradient
- Continuous-Time Actor-Critic
- Value Gradient
- POWER
- PILCO
- LSPI
- PIPI
- Policy Gradient
- DQN
- Double Q-Learning

- Deterministic Policy Gradient
- NAC-LSTD
- INAC
- Average-Reward INAC
- Unbiased NAC
- Projected NAC
- Risk-sensitive policy gradient
- Natural Sarsa
- PGPE / PGPE-SyS
- True Online
- GTD/TDC
- ARP
- GPTD
- Auto-Actor Auto-Critic
- Approximate Value Iteration

If you apply an existing method, do you have confidence that it will work?

Notation

- s: State
- *a*: Action
- S_t , A_t : State, and action at time t
- $\pi(a|s) = \Pr(A_t = a|S_t = s)$
- $\tau = (S_0, A_0, S_1, \dots, S_L, A_L)$
- $G(\tau) \in [0,1]$
- $\rho(\pi) = \mathbf{E}[G(\tau)|\tau \sim \pi]$

Two Goals:

• High confidence off-policy evaluation (HCOPE)

*The probability that π 's performance is below ρ_{-} is at most δ

High Confidence Off-Policy Evaluation Historical Data, \mathcal{D} Proposed Policy, π_e Confidence Level, δ

- Historical data: $\mathcal{D} = \{(\tau_i, \pi_i): \tau_i \sim \pi_i\}_{i=1}^n$
- Evaluation policy, π_e
- Confidence level, δ
- Compute $\mathrm{HCOPE}(\pi_e | \mathcal{D}, \delta)$ such that

 $\Pr(\rho(\pi_e) \geq \text{HCOPE}(\pi_e | \mathcal{D}, \delta)) \geq 1 - \delta$

• We would like to estimate

$$\theta \coloneqq \mathbf{E}[f(x)|x \sim p]$$

- Monte Carlo estimator:
 - Sample $X_1, \dots X_n$ from p and set:

$$\widehat{\theta}_n \coloneqq \frac{1}{n} \sum_{i=1}^n X_i$$

- Nice properties
 - The Monte Carlo estimator is strongly consistent:

$$\widehat{\theta}_n \stackrel{a.s.}{\longrightarrow} \theta$$

• The Monte Carlo estimator is unbiased for all $n \ge 1$:

$$\mathbf{E}[\widehat{\theta}_n] = \theta$$

We would like to estimate

$$\theta \coloneqq \mathbf{E}[f(x)|x \sim p]$$

- ... but we can only sample from a distribution, q, not p.
- Assume: if q(x) = 0 then f(x)p(x) = 0. Then: $\mathbf{E}[f(x)|x \sim p] = \sum_{x \in \text{supp}(p)} p(x)f(x)$ $=\sum_{x\in \text{supp}(q)} p(x)f(x)$ $=\sum_{x\in \text{supp}(q)}\frac{q(x)}{q(x)}p(x)f(x)$ $= \sum_{x \in \text{supp}(q)} q(x) \frac{p(x)}{q(x)} f(x)$ $= \mathbf{E} \left| \frac{p(x)}{q(x)} f(x) \right| x \sim q$

• We would like to estimate

$$\theta \coloneqq \mathbf{E}[f(x)|x \sim p]$$

- Importance sampling estimator:
 - Sample $X_1, \dots X_n$ from q and set:

$$\widehat{\theta}_n \coloneqq \frac{1}{n} \sum_{i=1}^n \frac{p(X_i)}{q(X_i)} X_i$$

- Nice properties (under mild assumptions)
 - The importance sampling estimator is strongly consistent:

$$\widehat{\theta}_n \stackrel{a.s.}{\longrightarrow} \theta$$

• The importance sampling estimator is unbiased for all $n \ge 1$:

$$\mathbf{E}[\hat{\theta}_n] = \theta$$

$$\rho(\pi_e) = \mathbf{E}_{\tau \sim \pi_e}[G(\tau)] = \mathbf{E}_{\tau \sim \pi_b} \left[\frac{\Pr(\tau | \pi_e)}{\Pr(\tau | \pi_b)} G(\tau) \right]$$

