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Sequential Decision Problems

State, s

(Discrete / Continuous)

(Fully observable / Partially observable)

Agent

Environment

Action, a

(Discrete / Continuous)



Example: Digital Marketing
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Example: Educational Games




Example: Decision Support Systems




Example: Gridworld

(hln}i,l) D | GD | &)
(1.2) . 3.2) | 4.2)
(L3) | 23 | 33 | “3)
(L4 | @4 | G4

R, =1




Example: Mountain Car
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If you apply an existing method, do
vou have confidence that it will work?



Notation

* 5: State

* a: Action

* S, A;: State, and action at time t
* 1(als) = Pr(4; = alS; = s)

T = (85y,4¢,51, -,51,4A;)

* G(t) €]0,1]

* p(m) = E[G(7)|T ~ 7]



Two Goals:

* High confidence off-policy evaluation (HCOPE)

Historical Data, D

Proposed Policy, T, > ‘ ’ — 1 — § confidence lower bound on p(m,)

Confidence Level,

 Safe Policy Improvement (SPI)

Historical Data, D

Performance baseline, p_ ‘ —p An improved* policy, ™

Confidence Level,

*The probability that r’s performance is below p_ is at most §



High Confidence Off-Policy Evaluation

Historical Data, D

Proposed Policy, 7, ‘ ’ — 1 — § confidence lower bound on p(m,)

Confidence Level,

* Historical data: D = {(t;,m;): T; ~ m;}i=
* Evaluation policy, T,

e Confidence level, ¢

* Compute HCOPE(m,|D, ) such that

Pr(p(m,) = HCOPE(m,.|D,6)) =1—-6



Importance Sampling

 \We would like to estimate
0 = E[f (x)[x~p]

* Monte Carlo estimator:
* Sample X4, ... X,, from p and set:

* Nice properties
 The Monte Carlo estimator is strong&ysconsistent:
6, —0
* The Monte Carlo estimator is unbiased foralln > 1:

E|0,] =0



Importance Sampling

* We would like to estimate
0 = E[f (x)|x~p]
* ... but we can only sample from a distribution, g, not p.

* Assume: if g(x) = 0 then f(x)p(x) = 0. Then:

E[f(X)lX"’p] — ersupp(p) p(x)f(x)
= ZxEsupp(q) p(x)f (x)

q(x)
— ersupp(q) q(x)p(x)f(x)

_ p(x)
— ZxEsupp(q) q(x) q(x)f(x)

=E [Mf (x)‘x~q]

q(x)



Importance Sampling

 \We would like to estimate
0 = E[f (x)[x~p]

* Importance sampling estimator:
* Sample X4, ... X,, from g and set:

n
é . 1 p(Xi)

X;

"onkiq(Xy)
* Nice properties (under mild assumptions)

* The importance sampling estimatorcilssstrongly consistent:

6, —0
 The importance sampling estimator is unbiased foralln > 1:

E|0,] =0



Importance Sampling

PI‘(T|7Te)
tTD Pr(r|nb)

p(m,) = ET~T[ [G(r)] = E G(T)

@ Evaluation Policy, 7,
® Behavior Policy, m,

Probability of trajectory




mportance Sampling for Reinforcement

_ea rn | n g (D. Precup, R. S. Sutton, and S. Dasgupta, 2001)

Pr(z|me)
* p(e) = B [6(D)] = By, [prcd) ()]
. Pr(t|m,) G(T) _ H%:o Pr(S¢|past) Pr(A4¢|past,m,)
Pr(t|mp) H]g=0 Pr(S¢|past) Pr(A4¢|past,my)

%:o Pr(A¢|past,me) G(T)

1 L%:O Pr(At paSt,TCb)

G(7)

::%:O me(At|St) G(T)

. A _ L Te(AelSy)
p(e, T, mp) = [li=o Ttp(At|St) G()




Per-Decision Importance Sampling

* Use importance sampling to estimate each R;.

