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Lecture 7: Policy Gradient

Introduction

Policy-Based Reinforcement Learning

m In past lectures we approximated the value or action-value
function using parameters 0,

Vo(s) = V7 (s)
(29(Saa)z Q“(s,a)

m A policy was generated directly from the value function
m c.g. using epsilon-greedy

m In this lecture we will directly parametrise the policy

mo(s,a) =P[a| s, 0]
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Introduction

Value-Based and Policy-Based RL

m Value Based

m Learnt Value Function
m Implicit policy
(e.g. epsilon-greedy)

Value Function Policy

m Policy Based

= No Value Function | Value-Based
m Learn Policy

Actor
Critic

Policy-Based

m Actor-Critic

m Learn Value Function
m Learn Policy
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Introduction

Advantages of Policy-Based RL

Advantages:
m Better convergence properties
m Effective in high-dimensional or continuous action spaces

m Value/Q function may be much more complicated to
represent than optimal policy

- (Q(s,up)=0.9872,Q(s,down)=.5894. action: go up!
® Can learn stochastic policies

- When 1is this important? When is this not important?

Disadvantages:
m Typically converge to a local rather than global optimum

m Evaluating a policy 1s typically inefficient and high variance
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Rock-Paper-Scissors Example

Example: Rock-Paper-Scissors

m Two-player game of rock-paper-scissors

m Scissors beats paper
m Rock beats scissors

m Paper beats rock
m Consider policies for iterated rock-paper-scissors

m A deterministic policy is easily exploited
m A uniform random policy is optimal (i.e. Nash equilibrium)



Lecture 7: Policy Gradient

Introduction
Aliased Gridworld Example

Example: Aliased Gridworld (1)

5

m The agent cannot differentiate the grey states
m Consider features of the following form (for all N, E, S, W)

¢o(s,a)=1(wall to N, a=move E)
m Compare value-based RL, using an approximate value function
Qo(s,a) =1(o(s , a), 0)
m To policy-based RL, using a parametrised policy
(s, a) =g (o(s , a), 0)
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Introduction
Aliased Gridworld Example

Example: Aliased Gridworld (2)

)

m Under aliasing, an optimal deterministic policy will either

® move W in both grey states (shown by red arrows)
m move E in both grey states

m Either way, 1t can get stuck and never reach the money
m Value-based RL learns a near-deterministic policy

m c.g. greedy or -greedy

m So it will traverse the corridor for a long time
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Introduction
Aliased Gridworld Example

Example: Aliased Gridworld (3)

)

®m An optimal stochastic policy will randomly move E or W in
grey states

mo(wall to N and S, move E) = 0.5
ng(wall to N and S, move W) =0.5

m [t will reach the goal state 1n a few steps with high probability
m Policy-based RL can learn the optimal stochastic policy
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Policy Search

Policy Objective Functions

m Goal: given policy g (s, a) with parameters 0, find best 0
s But how do we measure the quality of a policy mg ?

m In episodic environments we can use the start value
h(0) = V™(s1) = Er, [v1]

®m In continuing environments we can use the average value

Lo (0) =3 d™(s)V™(s)

s

m Or the average reward per time-step

Javr(0) = Z d™(s) Z mo(s,a)Ra

m where d™(s) 1s stationary distribution of Markov chain for mg
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Policy Search

Policy Optimisation

m Policy based reinforcement learning 1s an optimization problem
m Find 0 that maximises J (0)
m Some approaches do not use gradient

m Hill climbing
m Simplex / amoeba / Nelder Mead

m Genetic algorithms

m Greater efficiency often possible using gradient

m Gradient descent
m Conjugate gradient

m Quasi-newton

m We focus on gradient descent, many extensions possible
m And on methods that exploit sequential structure



Order Stochasticity Global Re-usability
Method .. . . :
optimizer assumption optimizer evaluations
Grid Search Zero-order No* Global Limited
Pure Random Search Zero-order No* Global Yes
Gradient-descent family First-order No* Local No
Bayesian Optimization Zero-order Yes Global Yes
Evolutionary Algorithms | Zero-order No* Global No
Particle Swarm Zero-order No* Global No

Table 1: Optimization methods in robotics: Properties of various optimization
methods commonly used for optimization in robotics. As discussed in Section 2.1,
the ideal optimizer for robotic applications should be global, zero-order, and as-
suming stochasticity.

