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Lecture  7:  Policy Gradient 
Introduction 

Policy-Based Reinforcement Learning 

In past lectures we approximated the value or action-value 
function using parameters θ, 

Vθ (s ) ≈ V π (s ) 
Qθ (s , a) ≈ Q π (s , a) 

A policy was generated directly from the value function 
e.g. using  epsilon-greedy 

In this lecture we will directly parametrise the policy 

πθ (s , a) = P [a | s , θ] 
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Value-Based and Policy-Based RL 

Value Based 
Learnt Value Function 
Implicit policy 
(e.g.   epsilon-greedy) Value Function Policy 

Policy Based 
Actor 
Critic No Value Function 

Learn Policy 
Value-Based Policy-Based 

Actor-Critic 
Learn Value Function 
Learn Policy 
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Advantages of Policy-Based RL 

Advantages: 
Better convergence properties 
Effective in high-dimensional or continuous action spaces 
Value/Q function may be much more complicated to 
represent than optimal policy  
-  (Q(s,up)=0.9872,Q(s,down)=.5894. action: go up! 
Can learn stochastic policies 
     - When is this important? When is this not important? 

Disadvantages: 
Typically converge to a local rather than global optimum 
Evaluating a policy is typically inefficient and high variance 



Lecture  7:  Policy Gradient 
Introduction 

Rock-Paper-Scissors Example 

Example: Rock-Paper-Scissors 

Two-player game of rock-paper-scissors 
Scissors beats paper 
Rock beats scissors 
Paper beats rock 

Consider policies for iterated rock-paper-scissors 
A deterministic policy is easily exploited 
A uniform random policy is optimal (i.e.  Nash equilibrium) 
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Aliased Gridworld Example 

Example: Aliased Gridworld (1) 

The agent cannot differentiate the grey states 
Consider features of the following form (for all N, E, S, W) 

φ(s , a) = 1(wall to N, a = move E) 

Compare value-based RL, using an approximate value function 
Qθ (s , a) = f (φ(s , a), θ) 

To policy-based RL, using a parametrised policy 
πθ (s , a) = g (φ(s , a), θ) 
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Aliased Gridworld Example 

Example: Aliased Gridworld (2) 

Under aliasing, an optimal deterministic policy will either 
move W in both grey states  (shown by red arrows) 
move E in both grey states 

Either way, it can get stuck and never reach the money 
Value-based RL learns a near-deterministic policy 

e.g. greedy or  -greedy 

So it will traverse the corridor for a long time 
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Aliased Gridworld Example 

Example: Aliased Gridworld (3) 

An optimal stochastic policy will randomly move E or W in 
grey states 

πθ (wall to N and S, move E) = 0.5 
πθ (wall to N and S, move W) = 0.5 

It will reach the goal state  in a few steps with high probability 
Policy-based RL can learn the optimal stochastic policy 
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Policy Search 

Policy Objective Functions 

Goal: given policy πθ (s , a) with parameters θ, find best θ 
But how do we measure the quality of a policy πθ ?  
In episodic environments we can use the start  value 

θ 

In continuing environments we can use the average value 
 

Or the average reward per time-step 

where d πθ (s ) is stationary distribution of Markov chain for πθ 
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Policy Search 

Policy Optimisation 

Policy based reinforcement learning is an optimization problem 
Find θ that  maximises J (θ) 
Some approaches do not use gradient 

Hill climbing 
Simplex / amoeba / Nelder Mead 
Genetic algorithms 

Greater efficiency often possible using gradient 
Gradient descent 
Conjugate gradient 
Quasi-newton 

We focus on gradient descent, many extensions possible 
And on methods that  exploit sequential structure 



Table	  from	  Calandra,	  Seyfarth,	  Peters	  &	  Deisenroth,	  2015	  	  	  
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Finite  Difference Policy Gradient 

Computing Gradients By Finite Differences 

To evaluate policy gradient of πθ (s , a) 
For each dimension k ∈ [1, n] 

 
Uses n evaluations to compute policy gradient in n dimensions 
à Scales linearly with number of parameters in policy! 
Simple, noisy, inefficient - but sometimes effective 
Works for arbitrary policies, even if policy is not differentiable 



For	  more	  details,	  see	  paper:	  Kohl	  and	  Stone,	  ICRA	  2004	  
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AIBO example 

