
15-‐889e	
Policy	 Search:	 Gradient	 Methods	
Emma	 Brunskill	
	
	
All	 slides	 from	 David	 Silver	 (with	 EB	 adding	
minor	 modificaFons),	 unless	 otherwise	
noted	

Lecture 7: Policy Gradient

Outline

Introduction

Finite Difference Policy Gradient

Monte-Carlo Policy Gradient

Actor-Critic Policy Gradient 4

3

2

1

Lecture 7: Policy Gradient
Introduction

Policy-Based Reinforcement Learning

In past lectures we approximated the value or action-value
function using parameters θ,

Vθ (s) ≈ V π (s)
Qθ (s , a) ≈ Q π (s , a)

A policy was generated directly from the value function
e.g. using epsilon-greedy

In this lecture we will directly parametrise the policy

πθ (s , a) = P [a | s , θ]

Lecture 7: Policy Gradient
Introduction

Value-Based and Policy-Based RL

Value Based
Learnt Value Function
Implicit policy
(e.g. epsilon-greedy) Value Function Policy

Policy Based
Actor
Critic No Value Function

Learn Policy
Value-Based Policy-Based

Actor-Critic
Learn Value Function
Learn Policy

Lecture 7: Policy Gradient
Introduction

Advantages of Policy-Based RL

Advantages:
Better convergence properties
Effective in high-dimensional or continuous action spaces
Value/Q function may be much more complicated to
represent than optimal policy
- (Q(s,up)=0.9872,Q(s,down)=.5894. action: go up!
Can learn stochastic policies
 - When is this important? When is this not important?

Disadvantages:
Typically converge to a local rather than global optimum
Evaluating a policy is typically inefficient and high variance

Lecture 7: Policy Gradient
Introduction

Rock-Paper-Scissors Example

Example: Rock-Paper-Scissors

Two-player game of rock-paper-scissors
Scissors beats paper
Rock beats scissors
Paper beats rock

Consider policies for iterated rock-paper-scissors
A deterministic policy is easily exploited
A uniform random policy is optimal (i.e. Nash equilibrium)

Lecture 7: Policy Gradient
Introduction

Aliased Gridworld Example

Example: Aliased Gridworld (1)

The agent cannot differentiate the grey states
Consider features of the following form (for all N, E, S, W)

φ(s , a) = 1(wall to N, a = move E)

Compare value-based RL, using an approximate value function
Qθ (s , a) = f (φ(s , a), θ)

To policy-based RL, using a parametrised policy
πθ (s , a) = g (φ(s , a), θ)

Lecture 7: Policy Gradient
Introduction

Aliased Gridworld Example

Example: Aliased Gridworld (2)

Under aliasing, an optimal deterministic policy will either
move W in both grey states (shown by red arrows)
move E in both grey states

Either way, it can get stuck and never reach the money
Value-based RL learns a near-deterministic policy

e.g. greedy or -greedy

So it will traverse the corridor for a long time

Lecture 7: Policy Gradient
Introduction

Aliased Gridworld Example

Example: Aliased Gridworld (3)

An optimal stochastic policy will randomly move E or W in
grey states

πθ (wall to N and S, move E) = 0.5
πθ (wall to N and S, move W) = 0.5

It will reach the goal state in a few steps with high probability
Policy-based RL can learn the optimal stochastic policy

Lecture 7: Policy Gradient
Introduction

Policy Search

Policy Objective Functions

Goal: given policy πθ (s , a) with parameters θ, find best θ
But how do we measure the quality of a policy πθ ?
In episodic environments we can use the start value

θ

In continuing environments we can use the average value

Or the average reward per time-step

where d πθ (s) is stationary distribution of Markov chain for πθ

Lecture 7: Policy Gradient
Introduction

Policy Search

Policy Optimisation

Policy based reinforcement learning is an optimization problem
Find θ that maximises J (θ)
Some approaches do not use gradient

