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Abstract—Furthering the study of cryptography in NC0,
we give new evidence for the security of Goldreich’s
candidate pseudorandom generator with near-optimal,
polynomial stretch. Our evidence consists both of security
against subexponential-time F2-linear attacks as well as
subexponential-time attacks using SDP hierarchies such as
Sherali–Adams+ and Lasserre/Parrilo. More specifically,
instantiating Goldreich’s generator with the predicate
P (x1, . . . , x5) = x1+x2+x3+x4x5 (mod 2) we get a can-
didate 5-local PRG which stretches n bits to n1.499 bits and
which is secure against both F2-linear attacks and attacks
based on the Lasserre/Parrilo SDP hierarchy. Previous
works with such small locality only gave stretch n1.249 and
were only shown to be secure against F2-linear attacks.
Our result is essentially optimal, as known SDP/spectral
techniques show the generator would not be secure if used
with stretch Θ(n3/2 logn).

More generally, when (a slight variant of) Goldreich’s
generator is used with a local predicate P (x) which is (t−
1)-wise independent, we show that one can allow stretch
nt/2−ε for any ε > 0 while resisting subexponential-
time attacks based on the Sherali–Adams+ SDP hierarchy.
Again, this is amount of stretch is (potentially) optimal due
to known SDP/spectral methods which succeed at stretch
Θ(nt/2 logn). Finally, for a large family of predicates
we also extend this result to security against the much
stronger Lasserre/Parrilo SDP hierarchy.

I. INTRODUCTION

A major goal of cryptography is the construction
of very efficient, secure cryptographic primitives; e.g.,
one-way functions (OWFs) or pseudorandom genera-
tors (PRGs). One interpretation of “very efficient” —
suggested as early as the mid-’80s [1] — is “highly
parallelizable” or “in NC1”. An even more ambitious
goal, suggested in works by Goldreich [2] and by Cryan
and Miltersen [3] from the early 2000’s, is that of
cryptography in NC0. By this is meant the possibility
of, say, PRGs f : {0, 1}n → {0, 1}m (m > n) with
constant locality. We say that f is k-local if each output
bit f(x)j depends on at most k input bits xi.
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A celebrated work of Applebaum, Ishai, and Kushile-
vitz [4] showed that under standard cryptographic as-
sumptions (e.g., hardness of factoring or lattice prob-
lems) there are secure PRGs f : {0, 1}n → {0, 1}m
computable in NC0 with locality as small as 4. Unfor-
tunately, the PRGs they construct have only sublinear
stretch; i.e., m ≤ n+ o(n). This deficiency is inherent
in the [4] methodology, and in fact it’s known [5] that
a 4-local PRG can achieve stretch at best O(n). On
the other hand, it would be quite desirable to have
a cryptographically secure PRG with constant locality
and polynomial stretch; i.e., m = n1+ε for a positive
constant ε. An example application would be secure
two-party computation with only constant overhead [6].

Goldreich’s generator.: The main candidate for
such a constant-locality, polynomial-stretch PRG was
proposed by Goldreich [2]; see also [7]. Goldreich’s
suggestion was the following (for more precise de-
tails, see Section II): To construct a potential k-local
OWF/PRG mapping n bits to m ≥ n bits, first fix a
Boolean predicate P : {0, 1}k → {0, 1} and also fix
once and for all a list S1, . . . , Sm ∈ [n]k of randomly
chosen k-tuples. (Alternatively, it may be enough that
the associated n-vertex, m-edge, k-uniform hypergraph
be a sufficiently good expander.) Then on input x ∈
{0, 1}n, the jth output bit of the generator is defined
to be P applied to the Sj bits of x. It’s also fruitful
to think of the output of this generator as a random
“planted instance” of the k-CSP (constraint satisfaction
problem) with constraint predicate P . There is one twist
to this CSP viewpoint, though: rather than a traditional
CSP instance specifying m satisfied constraints such as

P (x1, x9, x2, x11, x15) = 1

P (x7, x3, xn, x12, x2) = 1

P (x45, x5, xn−2, x8, x1) = 1

· · ·

the output of Goldreich’s generator should be viewed
as a list of m constraints together with a 0/1 “right-
hand side” specifying whether or not the constraint is



satisfied; e.g.,

P (x1, x9, x2, x11, x15) = 0

P (x7, x3, xn, x12, x2) = 1

P (x45, x5, xn−2, x8, x1) = 0

· · ·

(Alternatively, this can be viewed as a CSP with both P
and ¬P constraints.) Roughly speaking, the generator
is a OWF if these random planted CSP instances are
hard to solve, and it’s a PRG if these random planted
CSP instances are hard to distinguish from completely
random instances (i.e., where the right-hand sides are
uniformly random).

Naturally, the security of Goldreich’s candidate PRG
depends on the predicate P as well as the stretch m.
A number of negative results are known; for example,
if P is an F2-linear function (i.e., an XOR predicate)
then we don’t even get a OWF for any m, since one
can efficiently invert a system of F2-linear equations.
Further negative results are reviewed in Section II-I, but
the most important one to mention is that if P fails
to be “t-wise independent” — equivalently, if P has a
nonzero Fourier coefficient of degree at most t — then
Goldreich’s PRG is not secure when m = Θ̃(nt/2).

These negative results imply that if we want a k-
local PRG with superlinear stretch we’ll need a non-
linear predicate P of arity k ≥ 5 which is at least 3-
wise independent. There is essentially only one such
predicate with k = 5, which we call “TSA” (standing
for “Tri-Sum-And”, the name given to the predicate in
the inapproximability work [8]):

TSA(x1, x2, x3, x4, x5) = x1+x2+x3+x4x5 (mod 2).

Positive evidence.: It is plausible that Goldreich’s
generator, instantiated with TSA, is a 5-local PRG
with stretch m = O(n1.499). In this paper we present
multiple forms of evidence supporting this possibility.
Before stating our results, we briefly review some
previous work supporting the security of Goldreich’s
generator. In 2003, Mossel, Shpilka, and Trevisan [5]
showed that a variant of Goldreich’s generator (using
a not-completely-random 5-uniform hypergraph), when
instantiated with the TSA predicate and m = O(n1.249),
strongly fools all F2-linear tests. More precisely, it’s an
“ε-biased generator” with ε = 2−n

Ω(1)

. This gives some
evidence of security, with a stretch which is polynomial
but short of the potential O(n1.499). Recent work of Ap-
plebaum, Bogdanov, and Rosen [9] extended this result
to hold for all so-called “non-degenerate” predicates P ,
even for purely random k-uniform hypergraphs.

The property of ε-biasedness is only one necessary
condition for PRGs. In the context of “CSP-like” PRGs

it’s natural to investigate attacks involving traditional al-
gorithmic methods for CSPs. Cook, Etesami, Miller, and
Trevisan [10] (building on [11]) showed that a family of
“myopic backtracking” (DPLL-like) algorithms requires
exponential time to invert the TSA-based generator
when m = n. It should be mentioned that these sorts
of algorithms also fail when the predicate P is purely
F2-linear, even though Goldreich’s generator is easy to
break in this case.

Finally, we mention that Applebaum has recently
shown [12] using standard cryptographic techniques that
if Goldreich’s generator with TSA is indeed a PRG (or
even a OWF) with stretch even n1.01, then for every
b, c > 1 there exist PRGs with stretch nc, distinguishing
probability 1/nb, and locality bO(log c). Unfortunately,
this locality is rather large: in practice, the O(·) hides
an infeasibly large constant, and in theory, getting negli-
gible distinguishing probability requires super-constant
locality.

A. Our results

In this work we give evidence showing that Gol-
dreich’s generator, when instantiated with a (t − 1)-
wise independent predicate P , may be secure with
polynomial stretch almost as large as the known barrier:
m = O(nt/2−δ) for any δ > 0. In this section we will
give informal statements of our results; more precise
statements will appear in the sections that follow.

Let’s begin with the particular case of P = TSA.
Improving on the results in [5], [9], we show:

Theorem I.1. Goldreich’s generator with P = TSA
and m = O(n1.499) is a 5-local ε-biased generator for
ε = 2−n

Ω(1)

.

The amount of stretch in this theorem is essentially
optimal, as it is known (see Theorem II.11) that Gol-
dreich’s generator cannot be cryptographically secure
with a 5-local predicate for m = Θ̃(n3/2), due to the
existence of an attack based on SDP/spectral methods.

