Model-based Sample Efficient RL

Emma Brunskill 15-889e Fall 2015

Sample Efficient RL

- · Objectives
 - Probably Approximately Correct
 - Minimizing regret
 - Bayes-optimal RL

Today: Model-based data efficient RL

Model-based Sample Efficient RL

- · What objective is algorithm optimizing?
- Using function approximation for the model
- · Planning with complex models
- · Computational constraints

Model Based Approaches

- · Linear representations are fairly limited
- · Lots of powerful function approximators, e.g.
 - Gaussian processes
 - Random forests
 - Neural networks

Exploration / Exploitation when Using Function Approximation for Models

- When learning a single policy from a batch of data, we didn't have to address exploration vs exploitation
- Now we are doing online RL
- If using function approximator to represent the transition/reward models, how should we address exploration/exploitation?

Gaussian Process to Model MDP

s' =**⊿**+ s

Figure adjusted from Wilson et al. JMLR 2014

Gaussian Process:

Explicit Representation of Uncertainty Over Model Parameters

s' =**⊿**+ s

Figure adjusted from Wilson et al. JMLR 2014

Feature Selection using ARD in GPs

Problem: Often there are *many* possible inputs that might be relevant to predicting a particular output. We need algorithms that automatically decide which inputs are relevant.

Automatic Relevance Determination:

Consider this covariance function:

$$\mathbf{K}_{nn'} = v \exp \left[-rac{1}{2} \sum_{d=1}^{D} \left(rac{x_n^{(d)} - x_{n'}^{(d)}}{r_d}
ight)^2
ight]$$

The parameter r_d is the length scale of the function along input dimension d.

As $r_d \to \infty$ the function f varies less and less as a function of $x^{(d)}$, that is, the dth dimension becomes *irrelevant*.

Given data, by learning the lengthscales (r_1, \ldots, r_D) it is possible to do automatic feature selection.

Slide from Ghahramani

http://www.eurandom.tue.nl/events/workshops/2010/YESIV/Prog-Abstr_files/Ghahramani-lecture2.pdf

Can Exploit Structure in Dynamics

After observing 20 transitions, we plot how certain each model is about its predictions for "right":

 10×10 grid

GP with ARD kernel

GP+ARD detects that the y-coordinate is irrelevant \implies reduced exploration \implies faster learning.

Slide modified from Jung & Stone ECML 2010

Slide modified from Jung & Stone ECML 2010

General idea:

• Have to learn *D*-dim transition function $\mathbf{x}' = f(\mathbf{x}, a)$.

To do this, we combine multiple univariate GPs.

Training:

- Data consists of transitions $\{(\mathbf{x}_t, a_t, \mathbf{x}'_t)\}_{t=1}^N$, where $\mathbf{x}'_t = f(\mathbf{x}_t, a_t)$ and $\mathbf{x}_t, \mathbf{x}'_t \in \mathbb{R}^D$.
- Train independently one GP for each state variable, action.
 - \mathcal{GP}_{ij} models i-th state variable under action a=j
 - \mathcal{GP}_{ij} has hyperparameters $\vec{\theta}_{ij}$ found from minimizing marginal likelihood

$$\min_{\vec{\theta}_{ij}} \mathcal{L}(\vec{\theta}_{ij}) = -\frac{1}{2} \log \det(\mathbf{K}_{\vec{\theta}_{ij}} + \sigma \mathbf{I}) - \frac{1}{2} \mathbf{y}^{\mathsf{T}} (\mathbf{K}_{\vec{\theta}_{ij}} + \sigma \mathbf{I})^{-1} \mathbf{y} - \frac{n}{2} \log 2\pi$$

- Once trained, \mathcal{GP}_{ij} produces for any state \mathbf{x}^*
 - Prediction $\tilde{f}_i(\mathbf{x}^*, a = j) := \mathbf{k}_{\vec{\theta}_{ij}}(\mathbf{x}^*)^{\mathsf{T}}(\mathbf{K}_{\vec{\theta}_{ij}} + \sigma \mathbf{I})^{-1}\mathbf{y}.$
 - $\textbf{Uncertainty} \ \tilde{c}_i(\mathbf{x}^*, a = j) := k_{\vec{\theta}_{ij}}(\mathbf{x}^*, \mathbf{x}^*) \mathbf{k}_{\vec{\theta}_{ij}}(\mathbf{x}^*)^{\mathsf{T}} (\mathbf{K}_{\vec{\theta}_{ij}} + \sigma \mathbf{I})^{-1} \mathbf{k}_{\vec{\theta}_{ij}}(\mathbf{x}^*).$

