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Sample Efficient RL

. Probably Approximately Correct
. Minimizing regret
. Today: Bayes-optimal RL
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Overview

. Quick intro to or refresher of POMDPs
. Definition
. Belief state tracking
. Online planning

. Bayes-optimal bandits

. Bayes-optimal RL
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Review: MDP Forward Search w/Generative Model

m Forward search algorithms select the best action by lookahead
m They build a search tree with the current state s; at the root
m Using a model of the MDP to look ahead

Sr
a1 o a2
s1 s2 s1 s2
(] ] (] [ )
(3 0 B O O O B N O

ool Ne étg\z ol
JJ' '-l : .r e

[
‘.\ _‘.,r

m No need to solve whule MDP. just sub-MDP starting from now

Slide modified from David Silver § atancie Viol I Lo ity
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Exact/Exhaustive Forward Search:
(ISI1A])" Nodes

m Forward search algorithms select the best action by lookahead
m They build a search tree with the current state s; at the root
m Using a model of the MDP to look ahead
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m No need to solve whule MDP. just sub-MDP starting from now

Slide modified from David Silver § atancie Vil Lo ity
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Sparse Sampling: Don’t Enumerate All Next States,
Instead Sample Next States s’ ~ P(s’|s,a)

m Forward search algorithms select the best action by lookahead
m They build a search tree with the current state s; at the root
m Using a model of the MDP to look ahead
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Sample n next states, s.~ P(s’[s,a)
Compute (1/n) Sum. V(s_i)
Converges to expected future reward: Sum,, p(s’[s,a)V(s’)

Slide modified from David Silver Carnegie Mellon University
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Limitation of Sparse Sampling

* Sparse sampling wastes time
on bad parts of tree

« Devotes equal resources to each
state encountered in the tree /1

-~ Would like to focus on most ' Q
promising parts of tree i s

* But how to control exploration i
of new parts of tree vs. /M
exploiting promising parts? /]

: Slide modified from Alan Fern Carnegie Mellon University
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Monte Carlo Tree Search

Combine ideas of sparse sampling with an
adaptive method for focusing on more
promising parts of the ree

Here “more promising” means the actions that
are seem likely to yield higher long term
reward

Carnegie Mellon University
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Upper Confidence Tree (UCT)
[Kocsis & Szepesvari, 2006]

. Combine forward search and simulation search

Instance of Monte-Carlo Tree Search
. Repeated Monte Carlo simulation of rollout policy
. Rollouts add one or more nodes to search tree

UCT

. Uses optimism under uncertainty idea
. Some nice theoretical properties

. Much better realtime performance than sparse
sampling
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Current World State

/@) } Initially tree is single leaf
at

Set desired max tree depth (e.g. H)

Select any action al haven’t tried from leaf state s

Sample next reward and state s’ given p(s’|s,al) & r(s,a)

For the remainder of tree (H - depth of leaf)

o Use rollout policy n to simulate a trajectory

o s ,n(s’),r,s",m(s”), ...

where next states and rewards are sampled from transition and

reward model given current state s’ and n(s”’) etc.

o Sum up rewards, and this is a sample of the return of
following n from the leaf state given action a1

Slide modified from Alan Fern Carnegie Mellon University
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Current World State

/@ } Initially tree is single leaf
at

E.g. sample H more steps using 1, got O reward

for all steps except the final step where got a
1

Slide moditied from Alan Fern Carnegie Mellon University
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Current World State
} Initially tree is single leaf

a1l

Set expected reward for al for leaf node to be
average of all returns from rollout policy

Only 1 sample and its return was 1
So set its expected value to 1

Slide modified from Alan Fern Carnegie Mellon University
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Current World State
} Initially tree is single leaf

a1l

Next time reach this leaf node, check if all
actions have been sampled at least once

If not, select an action that hasn’t yet been
expanded

Slide modified from Alan Fern Carnegie Mellon University
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Must select each action at a node at least once

Current World State

a1l a2

Slide moditied from Alan Fern Carnegie Mellon University
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Must select each action at a node at least once

Current World State

a1l a2

o Use rollout policy Rollout
n to simulate a Policy
trajectory starting
from leaf node
state and a2 _

o s’ n(s),r,s’ ns”), (reJ:er;”g)'

Slide moditied from Alan Fern Carnegie Mellon University
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When all node actions tried once, select action according to tree policy

Current World State

a1l a2

3 O

Tree Policy

Slide moditied from Alan Fern Carnegie Mellon University
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UCT Algorithm [Kocsis & Szepesvari, 2006]

* Basic UCT uses random rollout policy

* Tree policy is based on UCB: (upper confidence Bound)

~ Q(s,a) : average reward received in current
trajectories after taking action a in state s

~ n(s,a) : number of times action atakenin s
~ n(s) : number of times state s encountered

R.UCT(S) —dargmax Q(S, a) £ C\/M

/ n(s,a)

Theoretical constant that must
be selected empirically in practice

Slide moditied from Alan Fern Carnegie Mellon University
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Current World State

Inn(s)
n(s,a)

! 7er(8)=argmax_ ((s,a)+c

. Which action would we choose?