As mentioned, being ε-biased (i.e., secure against F2-
linear combinations of output bits) is only one very
particular requirement for a cryptographic PRG. Es-
pecially for Goldreich’s “CSP-like” construction, more
strong evidence for the PRG’s security would come
from the failure of “traditional algorithmic tools for
CSPs”. We propose semidefinite programming (SDP)
hierarchies as a natural and powerful class of algo-
rithmic attacks to rule out. Briefly, we will be con-
sidering the “basic” SDP hierarchy known as Sherali–
Adams+ (SA+) [13], [14], [15], as well as the ex-
tremely powerful Lasserre/Parrilo/Sum-of-Squares SDP
hierarchy [16], [17]. (For more details, see Section II.)
Both of these hierarchies are parameterized by a
“rounds/degree” parameter r ∈ N; as r increases we



get stronger and stronger SDPs but the running time
increases as nO(r).

Considering SDP-based attacks on Goldreich’s PRG
is very natural, due to their strength in solving CSPs.
For example, the SA+ hierarchy is known to encap-
sulate many “local” CSP algorithms such as the “k-
consistency” algorithm. In particular, constantly many
rounds of SA+ are known to decide satisfiability of
any “bounded width” CSP [18] (even “robustly” [19]).
They are also known to decide satisfiability of any
CSP instance whose primal instance has constant
treewidth [20]. Raghavendra’s deep theory of CSPs [21]
also shows that SA+ gives essentially the optimal
approximation algorithm for all CSPs assuming the
Unique-Games Conjecture. The Lasserre/Parrilo hierar-
chy is known to be even more powerful (see, e.g., [22]),
with constantly many rounds sufficing to well-solve all
known instances of the Unique-Games problem itself.
Particularly relevant to the cryptographic considerations
in this paper is the following fact: the attack showing
that Goldreich’s PRG is not secure for m = Θ̃(nt/2) if
P is not t-wise independent relies on an SDP/spectral
algorithm (implementable with SA+). The only defi-
ciency of SDP hierarchies in the context of CSPs seems
to be that they are fooled by purely linear predicates;
i.e., they cannot simulate Gaussian elimination.

In light of the power of SDP algorithms in the context
of CSPs, the following result of ours may be considered
good evidence in favor of the security of Goldreich’s
PRG:

Theorem I.2. For t ≥ 3, fix a (t − 1)-independent
predicate P and any δ > 0. Suppose we instantiate
Goldreich’s PRG with m = O(nt/2−δ) and with certain
“bad tuples” removed. (With high probability there are
only o(m) such bad tuples, and they may be initially
recognized and removed in polynomial time, once and
for all.) Then the PRG is perfectly secure against the
attack based on computing the SA+ relaxation value,
even for nΩ(δ) rounds.

Again, we remark that the stretch m = O(nt/2−δ)
is essentially optimal. Our analysis for this theorem
follows work of [23] fairly closely.

Finally, we can significantly strengthen Theorem I.2
for TSA and for a large family of TSA-like predi-
cates. For these predicates we can get near-optimal
stretch with perfect security against the much stronger
Lasserre/Parrilo SDP hierarchy, simply by using a k-
partite random hypergraph structure. The following
theorem was jointly observed by the authors together
with Boaz Barak, Siu On Chan, and Li-Yang Tan:

Theorem I.3. If Goldreich’s PRG is instantiated with P
of the the form P (x) = x1 + · · ·+xt+Q(xt+1, . . . , xk)

(mod 2), m = O(nt/2−δ), and a random n-vertex m-
edge, k-partite hypergraph, then it is perfectly secure
against attacks based on computing the Lasserre/Parrilo
relaxation value, even for nΩ(δ) rounds.

We remark that it is a seemingly very difficult ques-
tion to obtain this result, even for P = TSA, when the
random k-partite hypergraph is replaced simply with a
random k-uniform hypergraph. On the other hand, for
practical cryptographic purposes there seems to be no
reason not to use a k-partite hypergraph structure for the
PRG; in particular, our Theorem I.1 continues to hold
in this setting (and in fact is slightly easier to prove).

B. Organization

In Section II, we give some definitions and back-
ground. We prove Theorem I.1 in Section III, Theo-
rem I.2 in Section IV, and Theorem I.3 in Section V.

II. DEFINITIONS AND PRELIMINARIES

A. Distributions on graphs and hypergraphs

We will need the following two natural distributions
on graphs:

1) Let G(n,m) be the uniform distribution on multi-
graphs with n vertices and m edges. We will also
consider the set of edges to be ordered.

2) Let B(n,m) be the uniform distribution on bi-
partite multigraphs with 2n vertices such that the
vertices are partitioned into two sets of n vertices
and every edge contains exactly one vertex from
each set. Again, the set of edges is ordered.

We will call these the uniform and bipartite models,
respectively. Also, we will use G(n,m) to refer to the
set of all graphs with n vertices and m edges and
likewise call the set of all bipartite graphs with 2n
vertices and m edges B(n,m).

We will also consider the analogous distributions on
hypergraphs:

1) Define H(n,m, k) to be the uniform distribution
over k-uniform hypergraphs with n vertices and
m possibly duplicated hyperedges. We will con-
sidered both the individual hyperedges and the set
of hyperedges to be ordered.

2) For r ≤ k, define H(r)(n,m, k) to be the uniform
distribution over r-partite k-uniform hypergraphs
with rn vertices and m hyperedges, i.e., n-vertex,
m-hyperedge, k-uniform hypergraphs with a par-
tition of the vertices into r sets of size n such that
each hyperedge contains at least one vertex from
each set. Both the individual hyperedges and the
set of hyperedges are ordered.

We will call these the uniform and r-partite models,
respectively. Also, we will use H(n,m, k) to refer to
the set of all k-uniform hypergraphs with n vertices



and m edges and likewise call the set of all r-partite
k-uniform hypergraphs with rn vertices and m edges
H(r)(n,m, k).

Finally, given a hypergraph H , let VH be the vertex
set of H and EH be the set of hyperedges of H .

B. Goldreich’s generator
Goldreich [2] suggested constructing a PRGs/OWF

f : {0, 1}n → {0, 1}m in the following manner given a
predicate P : {0, 1}k → {0, 1}:

1) Draw H from H(n,m, k). We will consider H
to be chosen in advance and fixed. Let Sj be the
tuple corresponding to the jth hyperedge of H .

2) Set the jth output bit of f , f(x)j , to be
P (xSj1

, xSj2
, . . . , xSjk

).
We will denote the instance of Goldreich’s generator
associated with hypergraph H and predicate P as fH,P .

Alternatively, we can also construct f : {0, 1}nk →
{0, 1}m by drawing H from H(k)(n,m, k) in Step
1. We will consider both the uniform and k-partite
models. In addition, we will consider allowing H to be
semirandom, in the sense that we will allow alterations
to be made to H in polynomial time.

C. Properties of predicates
Two properties of a predicate, independence and

algebraic degree, affect the security of its corresponding
PRG.

Definition II.1. A predicate P : {0, 1}k → {0, 1}
is (t − 1)-wise independent if for all |S| ⊆ [k]
such that |S| ≤ t − 1, P̂ (S) = 0, where P̂ (S) =
Ex∼{0,1}k [P (x)(−1)

∑
i∈S xi ] is the Fourier coefficient

of P on S.

Recall that any P : {0, 1}k → {0, 1} can be
expressed as a unique multilinear polynomial over Fk2 .

Definition II.2. The algebraic degree of a predicate P :
{0, 1}k → {0, 1} is the degree of its representation as
a polynomial over Fk2 .

D. The TSA predicate and generalizations
We define the 5-ary predicate TSA(x1, x2, x3, x4, x5)

as follows:

TSA(x1, x2, x3, x4, x5) = x1+x2+x3+x4·x5 mod 2.

Observe that the TSA predicate is 2-wise independent
and has F2 degree 2.

We will show that Goldreich generators based on
TSA are secure against linear tests with stretch up to
Θ(n3/2−δ). In addition, we will consider the following
generalization of TSA:

XORANDt,u(x) = x1 + · · ·+ xt + xt+1 · · ·xt+u.

This predicate is (t − 1)-wise independent and has F2

degree u.

