B / Approximate Policy
Iteration

Emma Brunskill

Many thanks to Alan Fern for
the majority of the LSPI slides.

https://web.engr.oregonstate.edu/~afern/classes/cs533/notes/Ispi.pdf

Fitted Value Iteration:
Treatment Decision Making

The CATIE study: a sequentially randomized trial

» The Clinical Antipsychotic Trials of Intervention and Effectiveness (CATIE) study was an 18 month sequential,
multiple assignment, randomized trial of 1460 patients with schizophrenia.

» CATIE was a practical clinical trial, thus had a broad entry criteria and a protocol designed to mimic real
life.
Specifically, participants choose when to switch treatment

» Two major treatment phases, with monthly follow-ups from baseline
» Two measures of symptoms collected during CATIE

1. Positive and Negative Syndrome Scale (PANSS) total score
2. Quality of Life (QOL) scale

» We distinguish between two different types of variables in CATIE:
Scheduled collected on everyone at pre-specified visits
end-of-phase collected when a patient entered a new treatment phase

Informing sequential clinical decision-making through reinforcement learning: an empirical study
Shortreed et al. Machine Learning Journal 2011

Carnegie Mellon University
2

Patient State Variables

Variables with no missing information.

Time independent variables:
Age (continuous), Sex (binary), Race (categorical), Tardive dyskinesia status at baseline (binary), Marital status (binary),
Patient education (categorical), Hospitalization history in 3 months prior to CATIE (binary), Clinical setting at which
patient received CATIE treatment (categorical), Treatment prior to CATIE enrollment (categorical), Phase 1 treatment
assignment (categorical), Time in study on phase 1 treatment assignment (continuous).
Variables with missing information.

Time independent variables:
Employment status (categorical), Years since first prescribed anti-psychotic medication at baseline (continuous), Neu-
rocognitive composite score at baseline (continuous), Phase 2 treatment assignment (categorical), Phase 2 randomization
arm (binary), Reason for discontinuing phase 1 and 2 (categorical), Reason for discontinuing the CATIE study early
(categorical), Total time spent in the CATIE study (continuous).

Variables collected at months 1-18 and at end-of-phase:
Treatment adherence, the proportion of capsules taken since last visit (continuous)

Variables collected at months 0, 1, 3, 6, 9, 12, 15, 18 and at end-of-phase:
Body mass index (continuous), Clinical drug use scale (ordinal), Clinical alcohol use scale (ordinal), Clinical Global
Impressions Severity of illness score (ordinal), Positive and Negative Syndrome Scale total score (continuous), Calgary
Depression total Score (continuous), Simpson-Angus EP mean scale (continuous), Barnes Akathisia scale (continuous),
Total movement severity score (continuous)

Variables collected at months 0, 6, 12, 18 and at end-of-phase:
Quality of Life total score (continuous), SF-12 Mental health summary (continuous), SF-12 Physical health summary
(continuous), Illicit drug use (binary)

Carnegie Mellon University
3

Used Linear FQ

| A

Qi (s, ai; B) = B x(se,a) =Y B sk
k=1

Challenges

. Missing data for patients
. How much better is the best computed policy
from any other? Can we trust Q estimates?

Carnegie Mellon University
4

Fitted V/Q Iteration Summary

 Model free, value function based technique

* Performs supervised learning problem at each iteration
to fit the V/Q function

* Due to iterative nature, error can compound (worse
than linear)

* Input data sampling distribution has a crucial impact

* Poor performance (divergence) possible, choice of
function class/regressor important (for convergence and
accuracy of resulting estimate)

Carnegie Mellon University
5

Model-Free

FVI/ FQl
Value Function Actor Policy
Critic
Value-Based Policy-Based
Model-Based
Model

Image from David Silver Carnegie Mellon University
6

Value Iteration Policy Iteration

Maintain optimal values if Maintain value of following a
have n more actions particular policy forever