Importance Sampling for Reinforcement Learning (D. Precup, R. S. Sutton, and S. Dasgupta, 2001)

$$\begin{split} \bullet \rho(\pi_e) &= \mathbf{E}_{\tau \sim \pi_e}[G(\tau)] = \mathbf{E}_{\tau \sim \pi_b} \left[\frac{\Pr(\tau | \pi_e)}{\Pr(\tau | \pi_b)} G(\tau) \right] \\ \bullet \frac{\Pr(\tau | \pi_e)}{\Pr(\tau | \pi_b)} G(\tau) &= \frac{\prod_{t=0}^{L} \Pr(S_t | \text{past}) \Pr(A_t | \text{past}, \pi_e)}{\prod_{t=0}^{L} \Pr(S_t | \text{past}) \Pr(A_t | \text{past}, \pi_b)} G(\tau) \\ &= \frac{\prod_{t=0}^{L} \Pr(A_t | \text{past}, \pi_e)}{\prod_{t=0}^{L} \Pr(A_t | \text{past}, \pi_b)} G(\tau) \\ &= \frac{\prod_{t=0}^{L} \pi_e(A_t | S_t)}{\prod_{t=0}^{L} \pi_b(A_t | S_t)} G(\tau) \\ \bullet \hat{\rho}(\pi_e, \tau, \pi_b) &= \prod_{t=0}^{L} \frac{\pi_e(A_t | S_t)}{\pi_b(A_t | S_t)} G(\tau) \end{split}$$

Per-Decision Importance Sampling

- Use importance sampling to estimate each R_t .
 - Still and unbiased and strongly consistent estimator of $\rho(\pi_e)$.
 - Often has lower variance than ordinary importance sampling.

Chernoff-Hoeffding Inequality

- Let $X_1, ..., X_n$ be n independent identically distributed random variables such that:
 - $X_i \in [0, b]$
- Then with probability at least 1δ :

$$E[X_i] \ge \frac{1}{n} \sum_{i=1}^n X_i - b \sqrt{\frac{\ln\left(1/\delta\right)}{2n}}$$

$$\rho(\pi_e) = E[\hat{\rho}(\pi_e, \tau_i, \pi_i)] \ge \frac{1}{n} \sum_{i=1}^n \hat{\rho}(\pi_e, \tau_i, \pi_i) - b \sqrt{\frac{\ln\left(1/\delta\right)}{2n}}$$

With probability at least $1 - \delta$:

$$E[X_i] \ge \frac{1}{n} \sum_{i=1}^n X_i - b \sqrt{\frac{\ln\left(\frac{1}{\delta}\right)}{2n}}$$

Example: Mountain Car

Figure 3: Mountain Car (Sarsa(λ))

Example: Mountain Car

Goal position

- Using 100,000 trajectories
- Evaluation policy's true performance is $0.19 \in [0,1]$.
- We get a 95% confidence lower bound of:

-5,831,000

What went wrong?

What went wrong?

$$E[X_i] \ge \frac{1}{n} \sum_{i=1}^n X_i - \frac{b}{\sqrt{\frac{\ln\left(\frac{1}{\delta}\right)}{2n}}}$$

 $b \approx 10^{9.4}$

Largest observed importance weighted return: 316.

Another problem:

$$\hat{\rho}(\pi_{e}, \tau, \pi_{b}) = \prod_{t=0}^{L} \frac{\pi_{e}(A_{t}|S_{t})}{\pi_{b}(A_{t}|S_{t})} G(\tau)$$

- One behavior policy
 - Independent and identically distributed
- More than one behavior policy
 - Independent

Conservative Policy Iteration (S. Kakade and J. Langford, 2002)

• \approx 1,000,000 trajectories for a single policy improvement.