E. Security of PRGs

In general, we call a PRG secure if no algorithm can
clearly distinguish its output from a uniform random
string:

Definition II.3. A pseudorandom generator f :
{0, 1}n → {0, 1}m is ε-secure if for any efficient
algorithm A, the distinguishing advantage∣∣∣∣ Pr
x∼{0,1}n

[A(f(x)) = 1]− Pr
x∼{0,1}m

[A(x) = 1]

∣∣∣∣ ≤ ε.
m− n is called the stretch of f .

Showing that a function satisfies this condition for
every algorithm is hard, so we restrict our attention
to studying the security of Goldreich’s PRG against
two particular classes of algorithms: F2-linear tests and
SDPs.

F. F2-Linear Tests

F2-linear tests have been widely studied as attacks
on PRGs [3], [5], [9]. In this case, A is of the form
L(f) =

∑
i∈S fi for some S ⊆ [m], where the sum is

taken mod 2. Following [9], define bias(f, L) as∣∣∣∣ Pr
x∼{0,1}n

[L(f(x)) = 1]− Pr
x∼{0,1}m

[L(x) = 1]

∣∣∣∣
and

bias(f) = max
L
{bias(f, L)}

where L is any linear test. We will omit the f when the
function we are considering is clear from the context.
Define size(L) = |S|.

G. Distinguishers for Goldreich’s function based on
SDPs

As described in the introduction, we can think of a
function fH,P (x) as having a corresponding CSP

P (xS1
1
, . . . , xS1

k
) = fH,P (x)1

P (xS2
1
, . . . , xS2

k
) = fH,P (x)2

...
P (xSm1 , . . . , xSmk ) = fH,P (x)m.

One particularly powerful class of algorithms for solv-
ing CSPs is semidefinite programs (SDPs). SDPs can
also be used as distinguishers for fH,P : Given y ∈
{0, 1}m, construct the CSP

P (xS1
1
, . . . , xS1

k
) = y1

P (xS2
1
, . . . , xS2

k
) = y2

...
P (xSm1 , . . . , xSmk ) = ym.



If y = fH,P (x) for some x, the CSP has a solution.
However, the CSP is highly unsatisfiable if y is chosen
uniformly at random. Indeed, it is well-known (e.g.,
[23]) that with high probability over the choice of
H only |P−1(1)|

2k
m constraints can be satisfied. If for

y chosen uniformly at random, an SDP returns value
m, i.e., believes that all constraints can be satisfied,
then this fH,P is perfectly secure against attacks based
on computing the value of this SDP. Many known
attacks against Goldreich’s generator use SDPs (see
Section II-I).

1) The Sherali–Adams+ hierarchy: In the Sherali–
Adams+ hierarchy, denoted SA+, gives probability dis-
tributions on assignments to small sets of variables that
are consistent on their intersections. Formally, let µS
be a distribution over {0, 1}S and let {µS} be a family
of such distributions. For T ⊆ S and an assignment
α ∈ {0, 1}S , we denote by α|T the assignment induced
by α on T .

Definition II.4. A family of distributions {µS} is t-
locally consistent if for all T ⊆ S ⊆ [n] such that
|S| ≤ t and for all α ∈ {0, 1}T , the marginal of µS on
T is identical to µT , i.e.,∑

β∈{0,1}S
β|T=α

µS(β) = µT (α).

The Sherali-Adams LP hierarchy requires solutions to
form a family of locally consistent distributions {µS}.
For t rounds of the hierarchy, any solution must be
a t-locally consistent distribution. In the SA+ hierar-
chy, we additionally require that there exist vectors
{vi,b}i∈[n],b∈{0,1} such that Prµij [i = b ∧ j = c] =
〈vi,b, vj,c〉. To show security against SA+, we need to
give consistent local distributions and accompanying
vectors that are supported on satisfying assignments to
the corresponding CSP’s constraints. Such a solution
will have objective function value equal to m even
though only about |P

−1(1)|
2k

m constraints are satisfiable.
2) The Lasserre hierarchy: The Lasserre hierarchy

is a powerful class of SDPs for solving polynomial
optimization problems. We define it as in [22], [24].

Consider a polynomial optimization problem of the
form

inf{p(x) | x ∈ Rn, q1(x) ≥ 0, . . . , qk(x) ≥ 0}, (1)

where p and the qi’s are polynomials. Let R[X]d be the
set of polynomials in X over R of degree at most d. We
call a polynomial s a sum of squares (SOS) if it can be
expressed as the sum of squares of some polynomials.
The degree-d Lasserre relaxation for (1) is then

inf{Ẽ(p) | Ẽ(1) = 1, Ẽ(sqi) ≥ 0, Ẽ(s) ≥ 0 ∀ SOS s}

where Ẽ : R[X]d → R is a linear map. This relaxation
can be solved using semidefinite programming in time
nO(d).

H. Expansion and boundary expansion

To show security against SDP hierarchies, we will
also require the notions of expansion and boundary
expansion used in [23] and [25]. For a hypergraph
H = (V,E) and a set of hyperedges S ⊆ E, we
will define Γ(S) to be the set of all vertices contained
in a hyperedge of S, i.e., Γ(S) =

⋃
e∈S e. We will

define ∂S = {v ∈ V : |Γ(v) ∩ S| = 1} to be the
boundary vertices of S. Now we can define expansion
and boundary expansion:

Definition II.5. A hypergraph is (r, e)-expanding if for
any set of hyperedges S such that |S| ≤ r, |Γ(S)| ≥
e|S|. A hypergraph is (r, e)-boundary expanding if for
any set of hyperedges S such that |S| ≤ r, |∂S| ≥ e|S|.

It is well known that high expansion implies high
boundary expansion (see e.g., [23], [25]):

Lemma II.6. Let H be a k-uniform hypergraph. If H is
(r, k−d)-expanding, then H is also (r, k−2d) boundary
expanding.

In order to prove security against SDP hierarchies, we
will need H−S to have high expansion for sets S such
that |S| ≤ r for some r. This is not true in general, but
[26], [23], [25] give an algorithm for finding a superset
S̄ of S such that S̄ is not too much bigger than S and
H − S̄ has high expansion:

Lemma II.7 ([23]). If H is (r1, e1) expanding and S
is a set of variables such that |S| < (e1 − e2)r1 for
some e2 ∈ (0, e1), then there exists a set S̄ such that
H − S̄ is (r2, e2) expanding, where r2 ≥ r1 − |S|

e1−e2
and S̄ ≤ k+2e1−e2

e1−e2 |S|.

We will call S̄ the closure of S.

I. Known limitations of the Goldreich generator

Herein we review the two known limitations of the
Goldreich generator. (An overview for this material
appears in Applebaum’s survey from TCC 2013 [27].)

The first limitation is a simple one appearing in the
work of Mossel, Shpilka, and Trevisan:

Proposition II.8. ([5].) If the predicate P (x) has de-
gree d as an F2-polynomial then Goldreich’s generator
is not secure unless m ≤ O(nd).

This is simply because there will be an F2-linear rela-
tion among the output bits (by a dimension argument)
and thus the generator will be susceptible to an F2-
linear attack.



The second limitation is somewhat more sophisti-
cated:

Theorem II.9. Let t ≥ 2 and suppose the predicate
P is not t-wise independent — i.e., P has nonzero
correlation with some parity of at most t coordinates.
Then if fG,P : {0, 1}n → {0, 1}m is a random local
function constructed from P with m ≥ Cnt/2 log n for
sufficiently large C, then with high probability fG,P can
be efficiently inverted; i.e., fG,P is not even a OWF.

This theorem is apparently recent “folklore”, known
to some experts [28]; however it does not appear to
be universally known and has never appeared in print.
Therefore we give a sketch of the proof below. Before
doing so, we review some variants and consequences of
this theorem.

The idea behind the theorem dates back to [5]; they
showed the theorem with the weaker bound of m ≤
O(nt), using an F2-linear attack. They further pointed
out that if P has sufficiently large correlation with a
size-2 parity then there is a “correlation attack” based
on semidefinite programming which limits the stretch
to m = O(n). This idea was extended by Bogdanov and
Qiao [29] who showed that if P has any nontrivial cor-
relation with a size-2 parity then Goldreich’s generator
is not even a OWF unless m ≤ O(n). Mossel, Shpilka,
and Trevisan also combined their weaker version of
Theorem II.9 with Proposition II.8 and Siegenthaler’s
Theorem to deduce that the maximum secure stretch of
any k-ary predicate P is at most O(ndk/2e). Siegen-
thaler’s Theorem is the following:

Theorem II.10. ([30].) Suppose P : {0, 1}k → {0, 1}
has F2-degree at least k− t > 1. Then P is not t-wise
independent.

