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Goodridge, Jeremy P. and David S. Touretzky.Modeling attractor
deformation in the rodent head-direction system.J Neurophysiol83:
3402–3410, 2000. We present a model of the head-direction circuit in
the rat that improves on earlier models in several respects. First, it
provides an account of some of the unique characteristics of head-
direction (HD) cell firing in the lateral mammillary nucleus and the
anterior thalamus. Second, the model functions without making phys-
iologically unrealistic assumptions. In particular, it implements attrac-
tor dynamics in postsubiculum and lateral mammillary nucleus with-
out directionally tuned inhibitory neurons, which have never been
observed in vivo, and it integrates angular velocity without the use of
multiplicative synapses. The model allows us to examine the relation-
ships among three HD areas and various properties of their represen-
tations. A surprising result is that certain combinations of purported
HD cell properties are mutually incompatible, suggesting that the
lateral mammillary nucleus may not be the primary source of head
direction input to anterior thalamic HD cells.

I N T R O D U C T I O N

Previous empirical research

Previous research has identified several populations of neu-
rons in the rat brain that fire as a function of the animal’s head
direction (HD). The firing rate of each HD cell is maximal
whenever the animal’s head is pointed in one particular direc-
tion and tapers off as the animal points its head away from that
direction. Different HD cells have different preferred direc-
tions so that the entire 360° space is uniformly sampled by the
population of HD cells. HD cells have been identified in a
number of different brain areas, including the postsubiculum
(PoS) (Ranck 1984; Taube et al. 1990), anterior dorsal thala-
mus (AD) (Taube 1995), and lateral mammillary nucleus
(LMN) (Stackman and Taube 1998), although not all cells in
these regions fire in a direction-specific manner. Furthermore
the particular firing characteristics of HD cells vary from
region to region.

PoS head direction cells have simple Gaussian-shaped tun-
ing curves. The firing of these cells is best correlated with the
animal’s head direction approximately 10 ms in the past, on
average (Blair and Sharp 1995; Taube and Muller 1998). In
contrast, the activity of the average HD cell in AD is best
correlated with the animal’s heading approximately 25 ms in
the future. In other words, the average AD HD cell has an
anticipatory time interval (ATI) of125 ms. The ATI value for

a single cell appears to be constant over a broad range of
angular head velocities.

According to Blair, Lipscomb, and Sharp (1997), the shapes
of AD HD cell tuning curves exhibit distortions as a function
of the speed and direction of the animal’s turning. Furthermore
when the animal is still, the curves often have a bimodal shape
(two peaks), whereas when the animal is turning, AD HD cell
tuning curves are unimodal but skewed in the opposite direc-
tion of the turn. The peak firing rate also increases with angular
head velocity (Taube 1995).

The extent to which a particular AD HD cell shows this
tuning curve distortion depends on how much the cell antici-
pates the animal’s head direction. The greater the ATI, the
greater the extent of tuning curve distortion. In addition, the
width of an AD HD cell’s tuning curve when determined
across all velocity levels is positively correlated with ATI
(Blair et al. 1997). An accurate model of the HD system must
not only capture the average tuning curve differences between
AD and PoS, it must also account for thedistributionof tuning
curve characteristics within the AD and PoS populations.

The phenomenon of AD tuning curve distortion has been
called into question by Taube and Muller (1998), who did not
see this effect in their own experiments. They also did not
report bimodality when the animal was still. In this paper, we
will be basing our modeling efforts on the Blair et al. (1997)
findings. The Taube and Muller findings were based on much
shorter recording sessions: only 8 min as compared with 15–30
min in (Blair et al. 1997) and 15–90 min in (Blair and Sharp
1998). Thus because the tuning curve effects reported by Blair
et al. are quite subtle, they may very well have been obscured
in the 8-min sessions.

Data on LMN head-direction cells have only recently be-
come available and are also somewhat contradictory. Stackman
and Taube (1998) describe LMN cells as having Gaussian
tuning curves modulated by angular velocity. Cells that prefer
clockwise turns increase their firing rate as angular velocity
increases in the clockwise direction and decrease their firing
rate as angular velocity increases in the counterclockwise di-
rection relative to the baseline rate observed when the animal’s
head is not turning at all. The observed ATI for LMN cells was
approximately 95 ms. But Blair and Sharp (1998) report that
LMN HD cells have an ATI of 40 ms, and while their peak
firing rate increases with velocity, in addition, the width of the
tuning curve contracts as angular velocity increases in the
direction of the side containing the cell e.g., counterclockwise
turns for left LMN cells or clockwise turns for right LMN cells.
The width stays the same for turns in the opposite direction. In
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this paper, we will be reporting on simulations that address the
compatibility of these different LMN findings in a model in
which LMN is the primary projection to AD.

Redish, Elga, and Touretzky (1996) developed a model that
accounted for some of the differences between AD and PoS
HD cell firing. Specifically, their model provided an explana-
tion for why AD HD cell firing was best correlated with the
animal’s future head direction, whereas PoS HD cell firing was
best correlated with current head direction. The Redish et al.
model also predicted that AD tuning curves would exhibit
distortions as a function of the animal’s turn velocity, which
was subsequently confirmed by Blair et al. (1997). However,
the model did not account for certain other important differ-
ences.