* Still and unbiased and strongly consistent estimator of p(m,).
* Often has lower variance than ordinary importance sampling.



Historical Data, D

Proposed Policy, T,

‘ ’ — 1 — § confidence lower bound on p(m,)

Confidence Level,

Historical Data, D 3
{ﬁ(ne» Ti‘ 7Ti) }?=1

Proposed Policy, T,

[+~

\ 4

Confidence Level, § » 1 — 6 confidence lower bound on p(1,)




Chernoff-Hoeftding Inequality

* Let X4, ..., X,, be n independent identically distributed random
variables such that:

¢ Xi (S [O, b]
* Then with probability at least 1 — 4:

In (/)

n
1
E[X:] E—ZXi ~b
n i \  2n




N1z

1
,0(7Te) — E[ﬁ(ﬂe:ri:n—i)] = E

l

Il
p—

With probability at least 1 — 0.

n
1
ElX; Z—ZX-—b
=

p(me, Ty, ;) — b\



Historical Data, D

Proposed Policy, T,

‘ ’ — 1 — § confidence lower bound on p(m,)

Confidence Level,

Historical Data, D 3
{ﬁ(ne» Ti‘ 7Ti) }?=1

Proposed Policy, T,

[+~

\ 4

Confidence Level, § » 1 — 6 confidence lower bound on p(1,)




Historical Data, D

Proposed Policy, T,

‘ ’ — 1 — § confidence lower bound on p(m,)

Confidence Level,

Historical Data, D

Proposed Policy, 7, : 2n

_Concentration

Inequality .
Confidence Level, § —»—p 1 — § confidence lower bound on p(1m,)

N




Inelastic wall Goal position —

Example: Mountain Car
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Example: Mountain Car

* Using 100,000 trajectories
* Evaluation policy’s true performance is 0.19 € [0,1].
* We get a 95% confidence lower bound of:

—5,831,000



What went wrong?
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What went wrong?

n
1
ElX; Z—zX-—
=

b ~ 109.4-

Largest observed importance weighted return: 316.



Another problem:

* One behavior policy
* Independent and identically distributed

* More than one behavior policy
* Independent



Conservative Policy Iteration s xakade and. Langtord, 2002

e ~ 1,000,000 trajectories for a
single policy improvement.
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PAC— R I_ (T. Lattimore and M. Hutter, 2012)

e ~ 107 time steps to guarantee
convergence to a near-optimal

policy.
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Thesis

High Confidence Off-Policy Evaluation (HCOPE)
and
Safe Policy Improvement (SPI)
are tractable using a practical amount of data.



Expected Normalized Return
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Historical Data, D
Proposed Policy, T,

Confidence Level,

-

‘ ’ — 1 — § confidence lower bound on p(m,)
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Name Direct Identically Exact or Reference Notes
Dependence Distributed Only Approximate
on b
CH e (%) No Exact (Massart, 2007) None
MPeB e (%) No Exact (Maurer and Pon- Requires all random variables to
til, 2009, Theo- have the same range.
rem 11)
AM None Yes Exact (Anderson, 1969, Depends on the largest observed
Massart, 1990) sample. Loose for distributions
without heavy tails.
BM e Yes Exact (Bubeck et al., None.
| CUT | None | No | Exact | Theorem 23 | None.




Theorem 17 (Chernoff-Hoeffding (CH) Inequality). Let {X;}!'; be n independent
random variables such that Pr(X; € |a;,b;]) = 1, for all © € {1,...,n}, where all

a; € R and b; € R. Then

-1 n ] 1 n hl(l) Z?: (bi_ai)Q




Theorem 18 (Maurer and Pontil’s Empirical Bernstein (MPeB) Inequality). Let

{Xi}, be n independent random wvariables such that Pr(X; € [a,b]) = 1, for all
i €{1,...,n}, where a € R and b € R. Then

( \
D R = D e B

— n  n(n-—1) 2

=gl

Pr| E

1,7=1

A .y
v
safmplf mean sample variance /




Theorem 19 (Anderson and Massart’s (AM) Inequality). Let {X;}!, be n in-
dependent and identically distributed random wvariables such that X; > a, for all

i€ {l,...,n}, where a € R. Then

1=0

e~ ! i [In(2/5)
Pr (E Ei_lei > Zn—Z(ZHl—ZZ-)min{l,ﬁ—k\/ o }) >1—4,

where Zy = a and {Z;}_, are { X}, sorted such that Zy < Zy < ... < Z,.



