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Goodridge, Jeremy P. and David S. TouretzkyModeling attractor a single cell appears to be constant over a broad range of
deformation in the rodent head-direction systénNeurophysioB3: angular head velocities.

3402-3410, 2000. We present a model of the head-direction circuit inAccording to Blair, Lipscomb, and Sharp (1997), the shapes
the rat that improves on earlier models in several respects. First,_jt S A . ' -
provides an account of some of the unique characteristics of hth%-AD HD cell tuning curves exhibit distortions as a function

direction (HD) cell firing in the lateral mammillary nucleus and th@! the speed and direction of the animal’s turning. Furthermore
anterior thalamus. Second, the model functions without making phy¥hen the animal is still, the curves often have a bimodal shape
iologically unrealistic assumptions. In particular, it implements attra¢two peaks), whereas when the animal is turning, AD HD cell

tor dynamics in postsubiculum and lateral mammillary nucleus witlnuning curves are unimodal but skewed in the opposite direc-

observed in vivo, and it integrates angular velocity without the use ﬁEad velocity (Taube 1995)

multiplicative synapses. The model allows us to examine the relation- . . .
ships among three HD areas and various properties of their represen-l-—,he extent t.o Wh'Ch a particular AD HD cell shows th.|s.
tations. A surprising result is that certain combinations of purportddning curve distortion depends on how much the cell antici-

HD cell properties are mutually incompatible, suggesting that tiEtes the animal’s head direction. The greater the ATI, the
lateral mammillary nucleus may not be the primary source of hegdeater the extent of tuning curve distortion. In addition, the
direction input to anterior thalamic HD cells. width of an AD HD cell's tuning curve when determined
across all velocity levels is positively correlated with ATI
(Blair et al. 1997). An accurate model of the HD system must

INTRODUCTION not only capture the average tuning curve differences between
] o AD and PoS, it must also account for thistribution of tuning
Previous empirical research curve characteristics within the AD and PoS populations.

Previous research has identified several populations of ney] € Phenomenon of AD tuning curve distortion has been
rons in the rat brain that fire as a function of the animal's he&g!l€d into question by Taube and Muller (1998), who did not
direction (HD). The firing rate of each HD cell is maximaS®® this effect in their own experiments. They also did not
whenever the animal’'s head is pointed in one particular dird&POrt Pimodality when the animal was still. In this paper, we
tion and tapers off as the animal points its head away from t ! 'be basing our modeling effor_ts on the Blair et al. (1997)
direction. Different HD cells have different preferred direcNdings. The Taube and Muller findings were based on much
tions so that the entire 360° space is uniformly sampled by tﬁgorter recording sessions: only 8 min as compared with 15-30

population of HD cells. HD cells have been identified in 'ggn grBHairgt al. 199;) and 15-90 mir;fin (Blair a”% lSJhanF.
number of different brain areas, including the postsubiculufif28)- Thus because the tuning curve effects reported by Blair

(PoS) (Ranck 1984; Taube et al. 1990), anterior dorsal thaf-2l- &re quite subtle, they may very well have been obscured
' ' 10 the 8-min sessions.

mus (AD) (Taube 1995), and lateral mammillary nucleus Data on LMN head-direction cells have only recently be-

(LMN) (Stackman and Taube 1998), although not all cells in ilabl d | h di Stack
these regions fire in a direction-specific manner. Furthermdf@Me available and are also somewhat contradictory. Stackman