Hill climbing
Simplex / amoeba / Nelder Mead
Genetic algorithms

Greater efficiency often possible using gradient
Gradient descent
Conjugate gradient
Quasi-newton

We focus on gradient descent, many extensions possible
And on methods that exploit sequential structure

Table	 from	 Calandra,	 Seyfarth,	 Peters	 &	 Deisenroth,	 2015	 	 	

Lecture 7: Policy Gradient
Finite Difference Policy Gradient

Lecture 7: Policy Gradient
Finite Difference Policy Gradient

Computing Gradients By Finite Differences

To evaluate policy gradient of πθ (s , a)
For each dimension k ∈ [1, n]

Uses n evaluations to compute policy gradient in n dimensions
à Scales linearly with number of parameters in policy!
Simple, noisy, inefficient - but sometimes effective
Works for arbitrary policies, even if policy is not differentiable

For	 more	 details,	 see	 paper:	 Kohl	 and	 Stone,	 ICRA	 2004	

Lecture 7: Policy Gradient
Finite Difference Policy Gradient

AIBO example

AIBO Walk Policies

Before training
During training
After training

Videos at: http://www.cs.utexas.edu/users/AustinVilla/?
p=research/learned_walk

Lecture 7: Policy Gradient
Monte-Carlo Policy Gradient

Likelihood Ratios

Score Function

We now compute the policy gradient directly
Assume policy πθ is differentiable whenever it is non-zero
and we can compute the gradient ∇θ πθ (s , a)

Likelihood ratios exploit the following identity

The score function is ∇θ log πθ (s , a)

Lecture 7: Policy Gradient
Monte-Carlo Policy Gradient

Likelihood Ratios

Softmax Policy

We will use a softmax policy as a running example
Weight actions using linear combination of features φ(s , a)>θ
Probability of action is proportional to exponentiated weight

πθ (s , a) ∝ e φ(s ,a)T θ

The score function is

∇θ log πθ (s , a) = φ(s , a) − Eπθ [φ(s , ·)]

Lecture 7: Policy Gradient
Monte-Carlo Policy Gradient

Likelihood Ratios

Gaussian Policy

In continuous action spaces, a Gaussian policy is natural
Mean is a linear combination of state features µ(s) = φ(s)>θ
Variance may be fixed σ2 , or can also parametrised
Policy is Gaussian, a ∼ N (µ(s), σ2)
The score function is

(a − µ(s))φ(s)
∇θ log πθ (s , a) = σ2

Lecture 7: Policy Gradient
Monte-Carlo Policy Gradient

Policy Gradient Theorem

One-Step MDPs

Consider a simple class of one-step MDPs
Starting in state s ∼ d (s)
Terminating after one time-step with reward r = Rs ,a

Use likelihood ratios to compute the policy gradient

Lecture 7: Policy Gradient
Monte-Carlo Policy Gradient

Policy Gradient Theorem

Policy Gradient Theorem

The policy gradient theorem generalises the likelihood ratio
approach to multi-step MDPs
Replaces instantaneous reward r with long-term value Q π (s , a)
Policy gradient theorem applies to start state objective,
average reward and average value objective

for any of the policy objective functions
the policy gradient is

Theorem
For any differentiable policy πθ (s , a),

See	 board	 derivaFon.	
Reference:	 hVps://inst.eecs.berkeley.edu/
~cs294-‐40/fa08/scribes/lecture16.pdf	

Benefit	 of	 Likelihood	 RaFo	 Approach:	
	
-‐	 Number	 of	 samples	 need	 to	 approximate	 no	 longer	
depends	 on	 the	 #	 of	 policy	 parameters	
-‐	 Gradient	 calculaFon	 is	 independent	 of	 the	 underlying	
system	 dynamics	 (raFo	 cancels):	 don’t	 need	 to	 know	
dynamics!	

