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INTRODUCTION

In attempting to force ALVINN1 into their already bulging symbolist tent, Vera and Simon (1993) have
burst the seams of the Physical Symbol System Hypothesis (Newell and Simon, 1976; Newell, 1980a). We
would like to present another view of representation in connectionist networks and respond to statements
about ALVINN by both Vera and Simon and Greeno and Moore (1993). In so doing, we will reconstruct the
PSSH.

The primary error in Vera and Simon’s argument is to mistake signal for symbol: “We call patterns
symbols when they can designate or denote” (p. 9). This leaves no possibility of non-symbolic repre-
sentations. On this view, patterns of neuronal activity in the retina (p. 125), and presumably even the
elementary signalling conventions of doorbells and vending machines (Clancey, 1993, p. 89) are elevated
to symbol systems, rendering the concept of “symbol” meaningless. Vera and Simon also refer to ALVINN
in particular as a “connectionist symbol-processing system” (p. 79), and note that it is simulated by a von
Neumann symbol processor. This conflates what should be two distinct levels of representation, and leads
to the mistaken conclusion that any implementation of a Turing-computable function is a symbol processor.
We believe that symbol processors are a very special type of device; this is what gives the PSSH significance
as a theory of intelligence.

PHYSICAL SYMBOL SYSTEMS

A concise and elegant formulation of symbol systems can be found in (Harnad, 1990), drawing on earlier
work by Newell, Simon, Fodor, Pylyshyn, and others. Two key clauses in Harnad’s definition distinguish
symbols from signals:

� Symbols have arbitrary shapes unrelated to their meanings.

� Symbol structures are recursively composable by rule, forming a combinatorial representation.

Why should the shapes of symbols be arbitrary? So that symbols can designate anything at all:

1ALVINN is the neural net road follower componentof CMU’s autonomous vehicle, Navlab (Pomerleau et al., 1991; Pomerleau,
1993).
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A symbol may be used to designate any expression. That is, given a symbol, it is not prescribed
a priori what expressions it can designate. This arbitrariness pertains only to symbols; the
symbol tokens and their mutual relations determine what object is designated by a complex
expression. (Newell and Simon, 1976)

Another reason to make symbols arbitrary is so that the problem of inference cannot be finessed
by stipulating special causal properties of symbols with just the right shapes. Arbitrariness insures that
inference rules can only rely on the identities of symbols; there can be no magical properties hidden in their
physical realization.

Why must symbol structures be composable? A central claim of the Physical Symbol System Hypothesis
is that combinatorial expressive power is a prerequisite for general intelligent action.2 Recursively com-
posable structures constitute a representation language, and we believe this is what Clancey (1993) meant
by his use of the term “linguistic representation.” Some specialized information processing tasks do not
require a combinatorial representation language, but the PSSH tells us that such a language is unavoidable
in a generally intelligent agent.

Analog numerical representations violate both of the above requirements for a physical symbol system.
First, they lack the capability of arbitrary designation, because they are constrained to maintain an analogical
relationship to the thing they represent. Consider, for example, the homomorphism between voltage levels
in a thermostat and temperature values in a room. Each voltage level is a distinct analog pattern, but not an
arbitrary one. And relationships between analog patterns (e.g., that voltage level x denotes a warmer room
state than voltage level y) are not defined explicitly by symbol structures or symbol manipulation rules.
Rather, they are predetermined by the causal structure of the thermostat sensor—the source of the analogy
between voltage and temperature.

Analog representations also appear to lack combinatorial power. One may speculate about uses for
fractal structures or chaotic attractors in knowledge representation schemes, but it is not evident to us how
to achieve useful compositionality in a low dimensional, analog numerical system.

We do not mean to suggest that all connectionist networks are necessarily nonsymbolic. Some models
do address the requirements for being a symbol system. Arbitrary designation is certainly achievable, and
the issue of compositionality has been explored by Touretzky (1990), Smolensky (1990), Pollack (1990),
and Elman (1991). The latter two have demonstrated that recurrent backpropagation networks can construct
representations with at least limited recursive combinatorial power. But unlike the case in symbolic systems,
compositionality in connnectionist networks need not be discrete and concatenative (van Gelder, 1990).

