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Forward Search w/Generative Model

m Forward search algorithms select the best action by lookahead
m They build a search tree with the current state s; at the root
m Using a model of the MDP to look ahead
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m No need to solve whole MDP, just sub-MDP starting from now




Exact/Exhaustive Forward Search

m Forward search algorithms select the best action by lookahead
m They build a search tree with the current state s; at the root
m Using a model of the MDP to look ahead
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m No need to solve whole MDP, just sub-MDP starting from now




How many nodes in a H-depth tree (as a function of
state space |S| and action space |A|)?

m Forward search algorithms select the best action by lookahead
m They build a search tree with the current state s; at the root
m Using a model of the MDP to look ahead
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m No need to solve whole MDP, just sub-MDP starting from now
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How many nodes in a H-depth tree (as a function of
state space |S| and action space |A|)? (|S||A])"

m Forward search algorithms select the best action by lookahead
m They build a search tree with the current state s; at the root
m Using a model of the MDP to look ahead
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m No need to solve whole MDP, just sub-MDP starting from now
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Sparse Sampling: Don’t Enumerate All Next States,
Instead Sample Next States s’ ~ P(s’|s,a)

m Forward search algorithms select the best action by lookahead
m They build a search tree with the current state s; at the root
m Using a model of the MDP to look ahead
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p exp
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Sample n next states, s.~ P(s’|s,a)
Compute (1/n) Sum. V(s_i)
Converges to expected future reward: Sum,, p(s’|s,a)V(s’)
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Sparse Sampling: # nodes if sample n states at each
action node? Independent of |[S|! O(n|A|)"

m Forward search algorithms select the best action by lookahead
m They build a search tree with the current state s; at the root
m Using a model of the MDP to look ahead

St

a1 a2
max

s1 s2 s1 s2
p exp
s1 s37

Sample n next states, s.~ P(s’|s,a)
Compute (1/n) Sum. V(s_i)
Converges to expected future reward: Sum,, p(s’|s,a)V(s’)
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Sparse Sampling: # nodes if sample n states at each
action node? Independent of |[S|! O(n|A|)"

m Forward search algorithms select the best action by lookahead
m They build a search tree with the current state s; at the root
m Using a model of the MDP to look ahead

St

a1 a2
max

s1 s2 s1 s2
p exp
s1 s37

Upside: Can choose n to achieve bounds on the accuracy of the
value function at the root state, independent of state space size

Downside: Still exponential in horizon, n still large for good bounds

Slide modified from David Silver Carnegie Mellon University
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Limitation of Sparse Sampling

* Sparse sampling wastes time
on bad parts of tree

~ Devotes equal resources to each
state encountered in the tree

-~ Would like to focus on most
promising parts of tree

* But how to control exploration
of new parts of tree vs. ;%i

exploiting promising parts?

\ ( Slide modified from Alan Fern Carnegie Mellon University
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Monte Carlo Tree Search

Combine ideas of sparse sampling with an
adaptive method for focusing on more
promising parts of the ree

Here “more promising” means the actions that
are seem likely to yield higher long term
reward

Uses the idea of simulation search

Carnegie Mellon University
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Simulation Based Search

m Forward search paradigm using sample-based planning
m Simulate episodes of experience from now with the model

m Apply model-free RL to simulated episodes

Slide modified from David Silver Carnegie Mellon University
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Simulation based Search

m Simulate episodes of experience from now with the model
k Ak pk k1K
{sts A Reas 0 STz ~ My

m Apply model-free RL to simulated episodes

m Monte-Carlo control — Monte-Carlo search
m Sarsa — TD search

Slide modified from David Silver Carnegie Mellon University
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Simple Monte Carlo Search

m Given a model M, and a rollout policy

m For each action a€ A
m Simulate K episodes from current (real) state s,

k k k k1K
{Sta d, Rt+1a St+1’ At—la sevy ST}k=1 ~ Muaﬂ-

m Evaluate actions by mean return (Monte-Carlo evaluation)

K
1
Q(Sr, 3) — K E :Gt £> qTr(st) 3)
k=1

m Select current (real) action with maximum value

greedy improvement
dt = drgmax Q(Sta a) with respect to fixed
acA rollout policy

Slide modified from David Silver Carnegie Mellon University
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Upper Confidence Tree (UCT)
[Kocsis & Szepesvari, 2006]

. Combine forward search and simulation search

. Instance of Monte-Carlo Tree Search
. Repeated Monte Carlo simulation of rollout policy
. Rollouts add one or more nodes to search tree