(*) Extensions exist for the stochastic case, but they increase the number of ex-
periments required.

Table from Calandra, Seyfarth, Peters & Deisenroth, 2015
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— Finite Difference Policy Gradient

Policy Gradient

m Let J(6) be any policy objective function

m Policy gradient algorithms search for a
local maximum in J(f) by ascending the
gradient of the policy, w.r.t. parameters 0

AO = aVyJ(6)
m Where VyJ(60) is the policy gradient

[ 9J(0)
064
Vel(0)= |

\ %,/

m and « is a step-size parameter
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Finite Difference Policy Gradient

Computing Gradients By Finite Differences

m To evaluate policy gradient of mg(s, a)
m For each dimensionk & [1,n]

m Estimate kth partial derivative of objective function w.r.t.
m By perturbing 6 by small amount € in kth dimension

0J(8) _ J(O +eux) — J(O)
80, €

where uy is unit vector with 1 in kth component, 0 elsewhere

m Uses n evaluations to compute policy gradient in n dimensions
-> Scales linearly with number of parameters in policy!

m Simple, noisy, inefficient - but sometimes effective

B Works for arbitrary policies, even if policy is not differentiable



Training AIBO to Walk by Finite Difference Policy Gradient

m Goal: learn a fast AIBO walk (useful for Robocup)

m AIBO walk policy is controlled by 12 numbers (elliptical loci)
m Adapt these parameters by finite difference policy gradient

m Evaluate performance of policy by field traversal time

For more details, see paper: Kohl and Stone, ICRA 2004
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Finite Difference Policy Gradient
AIBO example

AIBO Walk Policies

m Before training
m During training

m After training

Videos at: http://www.cs.utexas.edu/users/AustinVilla/?
p=research/learned walk
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Monte-Carlo Policy Gradient
Likelihood Ratios

Score Function

We now compute the policy gradient directly
Assume policy my 1s differentiable whenever 1t 1s non-zero

0
0

= and we can compute the gradient Vgmg (s, a)
m Likelihood ratios exploit the following identity
V97r9(5 ) a)

71’9(5, a)
= my(s,a) Vg log my(s, a)

Vomg(s, a) = my(s, a)

m The score function 1s Vglog mg(s , a)
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Monte-Carlo Policy Gradient
Likelihood Ratios

Softmax Policy

m We will use a softmax policy as a running example
» Weight actions using linear combination of features ¢(s , a)” 0

g Probability of action 1s proportional to exponentiated weight

o (S, a) oC e(P(S )"0

m The score function is

Vologm(s,a) =¢(s,a) = Exy[@(s, )]
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Monte-Carlo Policy Gradient
Likelihood Ratios

Gaussian Policy

In continuous action spaces, a Gaussian policy is natural
Mean is a linear combination of state features p(s) = ¢(s )’ 0

Variance may be fixed o2, or can also parametrised
9

Policy is Gaussian, a ~ N (u(s ), 62)

The score function 1s
(a_— u(s))o(s)

G2

Volog mg(s,a) =
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Monte-Carlo Policy Gradient

Policy Gradient Theorem

One-Step MDPs

m Consider a simple class of one-step MDPs

m Starting in state s ~ d (s )
m Terminating after one time-step with reward r =Rq ,

m Use likelihood ratios to compute the policy gradient

J(9) — ]Eﬂo [r]