In this paper, we present a new model that is the successor
to the one described by Redish et al. (1996). Our model
accounts for a number of important new results not covered in
the previous model, such as the bimodality of AD tuning
curves, the constancy of ATI for all angular velocities, the
particular distorted shapes exhibited by AD HD cells as veloc-
ity increases, and some of the tuning curve changes exhibited
by LMN HD cells. Furthermore unlike the model in Redish et
al. (1996), our new model does not rely on directionally tuned
inhibitory neurons or multiplicative synapses.

Preliminary data concerning some of the results presented in
this paper have been published previously (Goodridge et al.
1997).

Previous modeling research

Many findings (Blair and Sharp 1996; McNaughton et al.
1991; Stackman and Taube 1997; Taube and Burton 1995)
suggest that HD cells rely on internal sources of information to
obtain information about ongoing changes in the animal’s
heading. Vestibular, proprioceptive, and motor efference copy
are all possible sources of self-motion cues. It appears that HD
cell activity is updated by integrating angular velocity signals
from one or more of these sources.

A number of previous models have been proposed to ac-
count for the integration of angular velocity by HD cells (Blair
1996; McNaughton et al. 1991; Redish et al. 1996; Skaggs et
al. 1995; Zhang 1996a). Most of these models are based on the
attractor hypothesisfirst put forth by Skaggs et al. (1995) that
the head-direction system is a circular one-dimensional dynam-
ical system or ring attractor, which integrates angular velocity
by moving an activation bump around the ring.

Attractor models postulate the existence of an extensive
network of interconnection between HD cells such that cells
with similar preferred directions excite more than inhibit one
another, whereas cells with dissimilar preferred directions in-
hibit more than excite one another. This scheme of intercon-
nectivity produces a situation in which a bump or activation
hill (the “attractor state”) will arise even when the initial
activation levels of the cells are random. The hill is then
self-maintaining in the absence of external input. The activa-
tion hill is made to move around the ring, representing the
animal’s estimated heading as it turns, by supplying additional
input to units on one flank of the hill. The amount of the input
supplied to a flank determines the speed at which the hill
moves. If the strength of this input corresponds to the animal’s
angular velocity, then movement of the activation hill will

track the animal’s head direction. Simulations showed that this
mechanism is sufficient to allow the HD system to accurately
track complex head movement profiles taken from a real rat
(Redish et al. 1996).

In the Redish et al. model, the integration process was
implemented by coupling two attractor networks together, one
corresponding to AD and the other to PoS. As described in the
preceding text, AD contains an HD signal that is best corre-
lated with the animal’s future head direction (Blair and Sharp
1995; Blair et al. 1997; Taube and Muller 1998). In contrast,
PoS contains an HD signal that best corresponds to the ani-
mal’s present or recent past head direction. To account for this
difference between PoS and AD, Redish et al. (1996) proposed
that there are asymmetric connections between AD and PoS. In
particular, they proposed that PoS HD cells project to AD HD
cells with slightly offset preferred directions, whereas AD HD
cells project to PoS HD cells with matching preferred direc-
tions. This arrangement is plausible because the anatomical
data suggest that AD and PoS are reciprocally connected but do
not reveal which cells in PoS project to which cells in AD. In
the Redish et al. model, when a left turn was being simulated,
PoS projections to AD HD cells with a preferred direction
slightly offset to the left (“left offset” projections) were en-
abled, whereas right offset projections were disabled. The
converse was true when right turns were being simulated. As a
result of this scheme of interaction, AD contained a hill of
activation that slightly anticipated the position of the hill in
PoS.

Although the Redish et al. model did account for the tem-
poral difference between AD and PoS HD cell firing, it did not
account for the distorted tuning curves in AD. Redish et al. did
show that removing the attractor dynamics from AD resulted in
distorted tuning curves; however, these distortions were not the
same as the ones that AD HD cells actually exhibit. In addition,
after removal of attractor dynamics, the amount by which AD
HD cell firing anticipated PoS HD cell firing declined with
angular velocity, which is not consistent with the known data
(Taube and Muller 1998). Nevertheless, as noted by Redish et
al., there is good anatomical evidence that the AD does not
contain an attractor network. In particular, AD lacks the
GABA-containing interneurons (Bentivoglio et al. 1993) that
would provide the necessary inhibition for an attractor net-
work. So in our new model, AD does not contain any attractor
dynamics, and its connectivity to other structures has been
altered.

Blair et al. (1997) proposed their own account of how the
distorted tuning curves in AD were generated. They suggested
that each AD HD cell received input from two populations of
turn-modulated HD cells. One of these populations increased
its firing rate when the animal turned clockwise, whereas the
other increased its rate for counterclockwise turns. In their
scheme, (counter-) clockwise turn-modulated cells projected to
AD HD cells with preferred directions slightly (counter-)
clockwise to that of the projecting cell. They postulated that
AD HD cells that anticipated head direction by a large amount
received input from turn-modulated head-direction cells with
more highly offset connections and that this scheme would
produce the kinds of tuning distortions that AD HD cells
exhibited in real rats. Although not intended to account for
distortions in AD HD tuning curves, a similar proposal was
made by Zhang (1996b). Whereas in the Redish et al. model,
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AD tuning curves were a function of only one set of offset
connections at a time, in the Blair and Sharp model, AD tuning
curves were a function of two sets of simultaneously active
offset connections.