Using the stronger Theorem II.9 we can similarly
deduce the following:

Theorem II.11. Let P : {0, 1}k → {0, 1}, k ≥ 3.
Then Goldreich’s generator is not a secure PRG once
m = Θ̃(n

1
2 b

2
3kc). In particular, for k = 5 the upper

bound is Θ̃(n3/2).

A classical example of a function showing
Siegenthaler’s Theorem is sharp is P = XORANDt,k−t.
It’s plausible that with t = b 2

3kc this function may
reach the limit given in Theorem II.11; see Section VI
for more discussion.

We conclude this section by sketching the proof of
Theorem II.9.

Proof: (Sketch.) By assumption, P̂ (T ) 6= 0 for
some T ⊆ [k] with |T | ≤ t; without loss of generality
we may assume |T | = t ≥ 2. Let ε = P̂ (T ) 6= 0;
we may assume that ε > 0 without loss of generality

(by negating P ). In fact, since P is a function of k
coordinates we must have ε > 2−k. By definition
of P̂ (T ) = ε we have that for a randomly chosen
x ∈ {0, 1}n,

Pr[P (x) = XORT (x)] = 1
2 + 1

2ε; (2)

here we are using the notation XORT (x) =
∑
i∈T xi

(mod 2).
Let f(x)j be the jth output bit of fG,P and let Tj

be the ordered subset of Sj corresponding to T . We
may now state the algorithm for inverting fG,P ; it is
reminiscent both of the Bogdanov–Qiao algorithm and
the Feige–Ofek noisy 3-LIN algorithm [31]:

1) Construct the following t-LIN CSP instance:
For each output bit f(x)j , include the equation
“XORTj (xi) = f(x)j”.

2) Find all pairs (j1, j2) such that the t-tuples Tj1
and Tj2 agree on their first t−1 coordinates. Call
each such pair a matched pair.

3) Construct a 2-LIN CSP instance in the following
way: For each matched pair (j1, j2), add the two
corresponding t-LIN equations to get a 2-LIN
equation: “xTj1,t + xTj2,t = f(x)j1 + f(x)j2”.

4) Solve the resulting 2-LIN instance to obtain an
inverse for fG,P .

We will elaborate on Step 4 shortly. We first observe
that the t-LIN instance constructed in Step 1 can be
thought of as a δ-noisy random planted t-LIN instance,
wherein one first generates a planted, fully satisfiable
t-LIN instance and then flips each “right-hand side”
independently with probability δ = 1

2 −
1
2ε (cf. (2)).

Next, a simple estimate shows that the 2-LIN instance
constructed in Steps 2 and 3 has many equations:

Claim II.12. In a random t-LIN instance with m =
Ω(n

t
2 log n) clauses, with high probability there are

Ω(n log n) pairs of constraints that share the same first
t− 1 coordinates.

Proof: This is a simple extension of the proof of
Lemma 3.1 in [31].

In addition, we can also think of this 2-LIN instance
as being a δ′-noisy random planted instance with the
right-hand side bits flipped independently. The right-
hand side bit is flipped if exactly one of the right-hand
side bits of the corresponding two t-LIN equations is
flipped. This occurs with probability

δ′ = 2δ(1− δ) =
1

2
− 1

2
ε2 ≤ 1

2
− 1

2
2−2k.

Claim II.13. The distribution of the 2-LIN equation
left-hand sides produced by the algorithm is precisely
independent and uniformly random.

Proof: Imagine constructing a 2-LIN instance by
the following equivalent process: Choose the first t− 1



variables of every equation uniformly at random. For
each matched pair, independently choose the last two
variables of this pair. This process is equivalent to the
one described above and demonstrates that the 2-LIN
equations are chosen independently. By symmetry, these
equations are chosen uniformly at random. Therefore,
every equation is chosen independently and uniformly
at random.

So we have a random δ′-noisy planted 2-LIN in-
stance, where the noise δ′ is bound away from 1

2 by
at least the constant 1

22−2k. Håstad [32], [33] showed
that in this setting for Ok(n log n) equations the planted
solution and its complement are the only optimal so-
lutions. This means that if we can solve the 2-LIN
instance, we will get an inverse for fG,P . Finally, we
sketch two well-known algorithms for solving noisy 2-
LIN instances:

1) We can apply the methods of Bogdanov and
Qiao [29]: First use an efficient “2-LIN-Gain”
SDP approximation algorithm (say, the one
of [34]) to find a 2-LIN solution that is correlated
with the planted solution. Then use their “local
search” procedure to recover the planted solution.

2) Alternatively, it seems that a slight modification
of the simpler spectral algorithm of Boppana [35]
(for planted noisy bisection) can be used to di-
rectly find the planted 2-LIN solution.

III. SECURITY AGAINST F2-LINEAR ATTACKS

In this section, we will prove the following theorem:

Theorem III.1. Let m ≤ n3/2−δ for some δ > 0. Then
the following two statements hold:

1) If H ∼ H(n,m, 5), then bias(fH,TSA) ≤ 2−Ω(nδ)

with high probability.
2) If H ∼ H(5)(n,m, 5), then bias(fH,TSA) ≤

2−Ω(nδ) with high probability.

The proof is essentially the same in both the uniform
and 5-partite cases. In the rest of this section, we will
prove this theorem in the uniform case and indicate
differences in the proof of the 5-partite case as they
arise.

A. Outline of the proof

Think of a linear test L as a degree 2 polynomial over
F2, the sum of its constituent TSA functions. We will
refer to this polynomial as L(x). Note that each TSA
predicate is the mod 2 sum of an XOR part (x1+x2+x3)
and an AND part (x4 · x5). L(x) will have degree 1
terms corresponding to the sum of the XOR parts of
its predicates and degree 2 terms corresponding to the
AND parts.

Recall that the bias of a sum of constant-bias in-
dependent bits is exponentially small in the number
of bits. This implies that if L can be divided up into
enough “independent” pieces, it will have small bias.
On the other hand, if L has degree-1 terms that are
“independent” of the degree-2 terms, it will have bias
0.

There are two ways this can happen: Either the degree
2 terms of L can be broken up into a large number of
mostly independent blocks or L has degree 1 terms that
are independent of the degree 2 terms (or both).

This means that in order for L to have large bias both
of the following conditions must hold:

1) The AND parts cannot be broken up into a large
number of mostly independent blocks.

2) The XOR parts must be highly dependent on each
other and the AND parts.

We show that it is very unlikely for both of these
conditions to hold simultaneously, so L must have small
bias with high probability. Previous analyses (e.g., [5],
[9]) considered these conditions individually, showing
that the AND parts are likely to consist of a large
number of mostly independent blocks for large linear
tests and that for small linear tests there are likely to
be nonzero XOR terms that are independent of the
AND terms. However, for higher values of m, it is
likely that there will be medium size tests failing to
meet either condition. We address this issue by showing
that the probability that a linear test fails to meet both
conditions simultaneously is low even though either
condition individually might not hold.

The proof will have four sections. First, we will
formalize conditions 1 and 2. Next, we will bound the
probability that condition 1 is met, and then we will
bound the probability that condition 2 is met. Using
these bounds, we will show that the probability that
condition 1 and condition 2 both occur is very small.

B. When do linear tests have large bias?

The starting point for our analysis is the work of [9],
who proved the following theorem (a combination of
Corollaries 3.3 and 3.7):

Theorem III.2. Let m = n3/2−δ for some δ > 0.
Then for all linear tests L such that size(L) ≤ n2δ

or size(L) ≥ n
4 , the following statements hold:

1) If H ∼ H(n,m, 5), then bias(fH,TSA) ≤ 2−Ω(nδ)

with high probability.
2) If H ∼ H(5)(n,m, 5), then bias(fH,TSA) ≤

2−Ω(nδ) with high probability.

The proof follows the intuition described above.
Actually, [9] only prove this theorem in the uniform
case but their proof also works in the 5-partite case.