— Z d(s) Z 7!'9(5, a)Rs,a

seS ac A
VoJ(0) = Z d(s) Z my(s,a)Vglog my(s, a)Rs,a
sES ac A

— ]E'iro [Ve |Og 7!'9(5, a)r]
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Monte-Carlo Policy Gradient

Policy Gradient Theorem

Policy Gradient Theorem

m The policy gradient theorem generalises the likelithood ratio
approach to multi-step MDPs

m Replaces instantaneous reward r with long-term value Q ™ (s, a)

m Policy gradient theorem applies to start state objective,
average reward and average value objective

Theorem
For any differentiable policy my (s , a),

for any of the policy objective functions J = Ji, Jor, or ﬁJaW,
the policy gradient 1s

VoJ(0) = Er, [Vglog my(s,a) Q™ (s, a)]



See board derivation.
Reference: https://inst.eecs.berkeley.edu/
~cs294-40/fa08/scribes/lecturel6.pdf



Benefit of Likelihood Ratio Approach:

- Number of samples need to approximate no longer

depends on the # of policy parameters
- Gradient calculation is independent of the underlying

system dynamics (ratio cancels): don’t need to know
dynamics!
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Monte-Carlo Policy Gradient

Policy Gradient Theorem

Monte-Carlo Policy Gradient (REINFORCE)

m Update parameters by stochastic gradient ascent
m Using policy gradient theorem

m Using return v; as an unbiased sample of Q™ (s, a;)

AB; = oV g log mg (s, at)ve

function REINFORCE
Initialise O arbitrarily

for each episode {sy, ai, 12, ..., ST—1, a1 —1, T} ~ T doO
fort=1toT — 1do
0 <— 0+aVglogmy(st,ai)vy
end for
end for
return 0

end function
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— Monte-Carlo Policy Gradient
L Policy Gradient Theorem

Puck World Example

20 |
25 |
.30 +
-35
40 |

Average Reward

-50 |

- oo 0 3e+07  6e+07  9e+07 1.2e+08 1.5e+08
t‘)’ lterations

m Continuous actions exert small force on puck
m Puck is rewarded for getting close to target
m Target location is reset every 30 seconds

m Policy is trained using variant of Monte-Carlo policy gradient
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Actor-Critic Policy Gradient

Reducing Variance Using a Critic

m Monte-Carlo policy gradient still has high variance
m We use a critic to estimate the action-value function,

QW(S > a) =~ Q TEG(S > a)

m Actor-critic algorithms maintain two sets of parameters
Critic Updates action-value function parameters w
Actor Updates policy parameters 0, in direction
suggested by critic
m Actor-critic algorithms follow an approximate policy gradient

VelJ(0) = Eq[Velog mo(s,a) Qw(s,a)]
AO =aVglogmy(s,a) Qw(s,a)
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Actor-Critic Policy Gradient

Estimating the Action-Value Function

m The critic 1s solving a familiar problem: policy evaluation
s How good 1s policy ng for current parameters 07

m Policy evaluation problem. See earlier lectures.

m Monte-Carlo policy evaluation
m Temporal-Difference learning

m Could also use e.g. least-squares policy evaluation
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Actor-Critic Policy Gradient

Action-Value Actor-Critic

m Simple actor-critic algorithm based on action-value critic
m Using linear value fn approx. Qw(s, a) = ¢(s, a)’w

Critic Updates w by linear TD(0)
Actor Updates 0 by policy gradient

function QAC
Initialise s , O
Sample a ~ my
for each step do
Sample reward r = R? ; sample transition s ~ P2
Sample action a’ ~ mg(s?, a’)
0 =T +YQW(509 aO) o QW(Sa a)
0=0+aVglogmy(s,a)Qw(s,a)
w <— w + Boop(s , a)
a<ad, s< g0
end for
end function
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Actor-Critic Policy Gradient

Compatible Function Approximation

Bias in Actor-Critic Algorithms

m Approximating the policy gradient introduces bias
m A biased policy gradient may not find the right solution

m c.g 1f Qy(s,a) uses aliased features, can we solve gridworld
example?