In this paper, we present simulations of a model in which the
input to AD is as proposed by Blair and Sharp. We show that
the model is capable of accurately accounting for AD and PoS
tuning curve shapes, that it integrates angular velocity with
good accuracy, and that it also produces a constant ATI in AD.
The source of input to AD is another attractor module that
exhibits the velocity modulated tuning curves described by
Stackman and Taube (1998) with respect to LMN. However,
our simulations show that the ATI values reported for LMN by
Stackman and Taube and by Blair and Sharp (1998) are not
compatible with the AD tuning curve properties described by
Blair et al. (1997) if it is LMN alone that drives AD.

M E T H O D S

New model of the HD system: overall structure

The organization of our model is shown in Fig. 1. A bump of
activation whose location represented the animal’s current head di-
rection was maintained in PoS by means of attractor dynamics. This
signal was passed to two populations of LMN cells (clockwise: CW
and counterclockwise: CCW), where it was modulated by angular
velocity information represented in the model by two abstract “angu-
lar velocity” units. The two LMN populations projected to AD with
opposite offsets, producing bimodal tuning curves. Thus AD activity
was purely a function of the input received from LMN, a property
which allowed AD to show dramatic shape distortions. AD cells
projected to PoS cells with matching preferred directions, thereby
updating the position of the PoS attractor bump. This connection
scheme is consistent with the known anatomy (Allen and Hopkins
1989; Shibata 1992; van Groen and Wyss 1990, 1995), but it does not
include all the connections known to exist for these areas.

Neuronal model

The elements of our model are nonlinear units with continuous-
valued outputs in [0, 1]. Each unit represents a subpopulation of “real”
neurons, which we assume are firing asynchronously. Furthermore the
excitatory neurons in theith subpopulation are assumed to all have
preferred directionfi. (Inhibitory units, representing populations of

inhibitory interneurons, are nondirectional.) The output, or “firing
rate,” of theith unit, Fi(t), can be regarded as the fraction of neurons
in the subpopulation that were spiking at timet or as the probability
that an individual neuron emitted a spike at timet. All structures in the
model used the same type of unit, and the preferred directionsfi were
uniformly distributed around the circle. The following three equa-
tions, modified from Pinto, Brumberg, Simons, and Ermentrout
(1996), determined the activity of uniti

Vi~t! 5 g 1 Ei~t! (1)

Fi~t! 5
1

1 1 exp@2gVi~t!#
(2)

t
dSi~t!

dt
5 2Si~t! 1 Fi~t! (3)

Vi(t) was the net activation of uniti (or the average membrane
voltage of neurons in subpopulationi) at time t. g was a tonic
inhibitory term, andEi(t) was the weighted input (synaptic drive times
coupling strength) received from other units: both external input from
other modules and recurrent input from units in the same module. The
unit’s firing rate,Fi(t), was a sigmoid function of its average mem-
brane voltage. The slope of the sigmoid was determined by the gain
parameter,g. The synaptic drive that the unit delivered at timet is
denotedSi(t). Synaptic drive is a measure of the influence of a units
on other units to which it projects. Synaptic drive varied with firing
rate, but it changed more slowly and decayed exponentially as gov-
erned by the time constantt in the differential equation. This simu-
lated some of the effects of synaptic delay and temporal integration in
real neurons. We kept the excitatory and inhibitory unit time constants
short (1.0 and 0.2 ms, respectively) to allow the model to accurately
integrate turns at very high speeds, up to 700°/s. We integratedEq. 3
using a time stepDt of 0.1 ms

Si~t 1 Dt! 5 Si~t! 1 @2Si~t! 1 Fi~t!#
Dt

t
(4)

The units in the LMN, PoS, and AD modules all had identical
synaptic drive (Si) and firing rate (Fi) functions. Within a module,
inhibitory and excitatory units used the same gain value. The three
modules differed only in their tonic inhibition and gain parameters (g
and g) and their connectivities, which determined their inputsEi(t).
The basic parameters for a unit are shown in Table 1. The equations
for the individual voltage functionsVi(t) will be described in the
sections that follow.

Model of PoS

Our model of PoS used a modified form of the Wilson-Cowan
equations (Wilson and Cowan 1972) to generate an attractor bump
(Pinto et al. 1996). The PoS module contained both excitatory and
inhibitory units, denoted by superscripts in the following equations.

FIG. 1. Connections between structures in the model. The firing rate of the
counterclockwise (CCW) angular velocity unit increased monotonically from
the baseline (still) value for counterclockwise turns of increasing velocity and
decreased monotonically for clockwise turns. The clockwise (CW) angular
velocity unit had complementary behavior. The postsubiculum (PoS) module
and both pools of the lateral mammillary nucleus module contained recurrent
connectivity.

