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Sample Efficient RL

• Objectives
• Probably Approximately Correct
• Minimizing regret
• Bayes-optimal RL

• Today: Model-based data efficient RL
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Model-based Sample Efficient RL

• What objective is algorithm optimizing?
• Using function approximation for the model
• Planning with complex models 
• Computational constraints
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Model Based Approaches

• Linear representations are fairly limited
• Lots of powerful function approximators, e.g.

• Gaussian processes
• Random forests
• Neural networks
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Exploration / Exploitation when Using 
Function Approximation for Models

• When learning a single policy from a batch of 
data, we didn’t have to address exploration 
vs exploitation 

• Now we are doing online RL
• If using function approximator to represent 

the transition/reward models, how should we 
address exploration/exploitation?
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s’ = Ḫ+ s

Figure adjusted from Wilson et al. 
JMLR 2014

s

Ḫ

Gaussian Process to Model MDP
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s’ = Ḫ+ s

Figure adjusted from Wilson et al. 
JMLR 2014

s

Ḫ

Gaussian Process: 
Explicit Representation of Uncertainty Over Model Parameters
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Slide from Ghahramani
http://www.eurandom.tue.nl/events/workshops/2010/YESIV/Prog-
Abstr_files/Ghahramani-lecture2.pdf
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Can Exploit Structure in Dynamics

Slide modified from Jung & Stone 
ECML 2010
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Gaussian

Processes for 

Sample Efficient 

Reinforcement 

Learning with 

RMAX-like 

Exploration

(Jung & Stone,

 ECML 2010)

Slide modified from Jung & Stone 
ECML 2010
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Model Learning

Slide modified from Jung & Stone 
ECML 2010
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Planning

Slide modified from Jung & Stone 
ECML 2010
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Computational Cost

This is expensive!

Hard to scale to 
large dim state 

spaces

Slide modified from Jung & Stone 
ECML 2010
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Simulation Experiments

Slide modified from Jung & Stone 
ECML 2010
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Slide modified from Jung & Stone 
ECML 2010
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Slide modified from Jung & Stone 
ECML 2010

GP model with no exploration doing best
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GP model + no exploration also best in larger domains
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Summary

• GP models can be 
very useful for 
quickly learning a 
good dynamics 
model, especially if 
there’s structure in 
the domain

• Planning can be 
computationally 
expensive

• In domains 
considered here, 
leveraging GP’s 
representation of 
model parameter 
uncertainty not 
needed

Slide modified from Jung & Stone 
ECML 2010
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Model Based Approaches

• Linear representations are fairly limited
• Lots of powerful function approximators, e.g.

• Gaussian processes
• Random forests
• Neural networks
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TEXPLORE

Slide modified from Todd Hester
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Slide modified from Todd Hester
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Decision Trees for MDP Model

Slide modified from Todd Hester
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• Assume actions have similar effect across 
states

• srel = Ḫ = s’-s
• Ḫ in some cases may be independent of s 

(or be shared by many states)
• Brunskill et al. 2008, Leffler et al. 2007, 

Jong & Stone 2007

Assumption: Relative Effects
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Using Decision Trees for Dynamics Model 

Slide modified from Todd Hester
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Representing Uncertainty Over 
Model: Random Forest

Slide modified from Todd Hester
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Exploration/Exploitation with 
Random Forest Model of MDP

Slide modified from Todd Hester
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TEXPLORE 
Planning Using Random Forest of 

Models

• Essentially, compute an average model (from 
random forest)

• Then use that for planning
• Some computational advantages too  

Equation from Hester & Stone JMLR 
2013
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MCTS for TEXPLORE Planning

Slide modified from Todd Hester
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TEXPLORE: Planning using UCT

Figure from Hester & Stone JMLR 
2013
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TEXPLORE: Reuse Tree Across Time Steps

Figure from Hester & Stone JMLR 
2013
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TEXPLORE: UCT + lambda-returns

Figure from Hester & Stone JMLR 
2013
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TEXPLORE

Slide modified from Todd Hester
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Simulations on Car Driving 

Slide modified from Todd Hester
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Slide modified from Todd Hester
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Comparing to Other Approaches

Slide modified from Todd Hester
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Slide modified from Todd Hester
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Fuel 
World

Slide modified from Todd Hester
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Slide modified from Todd Hester
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Slide modified from Todd Hester
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Model Accuracy

Slide modified from Todd Hester
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Does it work on real car?

Slide modified from Todd Hester
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TEXPLORE

• Uses random forests 
to represent MDP 
dynamics & rewards

• Uses MCTS for 
planning

• In domains 
presented, little 
explicit exploration 
needed

Slide modified from Todd Hester
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Summary: Model-based Sample 
Efficient RL

• What objective is algorithm optimizing?
• Today, empirical performance. No formal guarantees 

• Using function approximation for the model can greatly speed 
learning (can exploit structure in dynamics model)

• Exploration / exploitation
• Do we need to explicitly explore? 
• We’ll always explore things that look promising
• In results saw today, didn’t need much explicit exploration

• Planning with complex models 
• Can be computationally prohibitive
• Approximate approaches, like MCTS, useful