m Luckily, if we choose value function approximation carefully
m Then we can avoid introducing any bias

m 1.c. We can still follow the exact policy gradient
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Actor-Critic Policy Gradient

Compatible Function Approximation

Compatible Function Approximation

Theorem (Compatible Function Approximation Theorem)

If the following two conditions are satisfied:
Value function approximator is compatible to the policy

VwQw(s,a) = Vglogmy(s, a)
B Value function parameters w minimise the mean-squared error

€= ]E"TO [(Q”TG(S, a) o QW(S) a))2]

Then the policy gradient is exact,

VoJ(0) = Er, [Vglog mg(s, a) Qu(s,a)]
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Actor-Critic Policy Gradient

Compatible Function Approximation

Proof of Compatible Function Approximation Theorem

If w 1s chosen to minimise mean-squared error, gradient of € w.r.t.

w must be zero,

Vwe=0

Ex, [(Q°(s,a) — Qu(s,a))VwQu(s, a)]
Er, [(Qg(s,a) — Qw(s,a))Vg log my(s, a):

E., [Q%(s,a)Vqlogmy(s, a)]

=0
=0
=E,, [Qu(s,;a)Vglogmy(s, a)]

So Qu (s, a) can be substituted directly into the policy gradient,

VoJ(0) = E,, [Vglogmy(s, a)Qu(s, a)]
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Actor-Critic Policy Gradient

Advantage Function Critic

Reducing Variance Using a Baseline

m We subtract a baseline function B(s) from the policy gradient
m This can reduce variance, without changing expectation

Er, [Vologmo(s,a)B(s)] = > d™(s) ) Voms(s, a)B(s)

sES a

= Z d™B(s)Vy Z mo(s, a)
seS acA

=0

m A good baseline is the state value function B(s) = V™(s)
m So we can rewrite the policy gradient using the advantage
function A™ (s, a)

A"(s,a) = Q™ (s,a) — V"(s)
VoJ(0) = Er, [Vglogmy(s,a) A™ (s, a)]
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Advantage Function Critic

Estimating the Advantage Function (1)

m The advantage function can significantly reduce variance of
policy gradient

m So the critic should really estimate the advantage function
m For example, by estimating both V ™ (s ) and Q ™ (s, a)

m Using two function approximators and two parameter vectors,

Vy(s) = V™(s)
QW(S > a) =~ Q 7te(s ’ a)
A(s,a)=Qw(s,a) = Vy(s)

m And updating both value functions by e.g. TD learning
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Actor-Critic Policy Gradient

Advantage Function Critic

Estimating the Advantage Function (2)

m For the true value function V™ (s), the TD error 6™
5% =1 +yV T (sV) — V7(s)
® 1s an unbiased estimate of the advantage function

Ex[5 "'s,a]=Ex r+7V (s)3,a — VHs)

=Q™(s,a) = V™(s)
=A™ (s, a)

m So we can use the TD error to compute the policy gradient
Vol 0)=E;[Velogmy(s,a)om
m In practice we can use an approximate TD error
Sy =1+ yVy(sY) — Vy(s)

m This approach only requires one set of critic parameters v
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Actor-Critic Policy Gradient
Natural Policy Gradient

Alternative Policy Gradient Directions

m Gradient ascent algorithms can follow any ascent direction
m A good ascent direction can significantly speed convergence

m Also, a policy can often be reparametrised without changing
action probabilities

m For example, increasing score of all actions in a softmax policy

m The vanilla gradient is sensitive to these reparametrisations
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Actor-Critic Policy Gradient
Natural Policy Gradient

Natural Policy Gradient

(a)‘Vanilla’ policy gradients  (b) Natural policy gradients
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Controller gain 6,=k Controller gain 6,=k

m The natural policy gradient 1s parametrisation independent
m It finds ascent direction that is closest to vanilla gradient,
when changing policy by a small, fixed amount