TABLE 1. Individual unit parameters

Number of excitatory units/pool (NE) 101
Number of inhibitory units/pool (NI) 1
Integration time step (Dt), ms 0.1
Excitatory unit time constant (tE), ms 1.0
Inhibitory unit time constant (tI), ms 0.2
PoS excitatory unit tonic inhibition (gE

PoS) 21.5
AD excitatory unit tonic inhibition (gE

AD) 21.75
LMN excitatory unit tonic inhibition (gE

LMN) 23.95
PoS and LMN inhibitory unit tonic inhibition (gI) 27.5
PoS and AD gain (gPoS, gAD) 2
LMN gain (gLMN) 1

PoS, postsubiculum; AD, anterior dorsal thalamus; LMN, lateral mammil-
lary nucleus.
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The recurrent connectivity within PoS was structured to allow a hill of
activation to form regardless of each unit’s initial activity level. The
projection strength between any pair of excitatory units was a Gauss-
ian function of the difference in their preferred directions. There was
only one inhibitory unit; it received input from all of the excitatory
units and projected back to all of them with equal strength as shown
in Fig. 2. In the rat there are many inhibitory interneurons, but if each
provides input to a different random subset of the excitatory popula-
tion independent of their preferred directions, the net effect would be
the same as having a single fully-connected inhibitory unit.

The activation equation for theith excitatory PoS unit was

Vi
EzPoS~t! 5 gE

PoS1 kAP z Si
EzAD~t! 1 kIE z SI zPoS~t! 1 kEE O

j

wijSj
EzPoS~t! (5)

External input was provided by the AD unit with matching pre-
ferred directionfi. kIE andkEE were coupling constants determining
the strength of input received from the PoS inhibitory unit and from
other PoS excitatory units, respectively.SI.PoS(t) was the synaptic
drive of the PoS inhibitory unit, andSj

E.PoS(t) the drive of thejth PoS
excitatory unit. The weightwij from unit j to unit i was a Gaussian
function of the difference in the units’ preferred directions. Note that
because this difference was a circular variable, its magnitude was
bounded between 0 and 180°. The standard deviations controlled the
width of the Gaussian, which determined (indirectly) the width of the
attractor bump

wij 5 expS2@f i 2 f j#
2

s2 D (6)

The PoS inhibitory unit received no external input. It received
inhibitory input from itself, and excitatory input from the excitatory
PoS population, governed by the coupling constantskII and kEI,
respectively

VI zPoS~t! 5 gI 1 kII z SI zPoS~t! 1 kEI O
j

Sj
EzPoS~t! (7)

The parameters for the PoS attractor module are shown in Table 2.
These values were obtained by experimenting with the simulation
until an acceptable bump shape was produced. The values are fairly
robust in the sense that small changes in parameter values do not
produce drastic changes in model behavior.

Model of LMN

Our model of LMN consisted of two pools of units, LMN(cw) and
LMN(ccw), with a preference for CW and CCW turns, respectively.

Each pool contained a recurrently connected excitatory population
plus a single inhibitory unit. The parameters used for unit interaction
within LMN(cw) and LMN(ccw) were identical to those used for the
PoS attractor. In addition, the excitatory units in each LMN pool
received external input from one of two angular velocity units as
shown in Fig. 1. The CW-sensitive angular velocity unit, which
projected to units in LMN(cw), fired maximally during a CW high
speed turn; it fired minimally during a CCW high speed turn. The
CCW-sensitive angular velocity unit, which projected to units in
LMN(ccw), responded in the opposite manner.

These angular velocity units have no specific anatomical correlate
in the rat; they are merely a conceptual device for introducing angular
velocity information into LMN. While cells tuned to angular velocity
have been reported in LMN (a different population than the LMN HD
cells), those cells did not discriminate between CW and CCW turns
(Stackman and Taube 1998). LMN HD cells might receive angular
velocity information from the dorsal tegmental nucleus, which is
known to project to LMN and to receive projections from the medial
vestibular nucleus and nucleus prepositus hypoglossi (Blair and Sharp
1998; Stackman and Taube 1998). Those nuclei contain angular
velocity cells thatare sensitive to turn direction (Blair and Sharp
1998). Direction-sensitive angular velocity cells have also been re-
ported in PoS (Sharp 1996), which might contribute to the PoS
projection to LMN.

In agreement with the observations of Stackman and Taube (1998),
the firing rates of our LMN units were modulated by the angular
velocity signal, increasing for turns in one direction and decreasing for
turns in the opposite direction. To achieve this without distorting the
shape of the tuning curve, we relied on a result described by Salinas
and Abbott (1996), showing that an additive input supplied to all the
units in a one-dimensional attractor bump can produce a multiplica-
tive effect on the bump. The activation equation for theith excitatory
LMN(cw) unit is shown in the following text. A similar equation
governed LMN(ccw) units

Vi
EzLMN ~cw!~t! 5 gE

LMN 1 kPL z Si
EzPoS~t! 1 rAcw~t! 1 kIE z SI zLMN ~cw!~t!