Slide modified from Alan Fern Carnegie Mellon University
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When all node actions tried once, select action according to tree policy

Current World State

Tree Policy

Rollout
Policy

Carnegie Mellon University




When all node actions tried once, select action according to tree policy

Current World State

(
1 a2

- Q(s a) : average reward received in current
trajectories after taking action a in state s

Tree Policy

Rollout
Policy

~ n(s,a) : number of times action atakenin s
“ n(s) : number of times state s encountered

Inn(s)
n(s,a)

Tor(8)=argmax_Q(s,a)+c

What is Q(leaf node,al) and Q(leaf node, a2)?

if c=5 which action will be chosen next time at
the leaf node?

Slide modified from Alan Fern Carnegie Mellon University
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UCT

* Eventually converges to the optimal value of Q(s,a)
for the root state

e At that point, or when run out of computation time,
choose best action at root node

* Take action, get next state from environment

 Repeat UCT planning at new state

* Empirically often does extremely well (e.g. the game
of Go)

Carnegie Mellon University
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MCTS / UCT for POMDP Planning

e States — histories / belief states

 Sample observations instead of states

* Rollout policy needs to be based on histories/belief
states

* Other than that, can apply directly

* Further optimizations possible, see “Monte-Carlo
Planning in Large POMDPs” Silver & Veness NIPS 2010

* Even computing belief updates may be too
expensive in some domains, so use sampling

Carnegie Mellon University
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Algorithm 1 Partially Observable Monte-Carlo Planning

procedure SEARCH(h) procedure SIMULATE(s, h, depth)
repeat if y9¢P** < ¢ then
if h = empty then return 0
s~1 end if
else if h ¢ T then
S:\JB(h) for all a € A do
end if T(hl’l) ( wut(hﬂ) zrni(hﬂ') E])
SIMULATE(s, h, 0) end for
until TiIMEOUT() return ROLLOUT(s, h, depth)
return argmax V' (hb) end if
’ -
end procedure a < argmax V' (hb) +c lﬁfrfn::i;”

(s'y0,7) ~ G(s,a)

procedure ROLLOUT(s, h, depth) R < 1 + v.SIMULATE(s’, hao, depth + 1)

if 49" < ¢ then

return 0 (( )) (( ))U {f}
i +
d if
EIL -:;-aum (h, ) o, g Bl o - V (ha)
(S’}G,T) = Q(S,{l) V(hﬂ-) . V(hﬂ) + h’[hu]ﬂ
returnr + v.RoLLoUT(s’, hao, depth+1) return R
end procedure end procedure

Flgure fI’OIIl S IIVGI’ & VCIICS S Car llt“"l(‘ Mellon Univ (‘I‘%lt\

NIPS 2010 =
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Overview

. Quick intro to or refresher of POMDPs
. Definition
. Belief state tracking
. Online planning

. Bayes-optimal bandits

. Bayes-optimal RL
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Bayes-Optimality

. Know get to act for H steps (could be infinite)

. Take actions to precisely maximize expected
reward over H steps given initial uncertainty
over model (bandit, MDP) parameters

. Reasons directly about value of information

. |If explored more, could that change decisions
made?

Carnegie Mellon University
26




Bayes Optimal Bandits

m We have viewed bandits as one-step decision-making problems

m Can also view as sequential decision-making problems
m At each step there is an information state §

m S is a statistic of the history, §; = f(h;)

m summarising all information accumulated so far

m Each action a causes a transition to a new information state
§' (by adding information), with probability P,

s This defines MDP M in augmented information state space

M = (SH} A!ﬁ!R! 7)

Slide modified from David Silver Carnegie Mellon University
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Bernoulli Bandits

m Consider a Bernoulli bandit, such that R? = B(u,)
m e.g. Win or lose a game with probability

m Want to find which arm has the highest 1,

m The information state is § = (a, )

®m o, counts the pulls of arm a where reward was 0
m (3, counts the pulls of arm a where reward was 1

28 °



Solving Information State Bandits

. Challenge: Number of information states can
be infinite

. But can treat as a (really large) MDP planning
problem

@ f & Slide modified from David Silver

Carnegie Mellon University
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Bayes-Adaptive Bernoulli Bandits
, N

m Start with Beta(ag,, 8,) prior over I a6 \
reward function R? 5 - \ "'ul

) \
m Each time a is selected, update ( / \ f||
u f Ra : '||I; |
posterior Tor \ Te B 0, /

m Beta(a; +1,8,;) if r=0

y Arm 1 (Drug 1) Arm 2 (Drug 2)
m Beta(a,,B:+1)ifr=1 ’ :