Viotng(s, a) = G, *Veme(s, a)

m where Gy 1s the Fisher information matrix

Gy = En, [Vo log my(s,a) Ve log mg(s, a) T]
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Natural Policy Gradient

Natural Actor-Critic

m Using compatible function approximation,

VwAw(s,a) = Vglog mg (s, a)
m So the natural policy gradient simplifies,
VoJ(0) = Er, [Vglogmy(s,a)A™ (s, a)]
=Er, [Vg log m9(s, a)Vg log my(s, a) Tw]

= Ggw
Vi J(0)=w

m 1.€. update actor parameters in direction of critic parameters
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— Actor-Critic Policy Gradient

L Snake exam ple

Natural Actor Critic in Snake Domain

Position y
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Position x

(a) Crank course (b) Sensor setting
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Snake example

Natural Actor Critic in Snake Domain (2)
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(a) Before learning (b) After learning

Figure 3: Behaviors of snake-like robot
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Snake example

Natural Actor Critic in Snake Domain (3)
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Snake example

Summary of Policy Gradient Algorithms

m The policy gradient has many equivalent forms

VoJ(0) = Er, [Volog me(s, a) v¢] REINFORCE
= Er, [Vologmg(s,a) Q" (s, a)] Q Actor-Critic
= Er, [Vologme(s,a) A”(s,a)] Advantage Actor-Critic
=E,, [Vglogmg(s,a) d] TD Actor-Critic

G, 'VoJ(0) = w Natural Actor-Critic

m Each leads a stochastic gradient ascent algorithm

m Critic uses policy evaluation (e.g. MC or TD learning)
to estimate Q™(s,a), A™(s,a) or V7 (s)



EB: Key Ideas

e Gradient approaches only guaranteed to find a local optima
e Finite-difference methods scale with # of parameters needed
to represent the policy, but don’t require differentiable policy

e Likelihood ratio gradient approaches

e Costindependent of # params

e Don’t need to know dynamics model

e Benefit from using a baseline to reduce variance

e Natural gradient approaches are more robust

e Be able to implement at least 1 gradient method which

leverages info (from a critic / baseline )
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Actor-Critic Policy Gradient
Eligibility Traces

Critics at Different Time-Scales

m Critic can estimate value function Vg(s) from many targets at
different time-scales From last lecture...
m For MC, the target is the return vy

AD = o(vi — Vo (s ))o(s)
m For TD(0), the target is the TD target r+yV (s 9)
Ab=a(r +yV (s”) = Vo(s))o(s )

A

m For forward-view TD(A), the target is the A-return v *

AB =a(v "= Ve (s))o(s )

m For backward-view TD(A), we use eligibility traces
Ot =It+1 T YV (S¢+1) — V (5t)
ec="YyAe—1 + Q(st)

AO = o e
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Actor-Critic Policy Gradient
Eligibility Traces

Actors at Different Time-Scales

m The policy gradient can also be estimated at many time-scales
Vol(0) =En[Velogmg(s,a) A" (s, a)]
m Monte-Carlo policy gradient uses error from complete return

AO =a(vi — Vy(st)) Ve log mg(st, at)

m Actor-critic policy gradient uses the one-step TD error

AO =a(r +yVy(si+1) — Vy(st)) Ve log mg(st, at)



Lecture 7: Policy Gradient
Actor-Critic Policy Gradient
Eligibility Traces

Policy Gradient with Eligibility Traces

m Just like forward-view TD(A), we can mix over time-scales
A8 =a(v— Vy(s)) Ve log mg (s, ar)

m where v}* — Vy(s¢) is a biased estimate of advantage fn

m Like backward-view TD(A), we can also use eligibility traces
®m By equivalence with TD(A), substituting ¢(s) = Vglogmg (s, a)

O=ri+1t 'YVV(SHI) — Vy (St)
et+1 = Aet + Vglog mg (s, a)
A = a0ey

m This update can be applied online, to incomplete sequences