1 kEE O
j

wijSj
EzLMN ~cw!~t! (8)

The ith excitatory LMN unit’s external input was provided by
Si

E.PoS, i.e., the synaptic drive of the PoS unit with matching preferred
directionfi. All LMN excitatory units also received a common input
rAcw(t) or rAccw(t) from the angular velocity unit for their respective
pool; r is a scale factor. Note that the angular velocity term is
unsubscripted because it is a global input to all units in the pool,
independent of preferred direction.Acw(t) ranged from 0 to 1, and
Accw(t) was always equal to 12 Acw(t). As a result, the LMN(cw)
pool received the complement of the angular velocity signal received
by the LMN(ccw) pool. The specific values of this term for different
angular velocities were determined experimentally, so that the model
could accurately simulate head turns at speeds ranging from 700°/s
CCW to 700°/s CW, in 100°/s increments. The tonic inhibitiongE

LMN

was set togE
PoS 2 r/2 to compensate for the mean added excitation

from the angular velocity signal, and the gaingLMN was set to half
gPoS because LMN receives strong inputs from both its recurrent
projections and the PoS projection.

As with PoS, the weight from LMN excitatory unitj to excitatory
unit i within the same pool was a Gaussian function of the difference

TABLE 2. Parameters for unit interaction within the attractor
modules, PoS and LMN

Std. deviation (s) for recurrent excitationwij , degrees 28.5
I 3 E coupling strength (kIE) 28.0
E3 E coupling strength (kEE) 6.0
I 3 I coupling strength (kII ) 24.0
E3 I coupling strength (kEI) 0.5

FIG. 2. Connections within the postsubiculum module, illustrating the
structure of an attractor network. E.PoS: excitatory units; I.PoS: inhibitory
unit.
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in their preferred directions. The same weight matrixwij was used as
for PoS. Also as in PoS, the inhibitory unit in each LMN pool received
a projection from each of the excitatory units in its pool, governed by
the coupling constantkEI, and an inhibitory projection from itself
governed by the constantkII . The inhibitory unit received no input
from units external to LMN. Parameter values are shown in Tables 2
and 3.

Model of AD

Because AD contained no attractor dynamics, the activity of AD
units was entirely dependent on external input. This input consisted of
the offset projections from the two LMN pools. Theith unit in AD,
with preferred directionf i, received projections from LMN units with
preferred directionsf i 6 d. For example, if the offset amount was
15°, an AD unit with a preferred direction of 90° would receive input
from an LMN(cw) unit with a preferred direction of 75° and an
LMN(ccw) unit with a preferred direction of 105°. As described in
RESULTS, the size of this offset was important in determining both the
tuning curve shape exhibited by AD units and the degree of antici-
pation they exhibit.

AD units were governed by the following equation

Vi
AD~t! 5 gE

AD 1 kLA z Sj
EzLMN ~cw!~t! 1 kLA z Sk

EzLMN ~ccw!~t! (9)

wherej 5 i 2 d z NE/360° (moduloNE), k 5 i 1 d z NE/360° (modulo
NE), d is the offset angle in degrees, andNE is the number of
excitatory units in an LMN pool.gE

AD was made slightly larger than
gE

PoSbecause AD has no inhibitory inputs, but it might be possible to
have all three modules use the samegE value by adjusting other
parameters.

R E S U L T S

Most of the parameters of the model were kept fixed for all
simulations reported here. In particular, the tonic inhibition
valuesgE andgI and time constantstE andtI for all units, the
weight matrixwij used in PoS and LMN, the number of units
in each structure, and the coupling strengths among the AD,
PoS, and LMN modules (kAP, kPL, kLA) were all kept constant.
We variedd, the extent of the offset in the connections from
LMN to AD, to fit the tuning curves of several real AD cells.
We also varied the strength of the angular velocity inputAcw(t)
to simulate turns at various speeds. The effects of varying these
parameters are described in the following text.

At the beginning of a simulation, we set the activation levels
of units in PoS and LMN to random values. Then at each time
step of the simulation, all units updated their activation levels.
Soon a stable activation hill formed over the PoS, LMN, and
AD populations. This settling process required 10–50 ms of
simulation time.

When the activation hills stabilized, we experimentally ad-
justed the model so that a continuous turn at particular fixed
angular velocity values would cause the expected change in the
position of the PoS activation hill. We did this by varying the
angular velocity inputAcw(t) to LMN until it produced the
appropriate speed of activation hill movement. We tuned the

model parameters to accurately integrate angular velocities
from 0 to 700°/s in steps of 100°/s, both CW and CCW, while
maintaining desired tuning curve shapes.

Once this tuning process was complete, the behavior of the
model in response to velocity changes could be studied. In
particular, we assessed the integration accuracy of the model,
the shapes of the tuning curves in all three modules, and the
degree of anticipation in AD as a function of angular velocity.

Integrating a real angular velocity profile

To examine whether the network was capable of integrating
a real angular velocity profile, we used data obtained from
Blair and Sharp (personal communication). This was the same
data as were used in Redish et al. (1996). The data consisted of
a rat head-direction trajectory lasting 12 s, sampled at 60 Hz.
To compute the angular velocity of the animal during each
sample, we grouped each sample with the two samples before
and two samples after. Then we defined the angular velocity of
the sample as the slope of the best fit line through these five
points. Because the real data were sampled at 60 Hz, each
sample accounted for approximately 16 ms of time. However,
the simulations were performed with a time step of 0.1 ms, so
we used linear interpolation to generate an angular velocity
profile with all the intermediate values required for the model.