the particular firing characteristics of HD cells vary fronfnd. Taube (1998) describe LMN cells as having Gaussian
region to region. uning curves quulated by a_ng_ullar velocity. Cells that pref_er
PoS head direction cells have simple Gaussian-shaped tEifckwise tumns increase their firing rate as angular velocity
ing curves. The firing of these cells is best correlated with thgcreases in the cIockW|_se d'reCt'on and decrease thel( f|r|ng
animal's head direction approximately 10 ms in the past, 4RL€ @S angular velocity increases in the counterclockwise di-
average (Blair and Sharp 1995; Taube and Muller 1998). fction relative to the baseline rate observed when the animal’s
contrast, the activity of the average HD cell in AD is be ead is not turning at all. The o_bserved ATI for LMN cells was
correlated with the animal’s heading approximately 25 ms fPProximately 95 ms. But Blair and Sharp (1998) report that
the future. In other words, the average AD HD cell has arViN HD cells have an ATI of 40 ms, and while their peak

anticipatory time interval (ATI) of- 25 ms. The ATI value for Iring rate increases with velocity, in addition, the width of the
’ tuning curve contracts as angular velocity increases in the

The costs of publication of this article were defrayed in part by the paymeq{recuon of the side containing t_he celle.g., QounterdOCkWISe
of page charges. The article must therefore be hereby maskhaftisemerit  tUrNs for left LMN cells or clockwise turns for right LMN cells.
in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. ~ The width stays the same for turns in the opposite direction. In
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this paper, we will be reporting on simulations that address thrack the animal’s head direction. Simulations showed that this
compatibility of these different LMN findings in a model inmechanism is sufficient to allow the HD system to accurately
which LMN is the primary projection to AD. track complex head movement profiles taken from a real rat
Redish, Elga, and Touretzky (1996) developed a model tH&tedish et al. 1996).
accounted for some of the differences between AD and PoSn the Redish et al. model, the integration process was
HD cell firing. Specifically, their model provided an explanaimplemented by coupling two attractor networks together, one
tion for why AD HD cell firing was best correlated with thecorresponding to AD and the other to PoS. As described in the
animal’s future head direction, whereas PoS HD cell firing waseceding text, AD contains an HD signal that is best corre-
best correlated with current head direction. The Redish et Eted with the animal’s future head direction (Blair and Sharp
model also predicted that AD tuning curves would exhibit995; Blair et al. 1997; Taube and Muller 1998). In contrast,
distortions as a function of the animal’s turn velocity, whicliPoS contains an HD signal that best corresponds to the ani-
was subsequently confirmed by Blair et al. (1997). Howeveanal's present or recent past head direction. To account for this
the model did not account for certain other important diffedifference between PoS and AD, Redish et al. (1996) proposed
ences. that there are asymmetric connections between AD and PoS. In
In this paper, we present a new model that is the succesparticular, they proposed that PoS HD cells project to AD HD
to the one described by Redish et al. (1996). Our modetlls with slightly offset preferred directions, whereas AD HD
accounts for a number of important new results not covereddells project to PoS HD cells with matching preferred direc-
the previous model, such as the bimodality of AD tuningons. This arrangement is plausible because the anatomical
curves, the constancy of ATI for all angular velocities, thdata suggest that AD and PoS are reciprocally connected but do
particular distorted shapes exhibited by AD HD cells as velooet reveal which cells in PoS project to which cells in AD. In
ity increases, and some of the tuning curve changes exhibited Redish et al. model, when a left turn was being simulated,
by LMN HD cells. Furthermore unlike the model in Redish ePoS projections to AD HD cells with a preferred direction
al. (1996), our new model does not rely on directionally tuneglightly offset to the left (“left offset” projections) were en-
inhibitory neurons or multiplicative synapses. abled, whereas right offset projections were disabled. The
Preliminary data concerning some of the results presentectonverse was true when right turns were being simulated. As a
this paper have been published previously (Goodridge et asult of this scheme of interaction, AD contained a hill of