. UCT

. Uses optimism under uncertainty idea
. Some nice theoretical properties

. Much better realtime performance than sparse
sampling

Slide modified from Alan Fern Carnegie Mellon University
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At a leaf node perform a random rollout

Current World State
} Initially tree is single leaf

a1l

Rollout
Policy

©

Terminal
(reward = 1)
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Must select each action at a node at least once

Current World State

a1l a2

F Rollout
Policy

Terminal
(reward = 0)

Slide modified from Alan Fern Carnegie Mellon University
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When all node actions tried once, select action according to tree policy

Current World State

a1l a2

O O

O
O

©

Terminal
(reward = 1)

Tree Policy
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cnercheurs.lille.inria.fr/~munos /papers/files/ 1S tried once, select action according to tree policy

AAAI2013_slides.pdf

Current World State

Tree Policy

a1l

Rollout
Policy

o)—0©—0+0x

Slide modified from Alan Fern
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When all node actions tried once, select action according to tree policy

Current World State

O
O
©

)00

What is an appropriate tree policy?
Rollout policy?

Slide modified from Alan Fern Carnegie Mellon University
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UCT Algorlthm [Kocsis & Szepesvari, 2006]

* Basic UCT uses random rollout policy

* Tree policy is based on UCB: (upper confidence Bound)

“ Q(s,a) : average reward received in current
trajectories after taking action a in state s

~ n(s,a) : number of times action a taken in s
~ n(s) : number of times state s encountered

ﬂUCT(S) =argmax Q(S,a)+c\/1nn(s)

/ n(s,a)

Theoretical constant that must
be selected empirically in practice

Slide modified from Alan Fern Carnegie Mellon University
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Sanso1s e nes/eeeers/iiess| tried once, select action according to tree policy

Current World State

Inn(s)
n(s,a)

7T,0-(8)=argmax_(Q(s,a)+c

Slide modified from Alan Fern Carnegie Mellon University
22




e e r-munos/eaversifiles/ | {riad once, select action according to tree policy

AAAI2013_slides.pdf

Current World State

- ”UCT(S) =drgmax O(s,a)+c Inn(s)

n(s,a)

e Requires us to have a simulator/
generative model

e Each pass down the tree, follow
tree policy until reach a state leaf
where not all actions have been
tried.

e Then need to simulate starting
from that state leaf the result of
taking another action

Slide modified from Alan Fern Carnegie Mellon University
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Guarantees on UCT

[Kocsis and Szepesvari, 2006]

@ In a tree with finite depth, all leaves will be eventually
explored an infinite number of times, thus by backward
induction, UCT is consistent and the regret is O(log n).

@ However, the constant can be so bad that there is not
finite-time guarantee for any reasonable n.

Ik Slide modified from Remi1 Munos Carnegie Mellon University
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Computer Go

Previous game tree approaches faired poorly
2005: Computer Go is impossible!

2006: UCT invented and applied to 9x9 Go (Kocsis, Szepesvari; Gelly et al.)
2007: Human master level achieved at 9x9 Go (Gelly, Silver; Coulom)

2008: Human grandmaster level achieved at 9x9 Go (Teytaud et al.)

Slide modified from slides from Alan  Carnegie Mellon University
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Rules of Go

m Usually played on 19x19, also 13x13 or 9x9 board
m Simple rules, complex strategy

m Black and white place down stones alternately

m Surrounded stones are captured and removed

m T he player with more territory wins the game

® @
“:ﬂ,
o
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Position Evaluation in Go

m How good is a position s?

m Reward function (undiscounted):

R: = 0 for all non-terminal steps t < T

R _ 1 if Black wins
"7 1 0 if White wins

m Policy m = (mg, mw) selects moves for both players

m Value function (how good is position s):

Vr(s) =E; [RT | S = s] =P [Black wins | S = 5]

vi(s) = max r7rr1‘:vn vr(s)

Slide modified from David Silver Carnegie Mellon University
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Monte Carlo Evaluation in Go:
Planning problem, just a very very hard one

V(s)=2/4=0.5 ‘e« Current position s
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Enormous Progress. MCTS Huge
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Going Back to Batch RL...

. Use supervised learning method to compute
model
. Use learned model with MCTS planning

. Note: error in model will impact error in
estimated values!

. Computes an action for current state, take
action, then redo planning for next state

Carnegie Mellon University
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Autonomous Driving using
Texplore (Hester and Stone 2013)

Carnegie Mellon University




Model-Free

FVI/ FQI API

Value Function Actor Policy
Critic
Value-Based Policy-Based
Model-Based
Model

Approximate model
planners
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