We defined the speed at which the model was turning as the
rate of change of the location of the PoS activation hill.
Location was defined as the weighted mean of thefi values,
where the weights were the firing ratesFi. In other words, we
calculated the population vector (Georgopoulos et al. 1983) of
the PoS population. Assigning a location to the PoS activation
hill is more straightforward than for AD since AD profiles have
distorted shapes. The tuning curves in the PoS module did not
exhibit the shape distortions that were present in AD even
though PoS received direct projections from AD. The primary
reason for this was the recurrent connections in PoS, which
tended to minimize the effects of distortions in the input. The
amplitude of the PoS attractor bump also remained fairly
constant, making PoS cells insensitive to angular velocity.

When we exposed the model to the complex angular velocity
trajectory taken from a real rat, we found it maintained heading
with good accuracy, comparable with the Redish et al. model.

Shapes of AD tuning curves

According to the proposal of Blair et al. (1997), one primary
source of differences among AD HD cells with identical pre-
ferred directions is the amount of offset in the projections they
receive from angular velocity-tuned HD cells. This proposal
suggests that for each AD cell there is a particular offset value
that determines both the cell’s tuning curve shape and the
extent to which it anticipates head direction.

To examine the validity of this hypothesis, we chose the HD
cell from Blair and Sharp’s population that showed the highest
degree of tuning curve distortion. Then we varied the level of
offset in the projection between LMN and AD until we were
able to best fit the tuning curve of that AD HD cell. Figure 3
shows the activation hills produced in our simulated AD in
relation to the tuning curves of the actual AD HD cell.

As can be seen, the simulation was able to fit this particular
HD cell quite well. Thed value used to generate the simulated

TABLE 3. Parameters for module interaction

AD 3 PoS coupling strength (kAP) 0.22
PoS3 LMN coupling strength (kPL) 1.0
LMN 3 AD coupling strength (kLA) 2.5
LMN 3 AD offset amount (d), degrees 27 (nominal)
Strength of angular velocity input (r) 4.9
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curves was 27°. It should be noted that this cell shows a very
visible degree of tuning curve distortion. We also performed
simulations to match another HD cell and found a similar
quality of fit. To fit the tuning curves of this new cell, we only
had to change the extent of offsetd in the projection from LMN
to AD.

To measure anticipatory firing in AD, we arbitrarily desig-
nated the position of the attractor hill in the PoS module as the
simulated animal’s actual head direction. Thus the ATI for PoS
was always 0, and the ATI for AD was measured in relation to
this reference. To measure the ATI at any time step in the
simulation, we computed the position of the AD activation hill
and subtracted the position of the PoS activation hill from this
value. This difference represented the actual offset in degrees
between the AD and PoS activation hills. The ATI was then
computed by dividing this difference by the current angular
velocity of the PoS activation hill.

For the simulated cell shown in Fig. 3, the calculated ATI
was 28 ms. This value was lower than that of the real cell
whose tuning curve we had fit (47 ms), a result that suggests
that other mechanisms besides the one proposed here are acting
to increase the level of anticipation in AD. In our model, one
reason a higher level of anticipation could not be achieved with
this offset was the existence of transmission time delays from
PoS to LMN and then from LMN to AD. The delays resulted
from the nonzero time constants of the individual units. The
synaptic drive of a unit (Eq. 3) varied as a function of net input
plus the unit’s current drive value at a rate determined by the
time constanttE. As a result of this delay, the maximum

achievable offset in degrees between AD and PoS hills was less
than the value ofd. For the HD cell modeled in Fig. 3,d was
27°, but simulations showed that even at high velocities, when
AD was receiving virtually all its input from the one LMN
activation hill projecting ahead in time, the actual offset be-
tween AD and PoS hills was only 24°. Thus despite the offset
from LMN to AD, the AD activation hill was not as advanced
relative to LMN as it would have been in a model with
instantaneous-time units, i.e., withtE close to zero.

Our simulations showed there was indeed a positive rela-
tionship between the offset parameterd and the extent of
anticipation in AD. The result suggests that the degree of offset
is a critical factor in explaining tuning curve variability of AD
HD cells. Therefore according to this model, the reason that
many HD cells do not show a visible degree of distortion is that
the d value is too small. With a very small value ford, there
was almost no visible tuning curve distortion because the two
activation hills from LMN overlapped almost completely. Nev-
ertheless even in these cases, there was still a measurable ATI.

Another feature of AD tuning curve shapes is that their peak
amplitude rises with increasing velocity (Taube 1995). That
result is also consistent with the AD tuning curves generated by
this model.

Constancy of anticipation in AD

Taube and Muller (1998) reported that the extent to which
the signal in AD anticipates the signal in PoS does not vary
with angular velocity. We were interested in determining
whether our model exhibited similar behavior. To assess this in
the current model, we conducted simulations at a range of
different angular velocities. For each angular velocity, we
computed the ATI in AD relative to PoS. Figure 4 plots the
relationship between angular velocity and temporal difference
between AD and PoS for real HD cells and for the model.

As can be seen from the graph, the model exhibited a nearly
constant ATI as a function of angular velocity. However, it is
also important to note that there is a great deal of variability in
the real HD data, which makes it difficult to determine how
constant the anticipation of real AD HD cells actually is.