Lecture 7: Policy Gradient
Monte-Carlo Policy Gradient

Policy Gradient Theorem

Monte-Carlo Policy Gradient (REINFORCE)

Update parameters by stochastic gradient ascent
Using policy gradient theorem
Using return vt as an unbiased sample of Q πθ (st , at)

∆θt = α∇θ log πθ (st , at)vt

function REINFORCE
Initialise θ arbitrarily
for each episode {s1 , a1, r2, ..., sT −1, aT −1 , rT } ∼ πθ do

for t = 1 to T − 1 do
θ ← θ + α∇θ log πθ (st , at)vt

end for
end for
return θ

end function

Lecture 7: Policy Gradient
Actor-Critic Policy Gradient

Reducing Variance Using a Critic

Monte-Carlo policy gradient still has high variance
We use a critic to estimate the action-value function,

Qw (s , a) ≈ Q πθ (s , a)

Actor-critic algorithms maintain two sets of parameters
Critic Updates action-value function parameters w
Actor Updates policy parameters θ, in direction

suggested by critic
Actor-critic algorithms follow an approximate policy gradient

∇θ J (θ) ≈ Eπθ [∇θ log πθ (s , a) Qw (s , a)]
∆θ = α∇θ log πθ (s , a) Qw (s , a)

Lecture 7: Policy Gradient
Actor-Critic Policy Gradient

Estimating the Action-Value Function

The critic is solving a familiar problem: policy evaluation
How good is policy πθ for current parameters θ?
Policy evaluation problem. See earlier lectures.

Monte-Carlo policy evaluation
Temporal-Difference learning

Could also use e.g. least-squares policy evaluation

Lecture 7: Policy Gradient
Actor-Critic Policy Gradient

Action-Value Actor-Critic

Simple actor-critic algorithm based on action-value critic
Using linear value fn approx. Qw (s , a) = φ(s , a)>w

Critic Updates w by linear TD(0)
Actor Updates θ by policy gradient

function QAC
Initialise s , θ
Sample a ∼ πθ
for each step do

Sample reward r = Ra ; sample transition s 0 ∼ Pa s s ,·
Sample action a0 ∼ πθ (s 0 , a0)
δ = r + γQw (s 0 , a0) − Qw (s , a)
θ = θ + α∇θ log πθ (s , a)Qw (s , a)
w ← w + βδφ(s , a)
a ← a0 , s ← s 0

end for
end function

Lecture 7: Policy Gradient
Actor-Critic Policy Gradient

Compatible Function Approximation

Bias in Actor-Critic Algorithms

Approximating the policy gradient introduces bias
A biased policy gradient may not find the right solution

e.g. if Qw (s , a) uses aliased features, can we solve gridworld
example?

Luckily, if we choose value function approximation carefully
Then we can avoid introducing any bias
i.e. We can still follow the exact policy gradient

Lecture 7: Policy Gradient
Actor-Critic Policy Gradient

Compatible Function Approximation

Compatible Function Approximation

ε = Eπθ

(Q (s , a) − Qw (s , a))

Theorem (Compatible Function Approximation Theorem)
If the following two conditions are satisfied:

1 Value function approximator is compatible to the policy

∇w Qw (s , a) = ∇θ log πθ (s , a)

2 Value function parameters w minimise the mean-squared error

πθ 2

Then the policy gradient is exact,

∇θ J (θ) = Eπθ [∇θ log πθ (s , a) Qw (s , a)]

Lecture 7: Policy Gradient
Actor-Critic Policy Gradient

Compatible Function Approximation

Proof of Compatible Function Approximation Theorem

If w is chosen to minimise mean-squared error, gradient of ε w.r.t.
w must be zero,

∇w ε = 0
Eπθ

(Q (s , a) − Qw (s , a))∇w Qw (s , a)

= 0 θ

Eπθ

(Q (s , a) − Qw (s , a))∇θ log πθ (s , a)