Extending Maurer’s Inequality

* First Key Idea:
e Generalize: random variables with different ranges.
e Specialize: random variables with the same mean.



Extending Maurer’s Inequality

* Second Key Idea:
* Removing the upper tail only decreases the expected value.
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Theorem 1. Let X;...., X, be n independent real-valued random wvariables such that for each i € {1,...,n}, we have

) )

Pl0 < X;] =1, E[X;] < u, and some threshold value ¢; > 0. Let 6 > 0 and Y; := min{ X;, ¢;}. Then with probability at least

1 — 0, we have

1\ LY, " 1\ Tnin(2/s) "\ m@/e) Y v
n i1 11 i q

> = > — - Y — ] — (> = — =y (=) 3

e (il Ci) =1 1 (il Ci) 3(n—1) (él Ci) n—1 ij=1 (Cé Cj) )

.. _ N
empirical mean term that goes to zero as 1/n as n — oo .
P 9 / term that goes to zero as 1/y/n as n — oo




95% Confidence Lower Bound on Mean
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Threshold Optimization

* Use 209% of the data to optimize c.
* Use 80% to compute lower bound with optimized c.



Given n samples, X := {X;};-, predict what the lower bound would
be if computed from m samples, rather than n.

_— 1 — In(2/6
CUT(X,0d,c,m) = - Z min{X;, c} — 73(25(_/1)) (4.15)

g

W

sample mean of X (after being collapsed)

T

B ln(;/& n(n2_ 5 " Z(mm{X“ c})? (Z min{ X, (‘}) ;

1=1

- -

\ sample variance of X (after being collapsed)



Algorithm 4.11: CUT(Xy,...,X,,0): Uses the CUT inequality to return a
1 — 0 confidence lower bound on E[- > | X;].

Constants: This algorithm has a real-valued hyperparameter, ¢, > 0, which
is the smallest allowed threshold. It should be chosen based on the application.
For HCOPE we use ¢, = 1.

Assumes: The X; are independent random variables such that Pr(X; > 0) =1
foralli e {1,...,n}.

1 Randomly select 1/5 of the X; and place them in a set &, and the remainder

n Xpost;

// Optimize threshold using A
2 ¢* € arg maXee(1,o0] CUT (Xpre, 9, ¢, | Xpost|); // CUT is defined in (4.15)
3 ¢ = max{cupn, ¢*}; // Do not let ¢* become too small

// Compute lower bound using optimized threshold, c¢* and Al
4 return CUT(X,os, 9, ¢, [ Xpost|);




95%
Confidence
lower bound
on the mean

CUT

0.145

Chernoff- Maurer
Hoeffding
—5,831,000 —129,703

0.9

Iog10 Importance Weighted Return

Anderson

0.055

Bubeck et al.

—.046



Digital Marketing Example

* 10 real-valued features

* Two groups of campaigns to choose between
e User interactions limitedto L = 10

e Data collected from a Fortune 20 company

e Data was not used directly.



Example: Digital Marketing
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Example: Digital Marketing
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Example: Digital Marketing
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Example: Digital Marketing
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Example: Digital Marketing
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Example: Digital Marketing

0.95 i

Confidence

4.322 484 4957
Expected Return 2 10-3



We can now evaluate policies proposed by RL algorithms without the
need to execute them and in a way that instills users with confidence
that the new policy will actually work.