1997). activation that slightly anticipated the position of the hill in
PoS.
Previous modeling research Although the Redish et al. model did account for the tem-

poral difference between AD and PoS HD cell firing, it did not

Many findings (Blair and Sharp 1996; McNaughton et ahccount for the distorted tuning curves in AD. Redish et al. did
1991; Stackman and Taube 1997; Taube and Burton 19%Bpw that removing the attractor dynamics from AD resulted in
suggest that HD cells rely on internal sources of information tlistorted tuning curves; however, these distortions were not the
obtain information about ongoing changes in the animal&me as the ones that AD HD cells actually exhibit. In addition,
heading. Vestibular, proprioceptive, and motor efference copfter removal of attractor dynamics, the amount by which AD
are all possible sources of self-motion cues. It appears that HID cell firing anticipated PoS HD cell firing declined with
cell activity is updated by integrating angular velocity signalangular velocity, which is not consistent with the known data
from one or more of these sources. (Taube and Muller 1998). Nevertheless, as noted by Redish et

A number of previous models have been proposed to ad-, there is good anatomical evidence that the AD does not
count for the integration of angular velocity by HD cells (Blaicontain an attractor network. In particular, AD lacks the
1996; McNaughton et al. 1991; Redish et al. 1996; Skaggs@ABA-containing interneurons (Bentivoglio et al. 1993) that
al. 1995; Zhang 1996a). Most of these models are based onwwild provide the necessary inhibition for an attractor net-
attractor hypothesigirst put forth by Skaggs et al. (1995) thatwork. So in our new model, AD does not contain any attractor
the head-direction system is a circular one-dimensional dynadynamics, and its connectivity to other structures has been
ical system or ring attractor, which integrates angular velocigftered.
by moving an activation bump around the ring. Blair et al. (1997) proposed their own account of how the

Attractor models postulate the existence of an extensidestorted tuning curves in AD were generated. They suggested
network of interconnection between HD cells such that celteat each AD HD cell received input from two populations of
with similar preferred directions excite more than inhibit onturn-modulated HD cells. One of these populations increased
another, whereas cells with dissimilar preferred directions iits firing rate when the animal turned clockwise, whereas the
hibit more than excite one another. This scheme of intercoother increased its rate for counterclockwise turns. In their
nectivity produces a situation in which a bump or activatioscheme, (counter-) clockwise turn-modulated cells projected to
hill (the “attractor state”) will arise even when the initialAD HD cells with preferred directions slightly (counter-)
activation levels of the cells are random. The hill is theolockwise to that of the projecting cell. They postulated that
self-maintaining in the absence of external input. The activAD HD cells that anticipated head direction by a large amount
tion hill is made to move around the ring, representing theceived input from turn-modulated head-direction cells with
animal’s estimated heading as it turns, by supplying additiomalore highly offset connections and that this scheme would
input to units on one flank of the hill. The amount of the inpuproduce the kinds of tuning distortions that AD HD cells
supplied to a flank determines the speed at which the hiéfkhibited in real rats. Although not intended to account for
moves. If the strength of this input corresponds to the animatisstortions in AD HD tuning curves, a similar proposal was
angular velocity, then movement of the activation hill willmade by Zhang (1996b). Whereas in the Redish et al. model,
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AD tuning curves were a function of only one set of offsetasLe 1. Individual unit parameters
connections at a time, in the Blair and Sharp model, AD tuning

curves were a function of two sets of simultaneously acti¥imber of excitatory units/pooNe) 101
- Number of inhibitory units/pooll,) 1
offset connections. | O
. . . . . ntegration time stepAt), ms 0.1
~n this paper, we present 5|mulat_|ons of a model in which thgitatory unit time constantrg), ms 1.0
input to AD is as proposed by Blair and Sharp. We show thaibitory unit time constants), ms 0.2
the model is capable of accurately accounting for AD and P&8S excitatory unit tonic lnhlb!tlomé;’s) -15
tuning curve shapes, that it integrates angular velocity wiffp excitatory unit tonic inhibition ¢2°) —1.75
d d that it also produces a constant ATl in A N excitatory unit tonic inhibition ¢ ) 3%
good accuracy, ,an > p 0S and LMN inhibitory unit tonic inhibition) -75
The source of input to AD is another attractor module th@bs and AD gainde,s ap) 2
exhibits the velocity modulated tuning curves described BN gain (g un) 1