We therefore only need to show that
bias(fH,TSA, L) ≤ 2−Ω(nδ) for size(L) ∈

[
n2δ, n4

]
. To

do this, we will use the structure of the polynomial
corresponding to the linear test. Specifically, we will
need the following theorem. See, e.g, [36] for more
details.

Theorem III.3 (Dickson’s Theorem). Any polynomial
p : Fn2 → F2 of degree at most 2 can be expressed as

p(x) = `0(x) +

h∑
i=1

`i(x)`′i(x),

where `0 is an affine function and `1, `′1, . . . , `h, `
′
h are

linearly independent linear functions. h is called the
rank of p. Then the following two statements hold:

1) The bias of p is at most γh for some constant
γ ∈ [0, 1).

2) If `0 is not a constant and is linearly independent
of the `i’s and `′i’s, then p is unbiased.

Given a k-uniform hypergraph H , we can then write
a linear test L(fH,TSA) in this representation: L(x) =

`0(x) +
∑h
i=1 `i(x)`′i(x). We define rkH(L) to be the

rank of L(fH,TSA). We’ll drop H and/or L when it’s
clear from the context. Note that in our case the rank
only depends on the AND parts. Dickson’s Theorem
implies that if bias(fH,TSA, L) > 2−Ω(nδ), then both of
the following two conditions hold:

1) rkH(L) < nδ .
2) `0 is linearly dependent on the `i’s and `′i’s.
Call L bad if bias(fH,TSA, L) > 2−Ω(nδ). Call k bad

if there exists an L of size k such that bias(fH,TSA, L) >

2−Ω(nδ). Now define βk = PrH [k bad]. Call H L-
linearly dependent, or L-LD, if `0 is linearly dependent
on the `i’s and `′i’s. Using the above conditions and the
union bound, we can then write

βk ≤
(
m

k

)
Pr
H

[
rk(L) < nδ

]
·Pr
H

[
H L-LD | rk(L) < nδ

]
for some L = `0 +

∑h
i=1 `i`

′
i. Note that in the 5-partite

case, we don’t need to condition on rk(L) < nδ in the
last term because the variables in the XOR and AND
parts of the predicate are independent. We will show
that βk ≤ 1

n2 for all k in
[
n2δ, n4

]
. In the next two

sections, we will upper bound PrH
[
rkH(L) < nδ

]
and

PrH
[
H L-LD | rkH(L) < nδ

]
.

C. Low rank is unlikely

Let HAND be the graph on the variables of the
instance constructed by putting an edge between two
variables if and only if they both appear as AND
variables in the same hyperedge. Let HAND(L) be the

subgraph of HAND corresponding to the hyperedges
of L. Note that each `i`

′
i product is a complete bi-

partite subgraph of HAND(L). If rk(L) < nδ , there
is a covering of HAND(L) with at most nδ complete
bipartite graphs. We will show that this event is un-
likely to happen. Ideally, we would simply show that
PrH

[
rkH(L) < nδ

]
is small. However, we are first

going to have to exclude some “bad” cases that would
complicate the analysis.

Consider a complete bipartite graph Ks,t such that
s ≤ t. First, we are going to show that it is very
unlikely for HAND to contain any Ks,t with s, t ≥ 5 as a
subgraph. It is therefore also unlikely for any HAND(L)
to contain any Ks,t with s, t ≥ 5 as a subgraph. We will
then restrict our attention to coverings of HAND(L) with
Ksi,ti ’s such that si ≤ 4 and bound the probability that
there is a covering of this form of size at most nδ .
Note that this is the same as saying that we can write
L(x) = `0(x) +

∑h
i=1 `i(x)`′i(x) such that all `i’s (but

not necessarily `′i’s) have support at most 4 and h < nδ .
Write G1 ⊆ G2 if G1 contains G2 as a subgraph.

We begin by showing that it is unlikely for HAND to
contain K5,5, and therefore any Ks,t with s, t ≥ 5, as
a subgraph.

Lemma III.4. For H ∼ H(n,m, 5) and H ∼
H(5)(n,m, 5),

Pr
H

[K5,5 ⊆ HAND] ≤ O
(
n−5/2

)
.

Proof: We will prove this lemma in the case of
H ∼ H(n,m, k) and discuss how this differs from the
H ∼ H(k)(n,m, k) case at the end.

In the uniform case, HAND is distributed like
G(n,m). Since K5,5 contains 25 edges and HAND

contains m total edges, we can write

Pr
H

[K5,5 ⊆ HAND] ≤
(
m

25

)
Pr[edges of T form K5,5]

for a particular set T containing exactly 25 edges. Each
edge of T has

(
n(n−1)

2

)
choices of endpoints, so there

are
(
n(n−1)

2

)25

possible choices of endpoints for all
edges of T . K5,5 has 10 vertices. There are at most n10

choices for this set of 10 vertices and 25! orderings of its
edges so the number of choices of endpoints resulting
in a K5,5 is at most 25! ·n10. Since HAND is distributed
uniformly over graphs with n vertices and m edges,

Pr[edges of T form K5,5] ≤ 25! · n10(
n(n−1)

2

)25

≤ e · 225 · 25!

n40
.



Therefore,

Pr
H

[K5,5 ⊆ HAND] ≤
(
m

25

)
e · 225 · 25!

n40

= O
(
n−5/2

)
,

proving the lemma in the uniform case.
In the 5-partite case, HAND is distributed as B(n,m).

Each edge can have n2 possible endpoints. A set T of
25 edges therefore has n50 possible endpoints. There
are still at most n10 possible sets of 5 left vertices and
5 right vertices and 25! possible orderings of the edges
on these vertices, so there are at most 25! ·n10 possible
choices of edges that result in a K5,5. The rest of the
proof then goes through as above.

Next, we show that it is unlikely for HAND(L) to
have a small covering of Ksi,ti ’s with all si ≤ 4 for all
i.

Lemma III.5. For any size k linear test L,
1) If H ∼ H(n,m, 5),

Pr
H

[
rk < nδ | no K5,5

]
≤ e28kn4nδ−k(1−δ).

2) If H ∼ H(5)(n,m, 5),

Pr
H

[
rk < nδ | no K5,5

]
≤ e24nδ4kn4nδ−k(1−δ).

Proof: We begin with the uniform case. In order for
HAND(L) to a have a small covering of Ksi,ti ’s such
that all si ≤ 4, there must be a small set of vertices
that has many edges adjacent to it. We will bound the
probability that such a set exists.

Let Ci be the smaller of the two sets of vertices of
Ksi,ti . We need only consider coverings of HAND with
at most nδ Ksi,ti ’s such that |Ci| ≤ 4. Let C =

⋃
i Ci.

Every edge of HAND(L) must be adjacent to some
vertex of C so |C| ≤ 4nδ . We can then upper bound
PrH

[
rk(L) < nδ | no K5,5

]
by∑

C⊆V
|C|≤4nδ

Pr[all HAND(L) edges adjacent to C].

The number of edges adjacent to some vertex in C is
at most 4n1+δ . The total number of possible edges is(
n
2

)
and each edge is chosen uniformly at random since

HAND is distributed like G(n,m), so

Pr[all HAND(L) edges adjacent to C] ≤

(
4n1+δ(
n
2

) )k
≤ e8kn−k(1−δ).

Summing over all possibles sets C, we have that

Pr
H

[
rk(L) < nδ | no K5,5

]
≤

∑
C⊆V
|C|≤4nδ

e8kn−k(1−δ)

≤ e28kn4nδ−k(1−δ).

In the 5-partite case, HAND has 2n vertices and the
number of ways of choosing a subset of size at most
4nδ is then at most (2n + 1)4nδ . The probability that
every edge touches at least one vertex of C is at most(

4n1+δ

n2

)k
= 4kn−k(1−δ) since HAND is distributed as

B(n,m). Plugging these values into the above proof
gives the desired result.

D. Linear dependence is unlikely

In this section, we will bound the probability that `0
is linearly dependent on the `i’s and `′i’s. Call H L-
dense if rkH(L) < nδ and K5,5 6⊆ HAND. Specifically,
we will prove the following lemma:

Lemma III.6. For any size k linear test L,
1) If H ∼ H(n,m, 5),

Pr
H

[LD | dense] ≤ 3

2
e322nδk(9e2k)3k/2n−3k/2.