Drawings by Ketrina Yim

Carnegie Mellon University
7

Policy Iteration for Infinite Horizon

Given MDP

1. Policy Evaluation: Calculate
exact value of acting in
infinite horizon for a
particular policy

2. Improve policy

3. Repeat 1 & 2 until policy
doesn’t change

Drawing by Ketrina Yim

Carnegie Mellon University

Model-Free

FVI/ FQl Pl
Value Function Actor Policy
Critic
Value-Based Policy-Based
Model-Based

Policy lteration
N — maintains both
an explicit
representation
of a policy and
the value of
that policy

Model

Image from David Silver Carnegie Mellon University
9

No max in Bellman eqgn so linear set of
equations... Analytic Solution!

Vi(s)=0. p(s'|s, ()| R(s, 2(5).8)+ V(5" |

Requires taking an inverse of a S by S matrix: O(S°)

Carnegie Mellon University
10

Policy Improvement

 Have V*(s) for all s
* First compute

Q" (s,a)= stes p(s'|s, a)[R(S, a,s)+ V7 (s ')J

* Then extract new policy.
For each s,

7'(s)=argmax, Q" (s,a)

Carnegie Mellon University
X

Policy Iteration for Infinite Horizon

1. Policy Evaluation: Calculate
exact value of acting in
infinite horizon for a
particular policy

2. Policy Improvement

3. Repeat 1 & 2 until policy
doesn’t change

Drawing by Ketrina Yim

Carnegie Mellon University
12

Policy Iteration Value Iteration
Maintain value of policy Keep optimal value for
Improve policy finite steps, increase steps

Drawings by Ketrina Yim

Carnegie Mellon University
E

Policy Iteration Value Iteration
Fewer lterations More iterations
More expensive per iteration Cheaper per iteration

Drawings by Ketrina Yim

Carnegie Mellon University
14

Back to Offline, Batch Setting

. Don’t know MDP transition or reward models

. Have a set of samples

. Huge or infinite state space

. Want to compute good policy to use in the
future

Carnegie Mellon University
15

Approximate Policy Iteration

Value Function
Projection

}

Policy Evaluation
(Crltlc)

Approximate
Value Functlon j
QT[
Policy Improvement
(Actor)
Policy :
Projection
Approximate |
Policy
A
T

Figure modified from
Lagoudakis & Parr 2003

Carnegie Mellon University

AP| Guarantees
(Bertsekas & Tsitsiklis; Lagoudakis & Parr)

Theorem 3.1 Let Ty, 71, T2, ..., Tm be the sequence of policies generated by an approz-
imate policy-iteration algorithm and let Q"" Q7r1 Q"‘2 Q""1 be the corresponding ap-
prozimate value functions. Let € and § be positive scalars that bound the error in all ap-
prozimations (over all iterations) to value functions and policies respectively. If

Vm= 07 1923 ey ”Q%m - Qﬁm”oc <€

, error in policy evaluation

and 3

error in

J— e A"ﬂ\"m _ A%m
Vm=0,1,2,.., ||T7rm+1Q T.Q “00 <0 policy improvement

Then, this sequence eventually produces policies whose performance is at most a constant
multiple of € and § away from the optimal performance:

_ e 0 + 2ve
limsup [|Q™ — Q"|oc < —

mM—00 (-)

Carnegie Mellon University

Least Squares Policy Iteration
Lagoudakis & Parr (2003)

Approximate
Value Function

Linear architecture

& = g'w

4) ~ M
Policy Evaluation Polic
Key d Projecti y
bart and Projection Improvement Easy
LSTDQ Maximization

& J 3
‘ | Policy

Greedy policy
Samples over Q"

Carnegie Mellon University
18

LSP| Guarantees

Theorem 7.1 Let mg, 71, T2, ..., ™m be the sequence of policies generated by LSPI and
let Q™, Q™2, ..., Q™ be the corresponding approximate value functions as computed by

LSTDQ). Let € be a positive scalar that bounds the errors between the approrimate and the
true value functions over all iterations:

Vm=12.. [|[Q™ — Q™| <€ .