= 0 θ

Eπθ

Q (s , a)∇θ log πθ (s , a)

= Eπ [Qw (s , a)∇θ log πθ (s , a)] θ

θ

So Qw (s , a) can be substituted directly into the policy gradient,

∇θ J (θ) = Eπθ [∇θ log πθ (s , a)Qw (s , a)]

Lecture 7: Policy Gradient
Actor-Critic Policy Gradient

Advantage Function Critic

Reducing Variance Using a Baseline

We subtract a baseline function B (s) from the policy gradient
This can reduce variance, without changing expectation

Eπθ [∇θ log πθ (s , a)B (s)] = d (s) ∇θ πθ (s , a)B (s)
X X πθ

a s
∈S

=
X

d πθ B (s)∇θ
X
πθ (s , a)

s
∈S

= 0

a∈A

A good baseline is the state value function B (s) = V πθ (s)
So we can rewrite the policy gradient using the advantage
function Aπθ (s , a)

Aπθ (s , a) = Q πθ (s , a) − V πθ (s)
πθ ∇θ J (θ) = Eπθ [∇θ log πθ (s , a) A (s , a)]

Lecture 7: Policy Gradient
Actor-Critic Policy Gradient

Advantage Function Critic

Estimating the Advantage Function (1)

The advantage function can significantly reduce variance of
policy gradient
So the critic should really estimate the advantage function
For example, by estimating both V πθ (s) and Q πθ (s , a)
Using two function approximators and two parameter vectors,

Vv (s) ≈ V πθ (s)
Qw (s , a) ≈ Q πθ (s , a)

A(s , a) = Qw (s , a) − Vv (s)

And updating both value functions by e.g. TD learning

Lecture 7: Policy Gradient
Actor-Critic Policy Gradient

Advantage Function Critic

Estimating the Advantage Function (2)

For the true value function V πθ (s), the TD error δπθ

δπθ = r + γV πθ (s 0) − V πθ (s)

is an unbiased estimate of the advantage function

Eπθ [δ |s , a] = Eπθ

r + γV (s)|s , a

− V (s)

πθ πθ 0 πθ

= Q πθ (s , a) − V πθ (s)
= Aπθ (s , a)

So we can use the TD error to compute the policy gradient

∇θ J (θ) = Eπθ [∇θ log πθ (s , a) δ]

In practice we can use an approximate TD error

δv = r + γVv (s 0) − Vv (s)

This approach only requires one set of critic parameters v

πθ

Lecture 7: Policy Gradient
Actor-Critic Policy Gradient

Natural Policy Gradient

Alternative Policy Gradient Directions

Gradient ascent algorithms can follow any ascent direction
A good ascent direction can significantly speed convergence
Also, a policy can often be reparametrised without changing
action probabilities
For example, increasing score of all actions in a softmax policy
The vanilla gradient is sensitive to these reparametrisations

Lecture 7: Policy Gradient
Actor-Critic Policy Gradient

Natural Policy Gradient

Natural Policy Gradient

The natural policy gradient is parametrisation independent
It finds ascent direction that is closest to vanilla gradient,
when changing policy by a small, fixed amount

where Gθ is the Fisher information matrix

Lecture 7: Policy Gradient
Actor-Critic Policy Gradient

Natural Policy Gradient

Natural Actor-Critic

Using compatible function approximation,

∇w Aw (s , a) = ∇θ log πθ (s , a)

So the natural policy gradient simplifies,

i.e. update actor parameters in direction of critic parameters

Lecture 7: Policy Gradient
Actor-Critic Policy Gradient

Snake example

Natθub ral Actor Critic in Snake Domain (2)

8 8

7 7

6 6

5 5

4 4

3 3

2 2

1 1

0 0

ï1 ï1

ï2 ï2
ï2 ï1 0 1 2 3 4 5

Position x (m)
6 7 8 ï2 ï1 0 1 2 3 4 5 6 7 8

Position x (m)