2) If H ∼ H(5)(n,m, 5),

Pr
H

[LD | dense] ≤ 3

2
· 22nδk(9e2k)3k/2n−3k/2.

Proof: Let L = `0 +
∑h
i=1 `i`

′
i and U =⋃h

i=1{`i, `′i}. Then by the union bound,

Pr
H

[LD | dense] ≤
∑
T⊆U

Pr
H

[
`0 =

∑
`∈T

`

∣∣∣∣∣ dense

]
.

Since there are at most 22h ≤ 22nδ subsets of U , it
suffices to show that for any u ∈ {0, 1}n, the following
hold:

1) If H ∼ H(n,m, 5),

Pr
H

[`0 = u | dense] ≤ 3

2
e3k(9e2k)3k/2n−3k/2.

2) If H ∼ H(5)(n,m, 5),

Pr
H

[`0 = u | dense] ≤ 3

2
k(9e2k)3k/2n−3k/2.

To prove these statements, we need to determine how
conditioning on the rank affects the XOR parts. We will
start with the uniform case. Call G ∈ G(n,m) L-dense
if any 5-uniform hypergraph H such that HAND = G
is L-dense. Then define

AL,h = {G ∈ G(n,m) | G L-dense},

We can then write Then PrH [`0 = u | dense] is equal
to

Pr
H

[`0 = u | dense] =
∑

G∈AL,h

(
Pr
H

[HAND = G | dense]

·Pr
H

[`0 = u | HAND = G, dense]
)
.



Now observe that the rank of L as well as whether or
not HAND contains K5,5 as a subgraph is completely
determined by HAND, so this is equal to∑

G∈AL,h

(
Pr
H

[HAND = G | dense]

·Pr
H

[`0 = u | HAND = G]
)

≤ max
G∈AL,h

Pr
H

[`0 = u | HAND = G] .

For the 5-partite case, we can replace AL,h with

A′L,h = {G ∈ B(n,m) | G L-dense}.

The same argument shows that PrH [`0 = u | dense] is
at most

max
G∈A′L,h

Pr
H

[`0 = u | HAND = G]

for H ∼ H(5)(n,m, 5). As a result, it suffices to prove
this claim:

Claim III.7. 1) If H ∼ H(n,m, 5) and G ∈
G(m,n), then PrH [`0 = u | HAND = G] is up-
per bounded by

3

2
e3k(9e2k)3k/2n−3k/2.

2) If H ∼ H(5)(n,m, 5) and G ∈ B(m,n), then
PrH [`0 = u | HAND = G] is upper bounded by

3

2
k(9e2k)3k/2n−3k/2.

We begin with the uniform case. It will be con-
venient for us to think of the process of drawing
H ∼ H(n,m, k) in an equivalent sequential way: For
i from 1 to m, pick an ordered subset of size k from
[n] uniformly at random to be the ith hyperedge of H .
For each ordered hyperedge, we pick the first variable
uniformly at random from [n]. We then pick the second
variable uniformly at random from the remaining n− 1
variables and continue in this manner for the remaining
three variables.

Recall that `0 is the sum of the XOR parts of all
hyperedges of L. Think of the process of constructing
the XOR parts of L as filling in 3k blanks with
variables. Let s be the size of the support of u. In order
for `0 = u, we need s of these 3k blanks to be the
variables in the support of u. Define ET to be the event
that a specific set T of s blanks contains the variables
of u. The remaining 3k − s blanks must be filled with
pairs of variables that add to 0. Define the event FT
to be the event that all blanks not in T are filled with
matching pairs of variables. We can then write

Pr
H

[`0 = u | HAND = G] ≤
∑
T⊆[3k]
|T |=s

Pr
H

[ET ]Pr
H

[FT | ET ].

First, we will bound PrH [ET ]. There are s! possible
orderings in which we could fill in the blanks of T with
the elements of u. For each of these orderings, we need
to bound the probability that all s blanks are assigned
correctly. The probability that a single blank is filled in
with a particular variable x is at most 1

n−4 : We have
already set the two AND variables for this hyperedge
and have set at most two XOR variables, so the blank
is filled in by choosing a variable uniformly at random
from at least n − 4 unused choices. The probability
that all s blanks are filled in correctly is then at most(

1
n−4

)s
. We have therefore shown that

Pr
H

[ET ] ≤ s!
(

1

n− 4

)s
.

To bound PrH [FT | ET ], observe that all 3k−s blanks
not in T must contain i variables for some i ≤ 3k−s

2 .
When we fill in each blank not in T , we then have i
possible choices out of at least n−4 total choices. This
implies that

Pr
H

[FT | ET ] ≤

3k−s
2∑
i=1

(
n

i

)(
i

n− 4

)3k−s

≤ 3k

2

(
n

3k−s
2

)( 3k−s
2

n− 4

)3k−s

.

We have shown so far that PrH [`0 = u | HAND] is
at most(

3k

s

)
s!

(
1

n− 4

)s
· 3k

2

(
n

3k−s
2

)( 3k−s
2

n− 4

)3k−s

.

Applying the bounds
(
n
i

)
≤
(
ne
i

)i
and n! ≤ nn and then

combining like terms completes the proof in the uniform
case. In the 5-partite case, observe that each variable of
each hyperedge is selected independently. This means
that the probability that we fill in a single blank in the
XOR part with a particular variable is 1

n .The rest of the
proof follows as described above.

E. Putting the pieces together

Now we will combine the results of the previous two
sections to complete the proof of Theorem III.1. First,
we will show that βk, the probability that any linear test
of size k fails, is at most 1

n2 . Recall that we simplified
our analysis of the low rank case by ruling out instances
in which K5,5 is a subgraph of HAND. We can therefore
write

βk ≤ Pr
H

[no K5,5] ·Pr
H

[k bad | no K5,5] + Pr
H

[K5,5]

≤ Pr
H

[k bad | no K5,5] + Pr
H

[K5,5]



where PrH [k bad | no K5,5] is at most(
m

k

)
Pr
H

[
rk(L) < nδ | no K5,5

]
·Pr
H

[L-LD | L-dense] .

and L is some linear test of size k. In the uniform case,
we can plug in the results of Lemmas III.4, III.5, and
III.6 and then simplify using

(
m
k

)
≤
(
me
k

)k
to get

βk ≤
3

2
e5k(216e4)k22nγn4nγ−(1/2+δ−γ)k+O

(
n−5/2

)
.

Since k = Ω(n2δ), we have that βk ≤ 1
n2 for large

enough n. Plugging in the bounds for the 5-partite case
and simplifying gives the same result.

Taking a union bound over all of the at most n
possible values of k ∈

[
n2δ, n4

]
gives us that

Pr
H

[
any k ∈

[
n2δ,

n

4

]
bad
]
≤ 1

n
.

Combining this result with Theorem III.2 using a union
bound completes the proof of Theorem III.1.

IV. SECURITY AGAINST SA+ ATTACKS

In this section, we will prove Theorem I.2:
Theorem I.2 restated.: For t ≥ 3, fix a (t − 1)-

independent predicate P and any δ > 0. Suppose we
instantiate Goldreich’s PRG with m = O(nt/2−δ) and
with certain “bad tuples” removed. (With high proba-
bility there are only o(m) such bad tuples, and they
may be initially recognized and removed in polynomial
time, once and for all.) Then the PRG is perfectly
secure against the attack based on computing the SA+

relaxation value, even for nΩ(δ) rounds.

A. Outline of the proof

Recall that in order to show that Goldreich’s PRG
is secure against attacks based on computing the SA+

value, we need to prove that the SA+ relaxation of the
CSP fH,P (x) = y has a solution with value m for a
random string in y ∈ {0, 1}m with high probability over
H . To do this, we need to give consistent local distribu-
tions on satisfying assignments and vectors whose dot
products match the probabilities of pairs of assignments
from these distributions. Note that in this section we will
only consider H drawn from H(n,m, k).

The first two parts of the proof very closely follow the
analysis of [23], whose results we generalize for higher
values of m and general t. We start by showing that ran-
dom k-uniform hypergraphs have high expansion. We
then show that high expansion suffices to guarantee the
existance of locally-consistent distributions supported
on satisfying assignments. In [23], the existance of SA+

vectors relies on assignments to pairs of variables being
uniformly distributed. This follows from the fact that the
hypergraph corresponding to the instance still has high
expansion, even when any two vertices are deleted. This

property no longer holds for higher values of m; it is
likely that there are small sets of hyperedges that do
not have sufficiently high expansion. However, we can
instead show that there are only o(m) of these sets.
We can then simply remove these hyperedges to get a
hypergraph that does have the expansion property we
want, allowing us to construct SA+ vectors.