Constancy of anticipation means that the difference in po-
sition of AD versus PoS activation hills varies linearly with the
velocity at which the activation hills are moving. In order for
a linear relationship to be preserved, we found it is critical that

FIG. 4. Comparison of the anticipatory time interval for model anterior
thalamic cells vs. real anterior thalamic cells (real data courtesy of Jeffrey S.
Taube).

FIG. 3. Real and simulated anterior dorsal thalamus (AD) tuning curves at
different angular velocities. For the real curves, Blair and Sharp defined fast
turns as exceeding 270°/s, slow turns as 30–270°/s, and speeds below 30°/s as
“still.” Simulated velocities required to match the real curves were 101°/s for
slow turns and 330°/s for fast turns. Model unit “firing rates” (values between
0 and 1) were multiplied by 50 to convert to equivalent spike rates in the graph,
except for the fast CCW case where a multiplication factor of 60 gave a better
fit.
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there be conservation of strength in the projections from LMN
to AD. If during a turn the increase in total activity of CW
LMN units is not exactly balanced by a decrease in activity for
CCW LMN units, then AD units will receive more total ex-
ternal input during high-speed turns than during low-speed
turns. Depending on how this extra input is distributed, the
change in the shape of the AD activation hill will produce an
effect on the speed of the PoS hillabove and beyondthe effect
produced by the difference in position between AD and PoS
activation hills. As a result, there will not be a linear relation-
ship between the difference in position of AD versus PoS
activation hills and the velocity at which the activation hills are
moving, which means ATI will not be constant. Thus the
model suggests that equal and opposite changes in the two
LMN populations’ projections to AD are critical for the sta-
bility of AD anticipation across different angular velocities.

Does LMN drive AD?

All of our results for AD were obtained by driving AD with
nonanticipatory HD signals offset by a constant amount6d. In
the model, AD was driven by a velocity-modulated signal from
LMN, which was in turn driven by PoS, giving LMN an ATI
value of23 ms relative to PoS due to transmission delay. But
observed ATI values for LMN range from 40 to 95 ms (Blair
and Sharp 1998; Stackman and Taube 1998). This raises the
question of whether the data on AD and LMN response prop-
erties are compatible with the hypothesis that LMN drives AD.
Although bilateral LMN lesions eliminate the AD head direc-
tion signal (Blair et al. 1999; Tullman and Taube 1998), this
does not prove that AD activity is principally derived directly
from the LMN projection.

To investigate this hypothesis, we modified the model to
force LMN to anticipate PoS by a modest amount by shifting
the PoS input to LMN CW or CCW as a function of angular
velocity. This produced ATI values of 31–46 ms in LMN. (The
variation is due to the fact that the PoS activity vector was
always shifted by a whole number of units, i.e., in steps of
3.56° since there were 101 units per module.) We found that
LMN anticipation combined additively with the effect of offset
connections from LMN to AD, producing an ATI of 60–80 ms
in AD. Thus AD anticipated LMN, when the reverse should be
true. In addition, the shapes of the AD tuning curves no longer
fit the data of Blair and Sharp, as will be discussed in the
following text.

Why does PoS in the model have a smaller ATI than AD,
which drives it, but AD does not have a smaller ATI than
LMN? The AD projection to PoS does not involve offset
connections. But more importantly, PoS is an attractor module:
input from AD is only one influence on PoS unit activity.
Recurrent connections in PoS have significant influence by
stabilizing and maintaining the bump that the AD input per-
turbs. In AD, which lacks recurrent connections, unit activity is
determined solely by the offset LMN projections, with the
offset amountd determined by the distance between the two
peaks in the bimodal still tuning curve. We produced antici-
pation in AD by increasing the height of one of the peaks
during turns while decreasing the height of the other. Thepeak
locations do not actually shift with velocity (Fig. 5A), but since
their relative amplitudes change, therecovered directionin
AD, calculated using the population vector, shifts toward the

rising peak, producing an anticipatory effect. For the curves in
Fig. 3, the recovered directions were 173° (fast CW), 176°
(slow CW), 184° (still) 192° (slow CCW), and 198° (fast
CCW).

The anticipatory LMN simulation did not produce correct
AD tuning curves because the fast tuning curve was shifted in
position, not just height, relative to the still curve. Figure 5A
compares fast and still tuning curves for the cell shown in Fig.
3. Note that the peak of the fast CCW curve is at the same
location as the right peak of the still curve. Figure 5B shows
that the model correctly reproduces this relationship when
there is no LMN anticipation. But if LMN anticipates PoS, the
AD tuning curve shifts in the direction opposite the turn, as
shown in Fig. 5C. Hence the AD curve is not correct since the
fast peak does not coincide with the still peak.