LEVELS OF PROCESSING

We agree with Vera and Simon that the scope of the PSSH is by no means limited to use of symbols in
conscious reasoning. It seems quite plausible to assume, for example, that human linguistic behavior is a
result of extensive symbol processing at a level impenetrable to introspection. However, we differ with Vera
and Simon on the issue of whether low-level processing of meaningful signals should be deemed symbol
processing. In particular, processing schemes that do not employ a combinatorial representation should not
be regarded as symbol systems.

2This idea is widespread in cognitive science. See (Fodor and Pylyshyn, 1988) for its relevance to connectionist models.
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If the domain is narrow enough, considerable intellectual power may be possible from systems
that are not physical symbol systems. (Newell, 1980a, p. 171)

Rather than acknowledge this possibility, Vera and Simon have mistakenly tried to define all processing
as symbolic. In describing Brooks’ creatures, they say that “sensory information is converted to symbols,
which are then processed and evaluated in order to determine the appropriate motor symbols that lead to
behavior” (p. 34). Yet elsewhere they confer symbolic status on retinal images themselves, noting that:

As one moves upstream in the visual system, increasing levels of abstraction and combination
are found in the representation of an image. It is wholly arbitrary to call one step in this sequence
symbolic, but deny that label to its predecessor. (Vera and Simon, 1993, p. 125)

We disagree. A representation becomes a symbol system at the point where it acquires combinatorial
power. As one moves upstream in the visual system, processing splits into several pathways (Kandel,
Schwartz, and Jessell, 1991, ch. 29). One of these leads, via the lateral geniculate and primary visual cortex,
to higher cortical areas, where information is believed to be recoded in symbolic form. It is here, in the
cortex, that object recognition takes place. Another path leads from the retina to the pretectal area of the
midbrain, where pupillary responses are generated. And a third set of pathways involves the frontal eye
fields, superior colliculus, cerebellum, and pons. This signal processing system, with additional cortical
input, is responsible for saccadic eye movements and the smooth tracking response to moving objects.
If everything from the retina on up were a symbol system, i.e., if reflexive object tracking were symbol
processing, then “symbol” would mean nothing more than “signal.”

Elsewhere in their reply to Clancey, Vera and Simon state (p. 126): “We are aware of no evidence . . .
that research at the neuropsychological level is in conflict with the symbol-system hypothesis.” There can
be no such evidence. The PSSH makes what is today a very modest claim:

The Physical Symbol System Hypothesis. A physical symbol system has the necessary and
sufficient means for general intelligent action. (Newell and Simon, 1976)

Sufficiency is a given, unless one is a dualist or some other sort of mystic, because physical symbol
systems are Turing-universal. Thus, the PSSH is so weak that the only way it could conflict with “research at
the neuropsychological level” is by a violation of the necessity clause. If a a generally intelligent organism
were found to have no symbol system hidden anywhere inside it, the PSSH would be refuted. But this is
extremely unlikely given our present understanding of humans and animals. In fact, the necessity of having
the capabilities of a symbol system is tautological when one examines Newell and Simon’s definition of
“general intelligent action.” This does not make organisms nothing but symbol systems; in biology there
are practical reasons for performing information processing functions using “direct”, non-symbolic means
where possible.

THE SIGNIFICANCE OF ALVINN

ALVINN, the neural net road follower, employs analog representations for both steering direction and hidden
layer activity patterns. Its patterns are not arbitrary-shaped symbols, and they are not combinatorial. Its
hidden unit feature detectors are tuned filters. Their activation denotes the presence of visual features in the
view ahead of the vehicle, and analysis of their input weights and response properties reveals that they are
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responding to objects such as road edges and lane stripes (Pomerleau and Touretzky, 1993). Greeno and
Moore (1993, p. 54) claim there is no semantic interpretation of these hidden unit activity patterns. But
their reponse, albeit analog in nature, is just as meaningful as the discrete output LANE-STRIPE-DETECTED.