B. Random instances are well-behaved

First, we restate the well-known fact that random k-
uniform hypergraphs have high expansion (e.g., [23],
[25]).

Lemma IV.1. Let δ > 0. Consider H ∼ H(n,m, k)
with m = Ω

(
nt/2−δ

)
. With high probability, H is(

nΩt(δ), k − t
2 + δ

2

)
-expanding.

Proof: The proof is essentially the same as the
proof of Lemma 4.1 in [23], except we consider higher
values of m and general values of t. We also consider
the edges of H to be ordered, as the predicates we
consider may not be symmetric. We want to upper
bound the probability that any set of r ≤ nΩt(δ) edges
contains less than

(
k − t

2 + δ
2

)
r vertices.

We first consider the probability that any set of r
tuples contains at most v vertices. Call such a set (r, v)-
bad and set PrH [any (r, v)-bad S] = pr,v By a union
bound, we have

pr,v ≤
(
m

r

)
Pr
H

[Γ(T ) ≤ v]

where T is a specific tuple of r edges. PrH [Γ(T ) ≤ v]
is upper bounded by

(# sets S of v vertices) · (# sets of r edges in S)

(# ways of choosing r edges)
.

We can then write

pr,v ≤ r!
(
m

r

)
·
(
n
v

)(
k!(vk)
r

)
(k!
(
n
k

)
)r
.

By applying the inequalities (ni )i ≤
(
n
i

)
≤ (nei )i and

j! ≤ jj and then combining terms, we obtain

pr,v ≤ e(2+k)r+vvkr−vr−rnv−krmr.

We want to set v =
⌊(
k − t

2 + δ
2

)
r
⌋
. Note that all terms

either don’t contain v or are increasing in v except
for v−v . However, because we have an nv term and
n ≥ v, we can conclude that this entire expression
is increasing in v. It is therefore upper bounded by
setting v =

(
k − t

2 + δ
2

)
r. Simplifying, we see that

pr,b(k− t2 + δ
2 )rc is at most(
C(k, t)mn−(t/2−δ/2)rt/2−1−δ/2

)r
.

where C(k, t) is some constant depending on k and t.



For m = nt/2−δ , we can then upper bound the prob-
ability that a set of r edges has at most

(
k − t

2 + δ
2

)
r

variables for any r ≤ nδ/(t−2)by

bnδ/(t−2)c∑
r=1

pr,b(k− t2 + δ
2 )rc.

Plugging in the above bound gives that this is at
most n−Ω(δ). Therefore, H has (nδ/(t−2), k − t

2 + δ
2 )

expansion with high probability.
Note that this lemma with Lemma II.6 implies that

H ∼ H(n,m, k) has (nδ/(t−2), k − t + δ) boundary
expansion.

C. Obtaining consistent distributions

In this section, we will use the high expansion of
a random instance to construct a family of locally
consistent distributions. We will then use these locally
consistent distributions to show that the SA+ relaxation
has value m.

For a set of variables S, let C(S) be the set of
hyperedges (constraints for the corresponding CSP) of
H completely contained in S. As in [23] and [25], we
define the distribution µS over assignments {0, 1}S to
be the uniform distribution over assignments satisfying
of constraints in C(S). This means that µS(α) > 0
only if α satisfies all constraints in C(S). [23] and [25]
actually define distributions over assignments to sets
based on the existence for each constraint of a pairwise
independent distribution over satisfying assignments to
that constraint. Their distribution is equivalent to the
uniform distribution over satisfying assignments in the
case that for every constraint the uniform distribution
over satisfying assigments to that constraint is pairwise
independent. Our results can be extended in a similar
manner to the case in which we have some other non-
uniform t-wise independent distribution over satisfying
assignments.

To show that the µS distributions are consistent, we
require the following generalization of [23] Claim 3.3
to (t− 1)-wise independent predicates.

Lemma IV.2. Let S1 ⊆ S2 be two sets of variables such
that both H and H − S1 are (r, k − t + ε)-boundary
expanding for some ε > 0 and |C(S2)| ≤ r. Then
there exists an ordering Ci1 , . . . , Ci` of the constraints
in C(S2) \ C(S1) and a partition of S2 \ S1 into sets
of variables F1, . . . , F`, F`+1 such that for all j ≤ `,
Fj ⊆ Cij , |Fj | ≥ k − t+ 1, and Fj ∩ (∪a>jCia) = ∅.

This follows by the same argument as in [23]. In [23],
the authors assume (r, k − 3 + ε) boundary expansion
and use the pigeonhole principle to select a sequence
of constraints each contributing at least k− 2 variables
to the boundary of C(S2) \ C(S1). Instead, we assume

(r, k−t+ε) boundary expansion and use the pigeonhole
principle in exactly the same manner to select a se-
quence of constraints each contributing at least k−t+1
variables to the boundary of C(S2) \ C(S1).

Using this lemma, it is easy to show a generalization
of [23] Lemma 3.2:

Lemma IV.3. Let S1 ⊆ S2 be two sets of variables
such that both G and G−S1 are (r, k−t+ε)-boundary
expanding for some ε > 0 and |C(S2)| ≤ r. Then for
any α1 ∈ {0, 1}S1 , the marginal of µS2

on S1 is equal
to µS1

, i.e., ∑
α2∈{0,1}S2

α2(S1)=α1

µS2(α2) = µS1(α1).

This can be proved in exactly the same manner as
[23] Lemma 3.2.

For any set S of size at most Ok,δ(n
δ/(t−2)),

we can calculate a closure set S̄ for which G − S̄
is
(
Ok,δ(n

δ/(t−2)), k − t+ δ
2

)
-boundary expanding and

|S̄| = Ok,δ(|S|) by Theorem 3.1 of [23]. We then
consider the family of distributions µ′ defined so that µ′S
is the uniform distribution over satisfying assignments
to the constraints in C(S̄). Using Lemma IV.3, it is
again easy to show that the family of distributions {µ′S}
is s-locally consistent for s = Ωk,δ(n

δ/(t−2)) exactly
as in [23]. This gives us an s-round Sherali-Adams
solution.

D. Constructing SA+ vectors

To obtain an SA+ solution, it remains to show that
we can construct vectors {vi,b}i∈[n],b∈{0,1} such that
〈vi,b, vj,c〉 = Prµ′ij [i = b ∧ j = c]. In this section,
we will give a sufficient condition from [23] for the
existence of these vectors. Specifically, this paper shows
that if µ distributions are uniform on assignments to
every pair of variables, then we can find vectors v
satisfying the above condition. If the hypergraph has
high enough expansion, the µ distributions are uniform
as desired.

We now fill in the details. Consider the matrix M ∈
R([n]×{0,1})×([n]×{0,1}) indexed by variable-assignment
pairs:

M(i,b),(j,c) = Pr
µ′ij

[i = b ∧ j = c].

To obtain vectors satisfying the above condition, it
suffices to show the M is positive semidefinite. The
Cholesky decomposition of M then produces vectors
vi,b satisfying 〈vi,b, vj,c〉 = Prµ′ij [i = b ∧ j = c].

Now consider the following matrix M ′:

M ′(i,b),(j,c) =


1
4 if i 6= j
1
2 if i = j and b = c

0 if i = j and b 6= c.



In [23], the authors proved the following lemma:

Lemma IV.4 ([23] Lemma 4.4). M ′ is positive semidef-
inite.

This means that if M were equal to M ′, we
would be done. Unfortunately, this is not quite true.
[23] then gives expansion conditions under which
M((i, b), (j, c)) = M ′((i, b), (j, c)). The following
lemma is implicit in the proof of [23] Claim 3.4:

Lemma IV.5. Let P be a (t−1)-wise independent arity
k predicate and let H be a k-uniform hypergraph.

1) If H and H−{i} are both (r, k−t+ε)-boundary
expanding for some ε > 0, then for any set of
variables S such that |S| ≤ r, Prµ′S [i = b] = 1

2 .
2) If H and H−{i, j} are both (r, k−t+ε)-boundary

expanding for some ε > 0, then for any set of
variables S such that |S| ≤ r, Prµ′S [i = b ∧ j =

c] = 1
4 .