AIBO Walk Policies 

Before training 
During training 
After training 
 
Videos at: http://www.cs.utexas.edu/users/AustinVilla/?
p=research/learned_walk 
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Monte-Carlo Policy Gradient 

Likelihood Ratios 

Score Function 

We now compute the policy gradient directly  
Assume policy πθ  is differentiable whenever it is non-zero  
and we can compute the gradient ∇θ πθ (s , a) 

Likelihood ratios exploit the following identity 

 

 

The score function is ∇θ log πθ (s , a) 
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Monte-Carlo Policy Gradient 

Likelihood Ratios 

Softmax Policy 

We will use a softmax policy as a running example 
Weight actions using linear combination of features φ(s , a)>θ 
Probability of action is proportional to exponentiated weight 

πθ (s , a) ∝ e φ(s ,a)T θ 

The score function is 

∇θ log πθ (s , a) = φ(s , a) − Eπθ [φ(s , ·)] 
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Monte-Carlo Policy Gradient 

Likelihood Ratios 

Gaussian Policy 

In continuous action spaces, a Gaussian policy is natural 
Mean is a linear combination of state  features µ(s ) = φ(s )>θ 
Variance may be fixed σ2 , or can also parametrised 
Policy is Gaussian, a ∼ N (µ(s ), σ2)  
The score function is 

(a  − µ(s) )φ(s) 
∇θ log πθ (s , a) = σ2 
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Monte-Carlo Policy Gradient 

Policy Gradient  Theorem 

One-Step MDPs 

Consider a simple class of one-step MDPs 
Starting in state  s ∼ d (s ) 
Terminating after one time-step with reward r = Rs ,a 

Use likelihood ratios to compute the policy gradient 
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Monte-Carlo Policy Gradient 

Policy Gradient  Theorem 

Policy Gradient Theorem 

The policy gradient theorem generalises the likelihood ratio 
approach to multi-step MDPs 
Replaces instantaneous reward r with long-term value Q π (s , a)  
Policy gradient theorem applies to start  state  objective, 
average reward and average value objective 

for any of the policy objective functions  
the policy gradient is 

Theorem 
For any differentiable policy πθ (s , a), 



See	  board	  derivaFon.	  
Reference:	  hVps://inst.eecs.berkeley.edu/
~cs294-‐40/fa08/scribes/lecture16.pdf	  



Benefit	  of	  Likelihood	  RaFo	  Approach:	  
	  
-‐	  Number	  of	  samples	  need	  to	  approximate	  no	  longer	  
depends	  on	  the	  #	  of	  policy	  parameters	  
-‐	  Gradient	  calculaFon	  is	  independent	  of	  the	  underlying	  
system	  dynamics	  (raFo	  cancels):	  don’t	  need	  to	  know	  
dynamics!	  
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Policy Gradient  Theorem 

Monte-Carlo Policy Gradient (REINFORCE) 

Update parameters by stochastic gradient ascent 
Using policy gradient theorem 
Using return vt  as an unbiased sample of Q πθ (st , at ) 

∆θt  = α∇θ log πθ (st , at )vt 

function REINFORCE 
Initialise θ arbitrarily 
for each episode {s1 , a1, r2, ..., sT −1, aT −1 , rT } ∼ πθ  do 

for t = 1 to T − 1 do 
θ ← θ + α∇θ log πθ (st , at )vt 

end  for 
end  for 
return θ 

end  function 
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Actor-Critic  Policy Gradient 

Reducing Variance Using a Critic 

Monte-Carlo policy gradient still has high variance 
We use a critic to estimate the action-value function, 

Qw (s , a) ≈ Q πθ (s , a) 

Actor-critic algorithms maintain two sets of parameters  
Critic Updates action-value function parameters w  
Actor Updates policy parameters θ, in direction 

suggested by critic 
Actor-critic algorithms follow an approximate policy gradient 

∇θ J (θ) ≈ Eπθ [∇θ log πθ (s , a) Qw (s , a)] 
∆θ = α∇θ log πθ (s , a) Qw (s , a) 
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Estimating the Action-Value Function 

The critic is solving a familiar problem: policy evaluation 
How good is policy πθ  for current parameters θ? 
Policy evaluation problem. See earlier lectures. 