Slide modified from David Silver § atancie Vil Lo ity
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Bayes-Adaptive Bernoulli Bandits
, N

m Start with Beta(ag,, 8,) prior over I a6 \
reward function R? ( 5 < \ "'ul
m Each time a is selected, update | / \ f||
posterior for R? \ o )
m Beta(a; +1,8,;) if r=0 ‘ ,7(
m Beta(a,,B:+1)ifr=1

m This defines transition function P
for the Bayes-adaptive MDP \

m Information state (a, 3)

corresponds to reward model
Beta(a, )

m Each state transition corresponds
to a Bayesian model update

31°




Bayes-Adaptive Bernoulli Bandits
, N

m Start with Beta(ag,, 8,) prior over I a6 \
reward function R? ( 5 < \ "'ul
m Each time a is selected, update | / \ f||
posterior for R? \ o - /
m Beta(a; +1,8,;) if r=0 ‘ ,7(
m Beta(a,,B:+1)ifr=1

A

m This defines transition function P

Y — 5 A
for the Bayes-adaptive MDP {lép) 'a|\'1/\) ( /\-‘f*;‘x y N/
m Information state (a, 3) ;g ~ __TL‘“‘
corresponds to reward model L/ AV 1\
VANAN
Beta(a, ) ALY
m Each state transition corresponds \”Q“f R
to a Bayesian model update L\ﬂ_]ﬂ)

Sllde mOdlﬁed fI‘OIn DaVId SllVeI‘ Carne, 0‘1(‘ Mellon UI]D(‘I‘QI“
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Bayes-Adaptive Bernoulli Bandits

1 =l 2 a2 .
e A [ﬁl 87 o B4
L —_— . 5 a

L az B3 a3 53

/\

& Slide modified from David Silver § atancie Vil Lo ity
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Bayes-Adaptive Bernoulli Bandits

oF == T |:ﬁ|[ ,':i‘;’ ﬁ'f ,‘:i‘f]
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Slide modified from David Silver § atancie Vil Lo ity
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Bayes-Adaptive Bernoulli Bandits

1 =l a4 93 .
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Slide modified from David Silver § atancie Vil Lo ity

35 °




Bayes-Adaptive Bernoulli Bandits

1 =l a4 93 .
. ”'I. .l:r] -!"‘rl ll'jl:IJ
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Slide modified from David Silver § anancie Vil Lo ity
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Bayes-Adaptive Bernoulli Bandits
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Gittins Index

m Bayes-adaptive MDP can be solved by dynamic programming

m T he solution is known as the Gittins index

m Exact solution to Bayes-adaptive MDP is typically intractable
m Information state space is too large

m Recent idea: apply simulation-based search (Guez et al. 2012)

m Forward search in information state space
m Using simulations from current information state
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Overview

. Quick intro to or refresher of POMDPs
. Definition
. Belief state tracking
. Online planning

. Bayes-optimal bandits

. Bayes-optimal RL
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Information State MDPs

m MDPs can be augmented to include information state

m Now the augmented state is (s, §)

m where s is original state within MDP
m and § is a statistic of the history (accumulated information)

m Each action a causes a transition

m to a new state s’ with probability PZ
m to a new information state &’

m Defines MDP M in augmented information state space

'/{;[ — <8~3 "A! ?5'! R'! f}/>
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Alternative View:
Learning as Planning

. Reinforcement learning as a POMDP planning

problem

. Hidden state is the parameters of the MDP:
reward model and transition model

. Want to maximize expected discounted sum
of rewards given belief state (over these
parameters)

Carnegie Mellon University
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Challenge

. Parameter space is real-valued
. — Infinite/continuous state space
. POMDP planning over a continuous set of

states...

. Though hidden state is static
. Assume MDP parameters don’t change

. Learning as planning is elegant but often
intractable

Carnegie Mellon University
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Finite Set of Models? Finite State
POMDP

. Consider ifin 1 of M MDPs

. Don’t know which one, but only finite
number

. Then can model as a finite state POMDP
(Poupart et al. 2006, Brunskill 2012)

. Tractable to compute an epsilon-optimal
policy!

Carnegie Mellon University
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Infinite Set of Possible MDP
Models? Use MCTS Planning

. Model as a POMDP
. Use MCTS planning to solve

. Plus some additional insights-- see Guez et al.
2013

Carnegie Mellon University
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Summary

 Understand how to implement MCTS (very very
useful tool for planning and learning in practice)

* Be able to define Bayes-optimal RL (what is the
objective being solved)

* Know challenges with solving Bayes-optimal RL (why
is it computationally expensive?)

 Know of at least one algorithm could use to
compute an approximately Bayes-optimal soln

Carnegie Mellon University
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