What do Greeno and Moore mean when they say of ALVINN’s representations that “there is no process of
semantic interpretation by which these patterns are given referential meaning”? They understand “referential
meaning” as a three-way predicate involving an arbitrary pattern, the thing it designates, and the agent for
whom this designation holds. They view NAVLAB’s symbolic map component as semantically interpretable
in this sense. Presumably this property does not depend on havinga human-like agent doing the interpretation,
so the crucial distinction between NAVLAB’s neural net and symbolic map components is that in the latter,
the relationships between patterns and referents are arbitrary; the map component requires an interpretation
to connect its arbitrary formal symbols to the environmental features they designate. But ALVINN has no
capacity for arbitrary designation; its activation patterns are analogically related to specific states of the
world. ALVINN is thus, we agree, an example of direct perception with no interpretation required. Its
symbols have intrinsic, not referential meaning.

What is the relevance of ALVINN to the situated action debate? SA theorists suggest that significant
levels of intelligent action can be achieved nonsymbolically, i..e, by “direct” means. But we would not
take ALVINN’s success as evidence for this claim. Its perceptual abilities are modest, and its reasoning
abilities nonexistent. Unlike Vera and Simon, our objection to the SA position is not that ALVINN is really
a symbol system, but rather that direct, nonsymbolic systems are not powerful enough to succeed outside
highly restricted domains. This is the essential claim of the PSSH.

NON-ARBITRARY SYMBOLS

The requirement that symbols have purely arbitrary shapes unrelated to their meanings is probably not fully
met in humans, not because a pure physical symbol system would be inadequate to the task of cognition,
but because of the process by which humans were constructed. Cognitive science has long emphasized the
importance of selecting good representations. Why then should evolution not incorporate properties of the
world into our realizations of symbols, despite the fact that the Turing-universality of symbol systems makes
it theoretically unnecessary to do so?

Implicit or analog properties of a symbol might be viewed as affordances. They could be exploited
by nonsymbolic, pre-conscious processors, and perhaps also by symbolic processors seeking computational
shortcuts. For example, the symbols LION and TIGER3 might well have similar neural realizations if Nature
finds that useful in implementing real-time intelligent behavior.

Some writers would go further than this. Harnad (1992) argues that the grounding of symbols in
analog sensory predicates is an essential feature of human intelligence, affecting even our most abstract
conceptualizations. He says of grounded symbols:

[I]n the bottom-up hybrid system I am advocating, they—and all the symbol combinations they
enter into—continue to be constrained by their origins in sensory grounding. . . [I]t is precisely
the question of how their analog grounding continues to exert its special influence on the
combinatory possibilitiesof what would otherwise just be arbitrary-symbol-token manipulations
that is the crucial question about this hybrid mechanism. (Harnad, personal communication)

3If such symbols exist truly exist. See the discussion of symbols vs. concepts that follows.
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Situated action, to us, implies exploiting properties of the world in constructing representations, reducing
the need to rely on formal symbol processing for all of reasoning. By “formal symbol processing” we mean
what physical symbol systems do: rule-based manipulation of arbitrary-shaped tokens recursively composed
into combinatorial structures.

SYMBOLS VS. CONCEPTS

The distinction between primitive symbol tokens and composite expressions, or “symbol structures”, re-
flects Newell’s conception of a PSS as a Turing machine (see Newell 1980a), and the common view of
compositionality as concatenation (van Gelder, 1990) . However, it is important to remember that cognitive
theories deal in concepts, not symbols (Lakoff, 1993). The atoms we call symbols in today’s AI programs
are placeholders (names) for concepts. The concepts in our heads, such as “boy” or “give”, are hardly
atomic. They are complex webs of reference to other concepts and sensory impressions, with shapes that
are far from arbitrary. According to the classical formulation of symbol systems, there must then be a lower
level of representation, the primitive symbol level, from which such concepts are composed.

We cannot assign concise meanings to elements at this lower level. Whatever phrase we choose
would correspond to a concept structure, not a symbol. Except for those symbols that serve as names for
familiar concepts, primitive symbol tokens would appear to be indescribable. A comparable notion exists
in the connectionist literature, where “subsymbolic representations” are postulated whose components
are “microfeatures.” The subsymbolic level is really a subconceptual level, except in the most radical
connectionist proposals where symbols themselves are hypothesized to be an emergent property of complex
dynamical systems (Smolensky, 1988).