(1,1) Initial	(2,1)	(3,1)	(4,1)
(1,2)	(2,2) $R_t = -10$	(3,2)	(4,2)
(1,3)	(2,3)	(3,3)	(4,3)
(1,4)	(2,4) $R_t = 1$	(3,4)	(4,4) Terminal $R_t = 10$

PAC-RL (T. Lattimore and M. Hutter, 2012)

• $\approx 10^{17}$ time steps to guarantee convergence to a near-optimal policy.

(1,1) Initial	(2,1)	(3,1)	(4,1)
(1,2)	(2,2) $R_t = -10$	(3,2)	(4,2)
(1,3)	(2,3)	(3,3)	(4,3)
(1,4)	(2,4) $R_t = 1$	(3,4)	(4,4) Terminal $R_t = 10$

Thesis

High Confidence Off-Policy Evaluation (HCOPE) and

Safe Policy Improvement (SPI) are tractable using a practical amount of data.

Name	$\begin{array}{c} \text{Direct} \\ \text{Dependence} \\ \text{on } b \end{array}$	Identically Distributed Only	Exact or Approximate	Reference	Notes
СН	$\Theta\left(\frac{b}{\sqrt{n}}\right)$	No	Exact	(Massart, 2007)	None
MPeB	$\Theta\left(\frac{b}{n}\right)$	No	Exact	(Maurer and Pon- til, 2009, Theo- rem 11)	Requires all random variables to have the same range.
AM	None	Yes	Exact	(Anderson, 1969, Massart, 1990)	Depends on the largest observed sample. Loose for distributions without heavy tails.
BM	$\Theta\left(\frac{b}{\sqrt{n}}\right)$	Yes	Exact	$\begin{array}{c} (\text{Bubeck} \text{et} \text{al.}, \\ 2012) \end{array}$	None.

CUT None	No	Exact	Theorem 23	None.	
----------	----	-------	------------	-------	--

Theorem 17 (Chernoff-Hoeffding (CH) Inequality). Let $\{X_i\}_{i=1}^n$ be *n* independent random variables such that $\Pr(X_i \in [a_i, b_i]) = 1$, for all $i \in \{1, \ldots, n\}$, where all $a_i \in \mathbb{R}$ and $b_i \in \mathbb{R}$. Then

$$\Pr\left(\mathbf{E}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right]\geq\frac{1}{n}\sum_{i=1}^{n}X_{i}-\sqrt{\frac{\ln\left(\frac{1}{\delta}\right)\sum_{i=1}^{n}(b_{i}-a_{i})^{2}}{2n^{2}}}\right)\geq1-\delta.$$
(4.6)

Theorem 18 (Maurer and Pontil's Empirical Bernstein (MPeB) Inequality). Let $\{X_i\}_{i=1}^n$ be *n* independent random variables such that $\Pr(X_i \in [a, b]) = 1$, for all $i \in \{1, ..., n\}$, where $a \in \mathbb{R}$ and $b \in \mathbb{R}$. Then

Theorem 19 (Anderson and Massart's (AM) Inequality). Let $\{X_i\}_{i=1}^n$ be n independent and identically distributed random variables such that $X_i \ge a$, for all $i \in \{1, \ldots, n\}$, where $a \in \mathbb{R}$. Then

$$\Pr\left(\mathbf{E}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] \ge Z_{n} - \sum_{i=0}^{n-1}(Z_{i+1} - Z_{i})\min\left\{1, \frac{i}{n} + \sqrt{\frac{\ln(2/\delta)}{2n}}\right\}\right) \ge 1 - \delta,$$

where $Z_0 = a$ and $\{Z_i\}_{i=1}^n$ are $\{X_i\}_{i=1}^n$, sorted such that $Z_1 \leq Z_2 \leq \ldots \leq Z_n$.