Slide modified from Jung & Stone ECML 2010

Remember:

- Input to the planner is the current model.
- **9** The current model "produces" for any (x, a)
 - $ilde{f}(x,a)$, the predicted successor state
 - $\tilde{c}(x,a)$, the associated uncertainty (0=certain, 1=uncertain)

General idea:

- Value iteration on grid Γ_h + multidimensional interpolation.
- Instead of true transition function, simulate transitions with current model.
- As in RMAX integrate "exploration" into value updates. (Nouri & Littman 2009)

Algorithm: iterate k = 1, 2, ...: \forall node $\xi_i \in \Gamma_h$, action a

$$Q_{k+1}(\xi_i, a) = (1 - \tilde{c}(\xi_i, a)) \cdot \left[\underbrace{r(\xi_i, a)}_{\text{given a priori}} + \gamma \max_{a'} \underbrace{Q_k(\tilde{f}(\xi_i, a), a')}_{\text{interpolation in } \mathbb{R}^D}\right] + \tilde{c}(\xi_i, a) \cdot V_{\text{MAX}}$$

Note:

- If $\tilde{c}(\xi_i, a) \approx 0$, no exploration.
- If $\tilde{c}(\xi_i, a) \approx 1$, state is artificially made more attractive \implies exploration.

Slide modified from Jung & Stone ECML 2010

Carnegie Mellon University

Planning

Remember:

- Input to the planner is the current model.
- The current model "produces" for any (x,a)
 - $ilde{f}(x,a)$, the predicted successor state
 - $\tilde{c}(x,a)$, the associated uncertainty (0=certain, 1=uncertain)

General idea:

9 Value iteration on grid Γ_h + multidimensional interpolation.

This is expensive! Hard to scale to large dim state spaces

Computational Cost

- Instead of true transition function, simulate transitions with current model.
- As in RMAX integrate "exploration" into value updates. (Nouri & Littman 2009)

Algorithm: iterate k = 1, 2, ... \forall node $\xi_i \in \Gamma_h$, action a

$$Q_{k+1}(\xi_i, a) = (1 - \tilde{c}(\xi_i, a)) \cdot \left[\underbrace{r(\xi_i, a)}_{\text{given a priori}} + \gamma \max_{a'} \underbrace{Q_k(\tilde{f}(\xi_i, a), a')}_{\text{interpolation in } \mathbb{R}^D}\right] + \tilde{c}(\xi_i, a) \cdot V_{\text{MAX}}$$

Note:

- If $\tilde{c}(\xi_i, a) \approx 0$, no exploration.
- If $\tilde{c}(\xi_i, a) \approx 1$, state is artificially made more attractive \implies exploration.

Slide modified from Jung & Stone ECML 2010

Simulation Experiments

Domains:

- Mountain car (2D state space)
- Inverted pendulum (2D state space)
- Bicycle balancing (4D state space)
- Acrobot (swing-up) (4D state space)

Contestants:

- **9** Sarsa (λ) + tilecoding
- GP-RMAXexp (exploration where uncertainty is determinded from GP)
- GP-RMAXnoexp (no exploration)
- GP-RMAXgrid (exploration where uncertainty is determined from grid)

Slide modified from Jung & Stone ECML 2010

Slide modified from Jung & Stone ECML 2010

GP model with **no exploration** doing best

Slide modified from Jung & Stone ECML 2010

GP model + no exploration also best in larger domains

Summary

- GP models can be very useful for quickly learning a good dynamics model, especially if there's structure in the domain
- Planning can be computationally expensive
- In domains
 considered here,
 leveraging GP's
 representation of
 model parameter
 uncertainty not
 needed

Slide modified from Jung & Stone ECML 2010

Model Based Approaches

- · Linear representations are fairly limited
- · Lots of powerful function approximators, e.g.
 - Gaussian processes
 - Random forests
 - Neural networks

TEXPLORE

- Model generalization for sample efficiency
- Handles continuous state
- Handles actuator delays
- Selects actions continually in real-time