Then, this sequence eventually produces policies whose performance is at most a constant
multiple of € away from the optimal performance:

1‘ A7T1n _ * < _ .
im sup 1Q Q" |loo < A=)

Carnegie Mellon University
19

LSP| Guarantees

Theorem 7.1 Let mg, 71, T2, ..., ™m be the sequence of policies generated by LSPI and
let Q”l Q7r2 Q“’" be the corresponding approximate value functions as computed by

LSTDQ). Let € be a positive scalar that bounds the errors between the approximate and the
true value functions over all iterations:

Vm=12 .. Q™ — Q™| <€ .

Then, this sequence eventually produces policies whose performance is at most a constant
multiple of € away from the optimal performance:

2ve LSPI bound (no error in
policy improvement)

1‘ A7T1n S A
%njélopllQ — Qoo < A=)

d + 2e generic approx policy
(1-7)2"° iteration bound

Carnegie Mellon University

Least Squares Policy Iteration
Lagoudakis & Parr (2003)

Approximate
Value Function

Linear architecture

& = g'w

4) ~ M
Policy Evaluation Polic
Key d Projecti y
bart and Projection Improvement Easy
LSTDQ Maximization

& J 3
‘ | Policy

Greedy policy
Samples over Q"

Carnegie Mellon University
21

Projection Approach to Approximation
* Recall the standard Bellman equation:
V' (s)=max, R(s,a)+ }/ZS,P(S'| s,a)V " (s")

or equivalently V" =T7T[V"] where T[.] is the
Bellman operator

* Recall from value iteration, the sub-optimality of a

value function can be bounded in terms of the

Bellman error:
V1171,

* This motivates trying to find an approximate value
function with small Bellman error

Slides from here onwards are drawn from Alan
Fern unless otherwise noted

Carnegie Mellon University
22

Projection Approach to Approximation

* Suppose that we have a space of representable value
functions

~ E.g. the space of linear functions over given features

* Let Il be a projection operator for that space

“ Projects any value function (in or outside of the space) to
“closest” value function in the space

* “Fixed Point” Bellman Equation with approximation

2 (ia)

“ Depending on space this will have a small Bellman error

* LSPI will attempt to arrive at such a value function
“ Assumes linear approximation and least-squares projection

Carnegie Mellon University
E

How does LSPI fix these?

* LSPI performs approximate policy iteration
“ Pl involves policy evaluation and policy improvement

~ Uses a variant of least-squares temporal difference learning
(LSTD) for approx. policy evaluation [Bratdke & Barto ‘96]

* Stability:
“ LSTD directly solves for the fixed point of the approximate
Bellman equation for policy values

~ With singular-value decomposition (SVD), this is always well
defined

* Data efficiency
~ LSTD finds best approximation for any finite data set
~ Makes a single pass over the data for each policy
~ Can be implemented incrementally

Carnegie Mellon University
24

OK, What’s LSTD?

* Least Squares Temporal Difference Learning

* Assumes linear value function approximation of K

features I}(s) _ Zk W, (5)

* The ¢, are arbitrary feature functions of states

* Some vector notation

_I}(Sl)— W B (s)

V(Sn) W, _¢k (Sn)_

Carnegie Mellon University
25

Suppose we know value of policy
* Want: Qw~"”

* Least squares weights minimizes squared error
T -1 T
w=(D O)" OV”*

~— N

Sometimes called pseudoinverse

* Least squares projection is then
> T A1 AT
V =0w=(D D) ' dTV”

%/’__—,/
Textbook least squares projection operator

Carnegie Mellon University
26

But we don’t know V...