This follows immediately from Lemma IV.3 by ob-
serving that {i} and {i, j} cannot contain all variables
of any constraint, so µ assigns i and i, j uniformly at
random.

For the smaller values of m that [23] deal with,
these expansion conditions hold. However, for higher
values of m, it is likely that there do exist sets of
vertices that violate this condition. We can still show
that the conditions of Lemma IV.5 are met for all except
constant size sets.

Lemma IV.6. Let H be a
(
r, k − t+ δ

2

)
-boundary ex-

panding k-regular hypergraph. For all i, j, the following
holds: If S is a set of vertices in H−{i, j} and |S| ≥ 5

δ ,
then |∂S| ≥ (k − t+ ε)|S| for some ε > 0.

Proof: Since H is
(
r, k − t+ δ

2

)
-boundary ex-

panding,

|∂S| ≥
(
k − t+

δ

2

)
|S| − 2 ≥ (k − t+ ε) |S|

for ε = δ
10 and |S| ≥ 5

δ .
We now need to address the existence of constant

size sets S that have too few boundary variables. Note
that if for every i, j and every subset of vertices S of
H such that |S| ≤ 5

δ , it held that

|∂S| ≥ (k − t)|S|+ 3 (3)

then H − {i, j} would be (nΩ(δ), k − t + ε)-boundary
expanding for some ε > 0, M = M ′ and we would
be done. We will show that with high probability there
are a sublinear number of hyperedges violating (3). We
can then delete all of them to obtain a new hypergraph
H ′ for which M = M ′ and that still has Ω

(
nt/2−δ

)
hyperedges. The corresponding local function fH′,P
therefore is secure against SA+ attacks.

E. There are few bad hyperedges

Define W to be

#

{
S ⊆ EH

∣∣∣∣ |S| ≤ 5

δ
, |∂S| ≤ (k − t)|S|+ 2

}
.

It then remains for us to show the following lemma:

Lemma IV.7. With high probability, W = o(m).

Proof: Let W =
#
{
S ⊆ H such that |S| ≤ 5

δ and |∂S| ≤ (k − t)|S|+ 2
}

.
We will first show that E[W ] = O(n1−δ) and then use
Markov’s Inequality to conclude that W = o(m) with
high probability.

To bound E[W ], we first need to bound Pr[|∂T | = s]
for some particular set T of r hyperedges. We can think
of selecting variables for these r hyperedges as filling
rk blanks with variables. We know that s of these blanks
must be the boundary vertices of T . Every variable
that occurs in the remaining kr − s blanks must occur
at least twice. Otherwise, T would have more than s
boundary vertices. This means that there are at most
kr−s

2 variables in these kr − s blanks. We can then
write

Pr[|∂T | = s] =
#{S ⊆ EH | |S| = r, |∂S| = s}

#{S ⊆ EH | |S| = r}

≤
(
kr
s

)
nsn

kr−s
2

(
kr−s

2

)kr−s((
n
k

)
k!
)r

because there are
(
kr
s

)
choices of blanks to fill with

boundary vertices, at most ns choices for the s boundary
vertices, at most n

kr−s
2 choices of vertices for the

remaining kr−s blanks, and at most
(
kr−s

2

)kr−s
ways

of filling these kr− s blanks with the selected vertices.
Since k, r, and s are constants, we get that

Pr
H

[|∂T | = s] = O
(
n
s−kr

2

)
.

Let Wr,s = #{S | |S| = r, |∂S| = s}. Since there are(
O(nt/2−δ)

r

)
ways of choosing r hyperedges,

E[Wr,s] =

(
O(nt/2−δ)

r

)
·O
(
n
s−kr

2

)
= O

(
n
s−r(k−t)

2 −δr
)
.

Now we can bound E[W ]:

E[W ] =

5/δ∑
r=1

r(k−t)+2∑
s=0

E[Wr,s]

= O
(
n1−δ) .

Applying Markov’s Inequality, we see that

Pr
[
W ≥ n3/2−2δ

]
≤ O

(
n−(1/2−δ)

)
.

So W = o(m) with high probability.



We therefore have o(m) “bad” sets of hyperedges.
Each such sets contains at most 5

δ hyperedges, so the
number of hyperedges participating in at least one of
these small, low-expansion sets is o(m). We can find
and delete all such sets in time nO(1/δ). This gives us a
new hypergraph H ′ with m′ = Ω(nt/2−δ) hyperedges
for which fH′,P is secure against the attack based on
computing the SA+ relaxation value. This completes the
proof of Theorem I.2.

Remark IV.8. Observe that these semirandom instances
H ′ are also secure against linear tests when P = TSA.
Every linear test that can be applied to fH′,TSA can also
be applied to fH,TSA, as we have only deleted hyper-
edges. Since every linear test for fH,TSA is unbiased
with high probability by the analysis of Section III, it
must also be the case that every linear test for fH′,TSA
is unbiased with high probability.

V. SECURITY AGAINST LASSERRE/PARRILO
ATTACKS

Herein we show that if Goldreich’s generator is
instantiated with P = TSA and a random 5-partite
hypergraph with m = O(n1.499) constraints then it
is perfectly secure against nΩ(1)-round Lasserre/Parrilo
attacks. More generally and more precisely, we prove
the following:

Theorem V.1. Fix integer constants 3 ≤ t ≤ k and let
P : {0, 1}k → {0, 1} be any predicate of the form
P (x) = x1 + · · · + xt + Q(xt+1, . . . , xk) (mod 2),
where Q is any (k−t)-ary predicate. Fix also a constant
δ > 0. Suppose that we choose a list of m = O(nt/2−ε)
tuples S1, . . . , Sm ⊂ [n]k independently and uniformly
at random. Then except with probability at most on(1)
we have the following: For every choice of “right-hand
sides” b1, . . . , bm ∈ {0, 1}, the constraint satisfaction
problem on kn variables x1

1, . . . , x
1
n, . . . , x

k
1 , . . . , x

k
n in

which the jth constraint (j ∈ [m]) is

P (x1
Sj1
, x2
Sj2
, . . . , xk

Sjk
) = bj

has a value-1 Lasserre/Parrilo SDP relaxation value for
up to r = Ω(n(2/t)δ) rounds.

In particular, when this CSP is viewed as a PRG map-
ping {0, 1}kn → {0, 1}m, the r-round Lasserre/Parrilo
SDP has 0 advantage in distinguishing the generator’s
output from a truly random m-bit string.

Proof: Note that Schoenebeck [37] has proven
precisely this theorem in the case that k = t; i.e., when

P is simply the t-ary XOR predicate.1 In particular,
one can view his proof as constructing an appropriate
“pseudoexpectation” operator Ẽ[·] (see [22]) for degree-
2r polynomials under which all t-XOR constraints are
satisfied with “pseudoprobability 1”.

In our more general setting we can easily obtain
the required pseudoexpectation operator by a black-box
reduction. The pseudoexpectation operator can simply
“deterministically commit” to an arbitrary fixed setting
of the variables xji for t < j ≤ k — say, all-1’s. This
requires us to produce an appropriate pseudoexpectation
operator for the resulting t-XOR system (with new
jth right-hand side equal to b′j = bj + Q(1, . . . , 1)
(mod 2)); but Schoenebeck’s theorem gives us one for
any right-hand sides b′j .

VI. CONCLUSIONS

It seems that that the most promising way to use
Goldreich’s generator to build a k-local PRG is to take a
k-partite random hypergraph structure with the predicate
P = XORANDt,k−t, where t =

⌊
2
3k
⌋
. One might

conjecture that this PRG is secure with any stretch
m = o(n

1
2 b

2
3kc) — in particular, stretch n3/2 for k = 5,

and stretch nk/3 for k divisible by 3. If true, this would
be optimal stretch in light of Theorem II.11.

In this work we have given two kinds of evidence
supporting this conjecture for k = 5; we have shown
security against all F2-linear attacks and against the
Lasserre/Parrilo SDP hierarchy. We also extended the
latter evidence to all larger values of k. A good open
question that remains is to also extend the former
evidence; i.e., to show that Goldreich’s generator with
P = XORANDt,k−t is ε-biased for ε = 1/nω(1)

when m = o(nt/2).
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