Rather than accept the classical dichotomy between primitive symbol tokens and composite structures,
we could instead work solely with “patterns”, as in the patterns of activation in a connectionist net. We
could stipulate that some of these patterns play the role of symbols when they function as names for things,
as in Hinton’s notion of reduced descriptions: patterns that simultaneously point to more complex patterns
and summarize their properties (Hinton, 1990). In order to retain the power of arbitrary designation all
we really require is that at least some arbitrary mappings be possible. This connectionist reformulation of
symbol processing is not yet as fully developed as the classical concatenative view, but it is an intriguing
alternative.

AUTOMATICITY

A surprising result of recent connectionist work is the wide variety of behaviors obtainable from simple
nonlinear mapping functions, such as three-layer backprop nets. ALVINN is such a network. It learns to
drive a vehicle, in traffic, at speeds of up to 55 miles per hour. And it forms internal representations of
the road and the steering direction. But they are analog representations from start to finish; there are no
symbolic intermediaries. This does not violate the PSSH, as we make no claim that a non-symbolic theory
could account for general intelligent action. Nor do we claim that physical symbol systems can’t simulate
the operations ALVINN performs. Clearly they can, just as a Turing machine can simulate a finite state
machine.

The success of connectionist networks in limited domains leads us to reexamine Vera and Simon’s notion
of automaticity as chunking. Chunking constructs new symbolic rules from combinations (or instantiations)
of old ones. The new rules are able to perform the same task in fewer steps, or perhaps with fewer
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resources if variable binding is a bottleneck (Newell, 1980b). It seems quite reasonable to propose that
repeated conscious behavior would lead to the generation of chunks that could later execute subconsciously,
resulting in automaticity for the task. And repeated execution of these subconscious rules could produce
further chunking, yielding additional improvements in performance with practice. For inherently symbolic
domains such as language use or chess playing, chunking is an attractive theory of learning, though not the
only theory.

Where we part company with Vera and Simon is the application of chunking to non-symbolic domains,
such as motor skills. Why assume that bicycle riding, for example, is a symbol processing task? We
see nothing in the structure of bicycle riding that requires arbitrary designation ability or combinatorial
expressive power. Rather, effective bicycle riding is likely to involve a high-dimensional mapping from
perceptual, kinesthetic, and vestibular space to motor space, mediated perhaps by the cerebellum. One
must of course augment this mapping with higher level cognitive functions such as the ability to read
street signs and plan a route, but the “automatic” component of bicycle riding need not be in any way
symbolic. Fine tuning this high-dimensional mapping would require a large number of training instances,
which could potentially give rise to a power law of practice without generating an exponential number of
discrete symbolic chunks.

We are led to a model of cognition in which conscious, deliberate symbol manipulation is the top level,
sub-conscious symbol processing the intermediate level, and specialized non-symbolic modules appear at
the lowest level.4 Some of our neural pathways proceed from sensors to effectors by way of the symbolic
level, but others bypass the higher cortical areas entirely. These latter may proceed directly from receptors
to motor neurons in the case of a simple reflex arc, or via processing modules that are quite sophisticated
but not symbolic, as in the pathways that generate automatic eye movements. These direct pathways are
unavailable to introspection, but they are subject to overriding by higher level brain areas when a person
makes a conscious effort to control what would normally be unconscious or reflexive behavior.

The seamless integration of these three processing levels is a hallmark of human phenomenological
experience. That is why it is so difficult for us to say what we are doing when we automatically drive a
familiar route while preoccupied with other matters, or walk down the hall with our nose buried in the latest
issue of Cognitive Science yet still manage to avoid obstacles.

CONCLUSION

We agree with much of Vera and Simon’s critique of situated action theory, but reject their characterization
of ALVINN as a symbolic system. In this article we have tried to make clear what “non-symbolic” means,
thereby restoring the force of the Physical Symbol System Hypothesis.

How much of intelligent behavior can be implemented by non-symbolic means? The PSSH tells us
that not all the processing in a generally intelligent agent can be non-symbolic. SA theorists argue—
unconvincingly, we feel—that “not all” will turn out to be “quite a lot.” The success of systems such as
ALVINN justifies replying “at least some.”

4Greeno and Moore (1993, pp. 55-56) seem drawn to a similar conclusion.
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