Algorithm	Citation	Sample	Real	Continuous	Delay
		Efficient	Time		
R-MAX	Brafman and Tennenholtz, 2001	Yes	No	No	No
Q-LEARNING	Watkins, 1989	No	Yes	No	No
with F.A.	Sutton and Barto, 1998	No	Yes	Yes	No
SARSA	Rummery and Niranjan, 1994	No	Yes	No	No
PILCO	Deisenroth and Rasmussen, 2011	Yes	No	Yes	No
NAC	Peters and Schaal 2008	Yes	No	Yes	No
BOSS	Asmuth et al., 2009	Yes	No	No	No
Bayesian DP	Strens, 2000	Yes	No	No	No
MBBE	Dearden et al., 2009	Yes	No	No	No
SPITI	Degris et al., 2006	Yes	No	No	No
MBS	Walsh et al., 2009	Yes	No	No	Yes
U-TREE	McCallum, 1996	Yes	No	No	Yes
DYNA	Sutton, 1990	Yes	Yes	No	No
DYNA-2	Silver et al., 2008	Yes	Yes	Yes	No
KWIK-LR	Strehl and Littman, 2007	Yes	No	Partial	No
FITTED R-MAX	Jong and Stone, 2007	Yes	No	Yes	No
DRE	Nouri and Littman 2010	Yes	No	Yes	No
TEXPLORE	This thesis	Yes	Yes	Yes	Yes

Slide modified from Todd Hester

Decision Trees for MDP Model

- Incremental and fast
- Generalize broadly at first, refine over time
- Split state space into regions with similar dynamics
- Good at selecting relevant state features to split on

Assumption: Relative Effects

- Assume actions have similar effect across states
- $\cdot s^{rel} = \Delta = s' s$
- Δ in some cases may be independent of s (or be shared by many states)
 - Brunskill et al. 2008, Leffler et al. 2007, Jong & Stone 2007

Using Decision Trees for Dynamics Model

- Build one tree to predict each state feature and reward
- Combine their predictions: $P(s^{rel}|s, a) = \prod_{i=0}^{n} P(s_i^{rel}|s, a)$
- Update trees on-line during learning

Representing Uncertainty Over Model: Random Forest

- Create a random forest of *m* different decision trees [Breiman 2001]
- Each tree is trained on a random subset of the agent's experiences
- Each tree represents a hypothesis of the true dynamics of the domain
- How best to use these different hypotheses?

Slide modified from Todd Hester

Exploration/Exploitation with Random Forest Model of MDP

Bayesian Approaches

- BOSS: Plan over most optimistic model at each action
- MBBE: Solve each model and use distribution of q-values

TEXPLORE

- Desiderata: Explore less, be greedier
- Plan on average of the predicted distributions
- Balance models that are optimistic with ones that are pessimistic

TEXPLORE Planning Using Random Forest of Models

$$Q(s,a) = \frac{1}{m} \sum_{i=1}^{m} R_i(s,a) + \gamma \frac{1}{m} \sum_{i=1}^{m} \sum_{s'} P_i(s'|s,a) \max_{a'} Q(s',a')$$

- Essentially, compute an average model (from random forest)
- Then use that for planning
- Some computational advantages too

Equation from Hester & Stone JMLR 2013

MCTS for TEXPLORE Planning

- Simulate trajectory from current state using model (rollout)
- Use upper confidence bounds to select actions (UCT [Kocsis and Szepesvári 2006])
- Focus computation on states the agent is most likely to visit
- Anytime—more rollouts, more accurate value estimates
- Update value function at each state in rollout

Slide modified from Todd Hester

TEXPLORE: Planning using UCT

procedure PLAN-POLICY(M, s)UCT-RESET() while time available do UCT-SEARCH(M, s, 0)end while end procedure \triangleright Approximate planning from state s using model M

TEXPLORE: Reuse Tree Across Time Steps

```
procedure PLAN-POLICY(M, s)
                                        \triangleright Approximate planning from state s using model M
   UCT-RESET()
   while time available do
       UCT-SEARCH(M, s, 0)
   end while
end procedure
                                              ▷ Lower confidence in v.f. since model changed
procedure UCT-RESET()
    for all s_{disc} \in S_{disc} do
                                                                     For all discretized states
       if c(s_{disc}) > resetCount \cdot |A| then
           c(s_{disc}) \leftarrow resetCount \cdot |A|
                                                                       \triangleright resetCount per action
        end if
       for all a \in A do
           if c(s_{disc}, a) > resetCount then
               c(s_{disc}, a) \leftarrow resetCount
           end if
       end for
    end for
end procedure
```