Extending Maurer's Inequality

- First Key Idea:
 - Generalize: random variables with different ranges.
 - Specialize: random variables with the same mean.

Extending Maurer's Inequality

- Second Key Idea:
 - Removing the upper tail only decreases the expected value.

Theorem 1. Let X_1, \ldots, X_n be n independent real-valued random variables such that for each $i \in \{1, \ldots, n\}$, we have $\mathbb{P}[0 \leq X_i] = 1$, $\mathbb{E}[X_i] \leq \mu$, and some threshold value $c_i > 0$. Let $\delta > 0$ and $Y_i := \min\{X_i, c_i\}$. Then with probability at least $1-\delta$, we have

term that goes to zero as $1/\sqrt{n}$ as $n \to \infty$

C

Threshold Optimization

- Use 20% of the data to optimize *c*.
- Use 80% to compute lower bound with optimized *c*.

Given *n* samples, $\mathcal{X} \coloneqq \{X_i\}_{i=1}^n$, predict what the lower bound would be if computed from *m* samples, rather than *n*.

$$\widehat{\operatorname{CUT}}(\mathcal{X}, \delta, c, m) \coloneqq \underbrace{\frac{1}{n} \sum_{i=1}^{n} \min\{X_i, c\}}_{\text{sample mean of } \mathcal{X} \text{ (after being collapsed)}} - \underbrace{\frac{7c \ln(2/\delta)}{3(m-1)}}_{\text{sample mean of } \mathcal{X} \text{ (after being collapsed)}} - \underbrace{\frac{\ln(2/\delta)}{m} \underbrace{\frac{2}{n(n-1)} \left(n \sum_{i=1}^{n} (\min\{X_i, c\})^2 - \left(\sum_{i=1}^{n} \min\{X_i, c\}\right)^2\right)}_{\text{sample variance of } \mathcal{X} \text{ (after being collapsed)}},$$

 \boldsymbol{n}

Algorithm 4.11: $\operatorname{CUT}(X_1, \ldots, X_n, \delta)$: Uses the CUT inequality to return a $1 - \delta$ confidence lower bound on $\operatorname{\mathbf{E}}[\frac{1}{n}\sum_{i=1}^n X_i]$. Constants: This algorithm has a real-valued hyperparameter, $c_{\min} \geq 0$, which is the smallest allowed threshold. It should be chosen based on the application.

For HCOPE we use $c_{\min} = 1$.

Assumes: The X_i are independent random variables such that $Pr(X_i \ge 0) = 1$ for all $i \in \{1, \ldots, n\}$.

1 Randomly select 1/5 of the X_i and place them in a set \mathcal{X}_{pre} and the remainder in \mathcal{X}_{post} ;

// Optimize threshold using \mathcal{X}_{pre}

2 $c^* \in \arg \max_{c \in [1,\infty]} \widehat{\operatorname{CUT}}(\mathcal{X}_{\operatorname{pre}}, \delta, c, |\mathcal{X}_{\operatorname{post}}|);$ // $\widehat{\operatorname{CUT}}$ is defined in (4.15) 3 $c^* = \max\{c_{\min}, c^*\};$ // Do not let c^* become too small // Compute lower bound using optimized threshold, c^* and $\mathcal{X}_{\operatorname{post}}$ 4 return $\widehat{\operatorname{CUT}}(\mathcal{X}_{\operatorname{post}}, \delta, c^*, |\mathcal{X}_{\operatorname{post}}|);$

	CUT	Chernoff- Hoeffding	Maurer	Anderson	Bubeck et al.
95% Confidence lower bound on the mean	0.145	-5,831,000	-129,703	0.055	046

Digital Marketing Example

- 10 real-valued features
- Two groups of campaigns to choose between
- User interactions limited to L = 10
- Data collected from a Fortune 20 company
- Data was not used directly.

We can now evaluate policies proposed by RL algorithms without the need to execute them and in a way that instills users with confidence that the new policy will actually work.