(a) Before learning (b) After learning

Figure 3: Behaviors of snake-like robot

P
is

iti
on

 y
 (m

)

P
is

iti
on

 y
 (m

)

Lecture 7: Policy Gradient
Actor-Critic Policy Gradient

Snake example

Natural Actor Critic in Snake Domain (3)

1

0.5

0

1

0

-1
5

0

-5
2

1

0
0 2000 4000 6000

Time Steps
8000 10000 12000

A
ct

io
n

a
A

ng
le

 (r

ad
)

co
s(

)

D
is

ta
nc

e
d

(m
)

Lecture 7: Policy Gradient
Actor-Critic Policy Gradient

Snake example

Summary of Policy Gradient Algorithms

The policy gradient has many equivalent forms

REINFORCE
Q Actor-Critic

Advantage Actor-Critic
TD Actor-Critic

Each leads a stochastic gradient ascent algorithm
Critic uses policy evaluation (e.g. MC or TD learning)
to estimate Q π (s , a), Aπ (s , a) or V π (s)

EB:	 Key	 Ideas	
	
•  Gradient	 approaches	 only	 guaranteed	 to	 find	 a	 local	 opFma	
•  Finite-‐difference	 methods	 scale	 with	 #	 of	 parameters	 needed	

to	 represent	 the	 policy,	 but	 don’t	 require	 differenFable	 policy	
•  Likelihood	 raFo	 gradient	 approaches	

•  Cost	 independent	 of	 #	 params	
•  Don’t	 need	 to	 know	 dynamics	 model	
•  Benefit	 from	 using	 a	 baseline	 to	 reduce	 variance	
•  Natural	 gradient	 approaches	 are	 more	 robust	
•  Be	 able	 to	 implement	 at	 least	 1	 gradient	 method	 which	

leverages	 info	 (from	 a	 criFc	 /	 baseline)	

Lecture 7: Policy Gradient
Actor-Critic Policy Gradient

Eligibility Traces

Critics at Different Time-Scales

Critic can estimate value function Vθ (s) from many targets at
different time-scales From last lecture...

For MC, the target is the return vt

∆θ = α(vt − Vθ (s))φ(s)

For TD(0), the target is the TD target r + γV (s 0)
∆θ = α(r + γV (s 0) − Vθ (s))φ(s)

For forward-view TD(λ), the target is the λ-return v λ t
∆θ = α(v λ − Vθ (s))φ(s) t

For backward-view TD(λ), we use eligibility traces
δt = rt +1 + γV (st +1) − V (st)
et = γλet −1 + φ(st)
∆θ = αδt et

Lecture 7: Policy Gradient
Actor-Critic Policy Gradient

Eligibility Traces

Actors at Different Time-Scales

The policy gradient can also be estimated at many time-scales

πθ ∇θ J (θ) = Eπθ [∇θ log πθ (s , a) A (s , a)]

Monte-Carlo policy gradient uses error from complete return

∆θ = α(vt − Vv (st))∇θ log πθ (st , at)

Actor-critic policy gradient uses the one-step TD error

∆θ = α(r + γVv (st +1) − Vv (st))∇θ log πθ (st , at)

Lecture 7: Policy Gradient
Actor-Critic Policy Gradient

Eligibility Traces

Policy Gradient with Eligibility Traces

Just like forward-view TD(λ), we can mix over time-scales

∆θ = α(v λ − Vv (st))∇θ log πθ (st , at) t

where v λ − Vv (st) is a biased estimate of advantage fn t
Like backward-view TD(λ), we can also use eligibility traces

By equivalence with TD(λ), substituting φ(s) = ∇θ log πθ (s , a)

δ = rt +1 + γVv (st +1) − Vv (st)
et +1 = λet + ∇θ log πθ (s , a)
∆θ = αδet

This update can be applied online, to incomplete sequences