Monte-Carlo policy evaluation 
Temporal-Difference learning 

Could also use e.g. least-squares policy evaluation 
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Action-Value Actor-Critic 

Simple actor-critic algorithm based on action-value critic 
Using linear value fn approx. Qw (s , a) = φ(s , a)>w 

Critic Updates w by linear TD(0) 
Actor Updates θ by policy gradient 

function QAC 
Initialise s , θ 
Sample a ∼ πθ 
for each step do 

Sample reward r = Ra ; sample transition s 0  ∼ Pa s s ,· 
Sample action a0  ∼ πθ (s 0 , a0 ) 
δ = r + γQw (s 0 , a0 ) − Qw (s , a) 
θ = θ + α∇θ log πθ (s , a)Qw (s , a) 
w ← w + βδφ(s , a) 
a ← a0 , s ← s 0 

end  for 
end  function 
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Actor-Critic  Policy Gradient 

Compatible Function Approximation 

Bias in Actor-Critic Algorithms 

Approximating the policy gradient introduces bias 
A biased policy gradient may not find the right solution 

e.g. if Qw (s , a) uses aliased features, can we solve gridworld 
example? 

Luckily, if we choose value function approximation carefully 
Then we can avoid introducing any bias 
i.e. We can still follow the exact policy gradient 
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Compatible Function Approximation 

Compatible Function Approximation 

ε = Eπθ 
  

(Q    (s , a) − Qw (s , a)) 

Theorem (Compatible Function Approximation Theorem) 
If the following two conditions are satisfied: 

1   Value function approximator is compatible to the policy 

∇w Qw (s , a) = ∇θ log πθ (s , a) 

2   Value function parameters w minimise the mean-squared error 

πθ                                                      2   

Then the policy gradient is exact, 

∇θ J (θ) = Eπθ [∇θ log πθ (s , a) Qw (s , a)] 
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Compatible Function Approximation 

Proof of Compatible Function Approximation Theorem 

If w is chosen to minimise mean-squared error, gradient of ε w.r.t. 
w must be zero, 

∇w ε = 0 
Eπθ 

 
(Q  (s , a) − Qw (s , a))∇w Qw (s , a)

   
= 0 θ 

Eπθ 
 
(Q  (s , a) − Qw (s , a))∇θ log πθ (s , a)

   
= 0 θ 

Eπθ 
 
Q  (s , a)∇θ log πθ (s , a)

   
= Eπ  [Qw (s , a)∇θ log πθ (s , a)] θ 

θ 

So Qw (s , a) can be substituted  directly into the policy gradient, 

∇θ J (θ) = Eπθ [∇θ log πθ (s , a)Qw (s , a)] 
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Advantage Function Critic 

Reducing Variance Using a Baseline 

We subtract  a baseline function B (s ) from the policy gradient 
This can reduce variance, without changing expectation 

Eπθ [∇θ log πθ (s , a)B (s )] =     d   (s )       ∇θ πθ (s , a)B (s ) 
X X πθ 

a s 
∈S

= 
X 

d πθ B (s )∇θ 
X 
πθ (s , a) 

s 
∈S

= 0 

a∈A

A good baseline is the state  value function B (s ) = V πθ (s ) 
So we can rewrite the policy gradient using the advantage 
function Aπθ (s , a) 

Aπθ (s , a) = Q πθ (s , a) − V πθ (s ) 
πθ ∇θ J (θ) = Eπθ [∇θ log πθ (s , a) A   (s , a)] 
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Advantage Function Critic 

Estimating the Advantage Function (1) 

The advantage function can significantly reduce variance of 
policy gradient 
So the critic should really estimate the advantage function 
For example, by estimating both V πθ (s ) and Q πθ (s , a) 
Using two function approximators and two parameter vectors, 

Vv (s ) ≈ V πθ (s ) 
Qw (s , a) ≈ Q πθ (s , a) 

A(s , a) = Qw (s , a) − Vv (s ) 

And updating both value functions by e.g. TD learning 
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Actor-Critic  Policy Gradient 

Advantage Function Critic 

Estimating the Advantage Function (2) 

For the true value function V πθ (s ), the TD error δπθ 

δπθ = r + γV πθ (s 0) − V πθ (s ) 

is an unbiased estimate of the advantage function 

Eπθ [δ   |s , a] = Eπθ 
  

r + γV    (s )|s , a
  
− V   (s ) 

πθ πθ       0 πθ 

= Q πθ (s , a) − V πθ (s ) 
= Aπθ (s , a) 

So we can use the TD error to compute the policy gradient 

∇θ J (θ) = Eπθ [∇θ log πθ (s , a) δ   ]  

In practice we can use an approximate TD error 

δv = r + γVv (s 0) − Vv (s ) 