* Recall fixed-point equation for policies
V™ (s)=R(s,7())+7D_ P(s'| 5, 7(s)V " (s")

* Will solve a projected fixed-point equation:
P =T(R+ V")

—R(Sla”(s1))_ —P(Sl |5, 7(sy)) - P(s, |S157[(51))—
R = , P= : : :

R(Sn’ﬂ.(sn)) _P(Sl |Sn’7z.(sn)) P(Sl |Sn97[(sn))_

* Substituting least squares projection into this gives:

Dw = D(D' D) ' D" (R + yPDW)
* Solving forw: w=(®'D— D' PO) ' D'R

Carnegie Mellon University
27

Almost there...

w= (D' d— D" PO)"'D'R

* Matrix to invert is only K x K

* But...

“ Expensive to construct matrix (e.g. P is |S|x|S|)
“~ We don’t know P
“~ We don’t know R

Carnegie Mellon University
28

Using Samples for ®

Suppose we have state transition samples of the policy
running in the MDP: {(s,,a,,r;,s;’)}

Idea: Replace enumeration of states with sampled states

K basis functions

- . I
d4(s1) b,(s1)... N
d,(52) 9,(52)...
@ = > samples
Y

Carnegie Mellon University
29

Using Samples for R

Suppose we have state transition samples of the policy
running in the MDP: {(s,,a,,r;,s;’)}

Idea: Replace enumeration of reward with sampled rewards

R = | . samples

Carnegie Mellon University
30

Using Samples for PO

Idea: Replace expectation over next states with sampled
next states.

K basis functions

AN
' I

d,(s1’) d,(s1’)...)
d,(52’) 9,(52')...

PD =~ : > s’ from (s,a,r,s’)

Carnegie Mellon University
31

Putting it Together

* LSTD needs to compute:
w= (D' ®—yd"'PO)'®'R=B"b

B=®"®— D" (PD)
b=®d"R |

from previous slide

Carnegie Mellon University
32

Putting it Together

* LSTD needs to compute:
w= (D' ®—yd"'PO)'®'R=B"b
B=®"®— D" (PD)
b=®'R |

from previous slide

How would this work on the example from
Tsitsiklis & Van Roy we did last time? What w
is computed?

Carnegie Mellon University
33

Different Fitting Objectives:
What is FVI minimizing? What is LSTD minimizing?

Carnegie Mellon University
34

Putting it Together
* LSTD needs to compute:
w=(D'®—yd"'PO)'®'R=B"b
B=®"®— D" (PD)
b=®'R |

from previous slide

* The hard part of which is B the kxk matrix:

* Both B and b can be computed incrementally for
each (s,a,r,s’) sample: (initialize to zero)

Bij (_Bij +¢i(s)¢j(s)_y¢i(s)¢j(s')
b < b +r-¢(s)

Carnegie Mellon University
35

LSTD Algorithm

* Collect data by executing trajectories of current policy

* For each (s,a,r,s’) sample:

Bij (_Bij +¢i(s)¢j(s)_7/¢i(s)¢j(s')
b, < b, +r-9.(s,a)

w<«— B7'b

Carnegie Mellon University
36

LSTD Summary

* Does O(k?) work per datum
“ Linear in amount of data.

* Approaches model-based answer in limit

* Finding fixed point requires inverting matrix

* Fixed point almost always exists

* Stable; efficient

Carnegie Mellon University
37

LSTD Summary

* Does O(k?) work per datum
~ Linear in amount of data.

* Approaches model-based answer in limit

* Finding fixed point requires inverting matrix

* Fixed point almost always exists
* Stable; efficient
e Note: LSTD as just described assumes estimating the

value of a fixed policy
e Samples generated from this fixed policy

Carnegie Mellon University
38

Approximate Policy Iteration with LSTD

Policy Iteration: iterates between policy improvement
and policy evaluation

Idea: use LSTD for approximate policy evaluation in Pl

Start with random weights w (i.e. value function)

Repeat Until Convergence

T (S)= greedy(VA (S, W)) // policy improvement

Evaluate 7 using LSTD
m Generate sample trajectories of 7

m Use LSTD to produce new weights w
(w gives an approx. value function of 7)

Carnegie Mellon University
39

What Breaks?