TEXPLORE: UCT + lambda-returns

 \triangleright Approximate planning from state s using model M

procedure PLAN-POLICY(M, s)UCT-RESET() while time available do UCT-SEARCH(M, s, 0)end while end procedure

procedure UCT-SEARCH(M, s, d) \triangleright Rollout from state s at depth d using model M if TERMINAL or d = maxDepth then return 0 end if $s_{disc} \leftarrow \text{DISCRETIZE}(s, nBins, minVals, maxVals) \triangleright \text{Get discretized version of state } s$ $a \leftarrow \operatorname{argmax}_{a'} \left(Q(s_{disc}, a') + 2 \cdot \frac{r_{max} - r_{min}}{1 - \gamma} \cdot \sqrt{\frac{\log c(s_{disc})}{c(s_{disc}, a')}} \right)$ \triangleright Note: Ties broken randomly $(s', r) \leftarrow M \Rightarrow \text{QUERY-MODEL}(s, a)$ \triangleright Algorithm 4 $sampleReturn \leftarrow r + \gamma \text{UCT-SEARCH}(M, s', d+1)$ \triangleright Continue rollout from state s' $c(s_{disc}) \leftarrow c(s_{disc}) + 1$ \triangleright Update counts $c(s_{disc}, a) \leftarrow c(s_{disc}, a) + 1$ $Q(s_{disc}, a') \leftarrow \alpha \cdot sampleReturn + (1 - \alpha) \cdot Q(s_{disc}, a')$ return $\lambda \cdot sampleReturn + (1 - \lambda) \cdot \max_{a'} Q(s_{disc}, a')$ \triangleright Use λ -returns end procedure

Figure from Hester & Stone JMLR 2013

TEXPLORE

Slide modified from Todd Hester

Simulations on Car Driving

- TEXPLORE
- 2 ϵ -greedy exploration ($\epsilon = 0.1$)
- **Boltzmann** exploration ($\tau = 0.2$)
- VARIANCE-BONUS Approach v = 1 [Deisenroth & Rasmussen 2011]
- S VARIANCE-BONUS Approach v = 10
- Bayesian DP-like Approach (use sampled model for 1 episode) [Strens 2000]
- BOSS-like Approach (use optimistic model) [Asmuth et al. 2009]

First five approaches use TEXPLORE's model

 Adding
 e-greedy, Boltzmann, or Bayesian DP-like exploration does not improve performance

Comparing to Other Approaches

- BOSS (Sparse Dirichlet prior) [Asmuth et al. 2009]
- Bayesian DP (Sparse Dirichlet prior) [Strens 2000]
- PILCO (Gaussian Process Regression model) [Deisenroth & Rasmussen 2011]
- R-MAX (Tabular model) [Brafman & Tennenholtz 2001]
- Q-LEARNING using tile-coding [Watkins 1989]

 TEXPLORE accrues significantly more rewards than all the other methods after episode 24 (p < 0.01).

Slide modified from Todd Hester

Fuel World

- Most of state space is very predictable
- But fuel stations have varying costs
- 317,688 State-Actions, Time-Constrained Lifetime: 635,376 actions
- Seed experiences of goal, fuel station, and running out of fuel

- TEXPLORE (Greedy w.r.t. aggregate model)
- 2 ϵ -greedy exploration ($\epsilon = 0.1$)
- **Boltzmann** exploration ($\tau = 0.2$)
- VARIANCE-BONUS Approach v = 10 [Deisenroth & Rasmussen 2011]
- Bayesian DP-like Approach (use sampled model for 1 episode) [Strens 2000]
- BOSS-like Approach (use optimistic model) [Asmuth et al. 2009]
- BOSS (Sparse Dirichlet prior) [Asmuth et al. 2009]
- Bayesian DP (Sparse Dirichlet prior) [Strens 2000]

- TEXPLORE learns the fastest and accrues the most cumulative reward of any of the methods.
- TEXPLORE learns the task within the time-constrained lifetime of 635, 376 steps.

Model Accuracy

- Regression tree forest and single regression tree have significantly less error than all the other models in predicting the next state (p < 0.001).
- For reward, regression tree is significantly better than all models but GP regression after 205 state-actions (p < 0.001).

Does it work on real car?

Yes! It learns the task in 2 minutes (< 11 episodes)</p>

Slide modified from Todd Hester

TEXPLORE

- Uses random forests to represent MDP dynamics & rewards
- Uses MCTS for planning
- In domains presented, little explicit exploration needed

Slide modified from Todd Hester

Summary: Model-based Sample Efficient RL

- What objective is algorithm optimizing?
 - Today, empirical performance. No formal guarantees
- Using function approximation for the model can greatly speed learning (can exploit structure in dynamics model)
- Exploration / exploitation
 - Do we need to explicitly explore?
 - We'll always explore things that look promising
 - In results saw today, didn't need much explicit exploration
- Planning with complex models
 - Can be computationally prohibitive
 - Approximate approaches, like MCTS, useful