To further investigate the effect of LMN anticipation on AD,
we constructed a separate linear network model to determine
whether there wasany pattern of weights between LMN and
AD that would allow LMN to be anticipatory and AD to
exhibit the desired tuning curve shapes. This model was a
two-layer network of linear units, where the input layer’s 202
units represented the two LMN pools, and the output layer’s
101 units represented AD. The training set consisted of a set of
LMN activity patterns corresponding to bumps centered at
each of 101 positions around the circle, for five different
angular velocities from fast CCW (approximately2300°/s)
through still to fast CW. Thus there were a total of 505 training
patterns. The amplitudes of the activity patterns in the two
LMN pools were modulated by angular velocity in the appro-
priate way. In simulations where LMN was supposed to be
anticipatory, we also shifted the bumps in the two LMN pools
by appropriate amounts corresponding to an ATI of roughly 46
ms. When simulating a nonanticipatory LMN, the bumps were
not shifted, only their amplitudes varied.

Given a set of LMN input patternsX and a set of desired AD
output patternsY, we sought a weight matrixW that could
satisfy WX 5 Y. The weights can be derived by gradient

FIG. 5. Effect of anticipation on tuning curve shape.A: comparison of fast
CCW curve and still curve from the same cell as Fig. 3: the fast peak is at the
same location as the right peak of the bimodal still curve, and the flanks are
also similar.B: comparison of model’s fast and still tuning curves without
lateral mammillary nucleus (LMN) anticipation shows that both the peak and
the edges are aligned.C: with anticipation in LMN, the fast AD curve shifts
relative to the still curve; peaks and edges fail to align.
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descent learning using the LMS (least mean squares) algorithm
(Hertz et al. 1991) or they can be computed directly asW 5
YX21, whereX21 denotes the pseudo-inverse of the 2023 505
matrix X. The latter solution is faster to compute but numeri-
cally unstable; it produces more erratic weight vectors than
gradient descent.

Results for these simulations are shown in Fig. 6. The
network was easily able to associate nonanticipatory activity
profiles in LMN with the proper AD tuning curve shapes (Fig.
6A). It was unable to do this for anticipatory activity profiles in
LMN (Fig. 6, B andC). The matrix inverse solution produced
the same unsatisfactory result as LMN. The bimodality of AD
tuning curves during zero-turn cases was especially hard to
reproduce.

Because the LMS algorithm with a two-layer network is
known to converge to a solution if one exists (Hertz et al.
1991), these additional simulations suggest that there is no
linear mapping between an anticipatory LMN and an AD with
the tuning curve profiles described by Blair et al. (1997).
Therefore although velocity-driven amplitude modulation in
LMN provides a mechanism that can account for tuning curve
distortions in AD, it would seem that the anticipatory nature of
real LMN cells precludes their providing a full account of this
phenomenon.

PoS has a reciprocal projection to AD. PoS lesions do not
eliminate HD cell firing in the AD, but they do alter the shapes
of AD tuning curves, making them slightly broader and in-
creasing the ATI (Goodridge and Taube 1997). On the other
hand, bilateral lesions of LMN abolish head direction cell
firing in AD (Blair et al. 1999; Tullman and Taube 1998). To
investigate the possibility that LMN and PoS inputs together
could produce the observed tuning curves in AD, we added a
PoS input to the two-layer linear network model, expanding the
input layer to 303 units. With this addition, the network was
able to reproduce the desired AD response, as shown in Fig.

6D. Our intuition about why the PoS input helped is that PoS
is somewhat “out of phase” with an anticipatory LMN, so the
PoS input vector contributes a new set of basis functions on
which the linear approximator can draw. The idea is analogous
to adding more terms to a Fourier series.

Besides PoS, another area that could be affecting AD tuning
curve shapes is retrosplenial cortex, which like LMN receives
projections from PoS and provides input to AD (van Groen and
Wyss 1990, 1992). In addition, evidence suggests that some
cells in retrosplenial cortex fire as a function of the animal’s
movements (Chen et al. 1994), implying there is velocity
modulation there.

D I S C U S S I O N

The contributions of this modeling effort to our understand-
ing of the rodent head-direction system are1) a confirmation of
the Blair and Sharp hypothesis that a single offset angle pa-
rameter (d) can account for both degree of tuning curve dis-
tortion and degree of anticipation in AD;2) a prediction that to
achieve a constant ATI over a range of angular velocities, the
head-direction system must be balancing CW and CCW offset
inputs so as to maintain an overall constant input to AD;3) a
demonstration that an additive angular velocity signal can
produce suitable amplitude modulation (a multiplicative effect)
in an attractor network model of LMN;4) a demonstration that
LMN anticipation of AD is incompatible with LMN being the
sole input responsible for AD tuning curves, if AD curves are
bimodal and distort with velocity as described by Blair and
Sharp. However,5) a combination of anticipatory, velocity-
modulated LMN input and nonanticipatory, velocity-indepen-
dent PoS input does suffice to reproduce AD tuning curves.

Several issues remain. We derived a workable combination
of LMN and PoS to AD weights using a simple linear model,
but we have not yet tried to retrofit these weights into the more
complex nonlinear model. Also a more recent report by Blair
and Sharp (1998) describes LMN cells as being width-modu-
lated as well as showing velocity modulation; the tuning curves
narrow with increasing velocity in the cell’s preferred turning
direction. This effect was not reported by Stackman and Taube
(1998). We await the results of further experiments that could
resolve the issue. In the mean time, a model for producing
width-modulated LMN tuning curves would be useful so that
the implications for AD tuning curve shapes may be investi-
gated.
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