Policy Iteration: iterates between policy improvement
and policy evaluation

Idea: use LSTD for approximate policy evaluation in Pl

Start with random weights w (i.e. value function)

Repeat Until Convergence

T (S)= greedy(VA (S, W)) // policy improvement

Evaluate 7 using LSTD
m Generate sample trajectories of 7

m Use LSTD to produce new weights w
(w gives an approx. value function of 7)

Carnegie Mellon University
40

What Breaks?

* No way to execute greedy policy without a model

* Approximation is biased by current policy

“ We only approximate values of states we see when
executing the current policy

~ LSTD is a weighted approximation toward those states

* Canresult in Learn-forget cycle of policy iteration
“ Drive off the road; learn that it’s bad

“ New policy never does this; forgets that it’s bad

* Not truly a batch method
~ Data must be collected from current policy for LSTD

Carnegie Mellon University
41

LSPI

* LSPI is similar to previous loop but replaces LSTD
with a new algorithm LSTDQ

* LSTD: produces a value function
“ Requires sample from policy under consideration

* LSTDQ: produces a Q-function for current policy

“ Can learn Q-function for policy from any (reasonable) set
of samples---sometimes called an off-policy method

“ No need to collect samples from current policy

* Disconnects policy evaluation from data collection
“ Permits reuse of data across iterations!
“ Truly a batch method.

Carnegie Mellon University
42

Implementing LSTDQ

* Both LSTD and LSTDQ compute: B = &' — 1D’ (PD)

* But LSTDQ basis functions are indexed by actions

0,(s,a) =Y w, -¢(s,a)

T n
defines greedy pOliCY:f[w(S) =argmax Qw (s,a)

* For each (s,a,r,s’) sample:

B; < B; +¢,(s,a)p,(s,a)— A9,(s,a)¢,(s", 7,,(s"))

b < b +7-¢(s,d) e
w< Bp argmax , Q. (s',a)

Carnegie Mellon University
43

Least Squares Policy Iteration
Lagoudakis & Parr (2003)

Approximate
Value Function

Linear architecture

& = g'w

4) ~ M
Policy Evaluation Polic
Key d Projecti y
bart and Projection Improvement Easy
LSTDQ Maximization

& J 3
‘ | Policy

Greedy policy
Samples over Q"

Carnegie Mellon University
44

Results: Bicycle Riding

* Watch random controller operate bike

Collect ~40,000 (s,a,r,s’) samples

Pick 20 simple feature functions (x5 actions)

Make 5-10 passes over data (Pl steps)

* Reward was based on distance to goal + goal
achievement

* Result:
Controller that balances and rides to goal

Carnegie Mellon University
45

Bicycle Trajectories

200_............? -................. 61h.l.te.rahbﬁ.‘- _
Starting : : :
Position -
] S S) ':“\.;
2nd heraﬁon (crashj
—200 - ..
: iteration - \
: / : : : 4th and &th :
Ty [0] S L R / |tera110n’
Y
600.‘.‘.....-.-.~.;,-/.4.vf’./:./.:.,./ ...
i\ // : \ 1st iteration
—800 | 1 1 1 1 1 1
-200 0 200 400 800 200 1000 1200

Carnegie Mellon University
46

Convergence of Control Algorithms
with Different Representations

Algorithm Table Lookup Linear Non-Linear
Monte-Carlo Control v (V) X
(on-policy Q-learning) Sarsa v (/) X
Q-learning v X X
LSPI v (V) -

(v') = chatters around near-optimal value function

Image from David Silver

Carnegie Mellon University
47

Open Questions

. Sample efficiency?

. Feature representation?

. Which objective function (fixed point,
minimizing projected error, etc) is best?

. Homework 1 is a chance to explore some of
these issues

Carnegie Mellon University
48