This approach only requires one set of critic parameters v 

πθ 
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Actor-Critic  Policy Gradient 

Natural  Policy Gradient 

Alternative Policy Gradient Directions 

Gradient ascent algorithms can follow any ascent direction 
A good ascent direction can significantly speed convergence 
Also, a policy can often be reparametrised without changing 
action probabilities 
For example, increasing score of all actions in a softmax policy 
The vanilla gradient is sensitive to these reparametrisations 
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Actor-Critic  Policy Gradient 

Natural  Policy Gradient 

Natural Policy Gradient 

The natural policy gradient is parametrisation  independent 
It finds ascent direction that  is closest to vanilla gradient, 
when changing policy by a small, fixed amount 

 
where Gθ is the Fisher information matrix 
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Natural  Policy Gradient 

Natural Actor-Critic 

Using compatible function approximation, 

∇w Aw (s , a) = ∇θ log πθ (s , a) 

So the natural policy gradient simplifies, 

 

i.e. update actor parameters in direction of critic parameters 
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Snake  example 

Natθub  ral Actor Critic in Snake Domain (2) 
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Snake  example 

Natural Actor Critic in Snake Domain (3) 
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Snake  example 

Summary of Policy Gradient Algorithms 

The policy gradient has many equivalent forms 

REINFORCE 
Q Actor-Critic  

Advantage Actor-Critic  
TD Actor-Critic 

Each leads a stochastic gradient ascent algorithm 
Critic uses policy evaluation (e.g.  MC or TD learning) 
to estimate Q π (s , a), Aπ (s , a) or V π (s ) 



EB:	  Key	  Ideas	  
	  
•  Gradient	  approaches	  only	  guaranteed	  to	  find	  a	  local	  opFma	  
•  Finite-‐difference	  methods	  scale	  with	  #	  of	  parameters	  needed	  

to	  represent	  the	  policy,	  but	  don’t	  require	  differenFable	  policy	  
•  Likelihood	  raFo	  gradient	  approaches	  

•  Cost	  independent	  of	  #	  params	  
•  Don’t	  need	  to	  know	  dynamics	  model	  
•  Benefit	  from	  using	  a	  baseline	  to	  reduce	  variance	  
•  Natural	  gradient	  approaches	  are	  more	  robust	  
•  Be	  able	  to	  implement	  at	  least	  1	  gradient	  method	  which	  

leverages	  info	  (from	  a	  criFc	  /	  baseline	  )	  
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Eligibility Traces 

Critics at Different Time-Scales 

Critic can estimate value function Vθ (s ) from many targets at 
different time-scales From last lecture... 

For MC, the target  is the return vt 

∆θ = α(vt  − Vθ (s ))φ(s ) 

For TD(0),  the target  is the TD target  r + γV (s 0 ) 
∆θ = α(r + γV (s 0 ) − Vθ (s ))φ(s ) 

For forward-view TD(λ),  the target  is the λ-return  v λ t 
∆θ = α(v λ − Vθ (s ))φ(s ) t 

For backward-view TD(λ),  we use eligibility traces 
δt  = rt +1 + γV (st +1 ) − V (st ) 
et = γλet −1  + φ(st ) 
∆θ = αδt et 
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Eligibility Traces 

Actors at Different Time-Scales 

The policy gradient can also be estimated at many time-scales 

πθ ∇θ J (θ) = Eπθ [∇θ log πθ (s , a) A   (s , a)] 

Monte-Carlo policy gradient uses error from complete return 

∆θ = α(vt  − Vv (st ))∇θ log πθ (st , at ) 

Actor-critic policy gradient uses the one-step TD error 

∆θ = α(r + γVv (st +1 ) − Vv (st ))∇θ log πθ (st , at ) 
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Eligibility Traces 

Policy Gradient with Eligibility Traces 

Just like forward-view TD(λ),  we can mix over time-scales 

∆θ = α(v λ − Vv (st ))∇θ log πθ (st , at ) t 

where v λ − Vv (st ) is a biased estimate of advantage fn t 
Like backward-view TD(λ),  we can also use eligibility traces 

By equivalence with TD(λ),  substituting φ(s ) = ∇θ log πθ (s , a) 

δ = rt +1 + γVv (st +1 ) − Vv (st ) 
et +1 = λet + ∇θ log πθ (s , a) 
∆θ = αδet 

This update can be applied online, to incomplete sequences 