Stackman and Taube (1998) with respect to LMN. However,
our simulations show that the AT values reported for LMN by,
Stackman and Taube and by Blair and Sharp (1998) are no

compatible with the AD tuning curve properties described hjhibitory interneurons, are nondirectional.) The output, or “firing
Blair et al. (1997) if it is LMN alone that drives AD. rate,” of theith unit, F,(t), can be regarded as the fraction of neurons
in the subpopulation that were spiking at timer as the probability
that an individual neuron emitted a spike at titnall structures in the
model used the same type of unit, and the preferred directipwere

New model of the HD system: overall structure uniformly distributed around the circle. The following three equa-
tions, modified from Pinto, Brumberg, Simons, and Ermentrout
The organization of our model is shown in Fig. 1. A bump 0f1996), determined the activity of uriit
activation whose location represented the animal’s current head di-

PoS, postsubiculum; AD, anterior dorsal thalamus; LMN, lateral mammil-
nucleus.

METHODS

rection was maintained in PoS by means of attractor dynamics. This Vi(t) = v + Ei(t) 1)

signal was passed to two populations of LMN cells (clockwise: CW 1

and counterclockwise: CCW), where it was modulated by angular F)=—— )

velocity information represented in the model by two abstract “angu- 1+ exp—gVit)]

lar velocity” units. The two LMN populations projected to AD with ds (1)

opposite offsets, producing bimodal tuning curves. Thus AD activity T = —S(t) + F(t) (3)
dt

was purely a function of the input received from LMN, a property
which allowed AD to show dramatic Shape distortions. AD cells Vi(t) was the net activation of unit (or the average membrane
projected to PoS cells with matching preferred directions, therelyitage of neurons in subpopulatidh at time t. y was a tonic
updating the position of the PoS attractor bump. This connectigihibitory term, ancE,(t) was the weighted input (synaptic drive times
scheme is consistent with the known anatomy (Allen and HopkiRgupling strength) received from other units: both external input from
1989; Shibata 1992; van Groen and Wyss 1990, 1995), but it does gfer modules and recurrent input from units in the same module. The

include all the connections known to exist for these areas. unit's firing rate,F,(t), was a sigmoid function of its average mem
brane voltage. The slope of the sigmoid was determined by the gain
Neuronal model parameterg. The synaptic drive that the unit delivered at times

denotedS(t). Synaptic drive is a measure of the influence of a units
The elements of our model are nonlinear units with continuouen other units to which it projects. Synaptic drive varied with firing
valued outputs in [0, 1]. Each unit represents a subpopulation of “readite, but it changed more slowly and decayed exponentially as gov-
neurons, which we assume are firing asynchronously. Furthermore ¢éneed by the time constantin the differential equation. This simu-
excitatory neurons in th&h subpopulation are assumed to all havéated some of the effects of synaptic delay and temporal integration in
preferred directionp;. (Inhibitory units, representing populations ofreal neurons. We kept the excitatory and inhibitory unit time constants
short (1.0 and 0.2 ms, respectively) to allow the model to accurately

integrate turns at very high speeds, up to 700°/s. We integExed
Angular /_l_\ using a time stept of 0.1 ms
Velocity
; Lateral
Units Mamillary S(t+ A0 = SO + [-SO + FO] )
Nucleus T

Counter-

The units in the LMN, PoS, and AD modules all had identical

.9'.0.(:5‘2"_5(3__ Anterior Postsubiculum synaptic drive §) and firing rate ;) functions. Within a module,
Lateral Thalamus inhibitory and excitatory units used the same gain value. The three
( : ) . '\N"Sgl‘é'l'f’sry modules differed only in their tonic inhibition and gain parameters (
and g) and their connectivities, which determined their inpH}&).
Clockwise The basic parameters for a unit are shown in Table 1. The equations
for the individual voltage functiond/(t) will be described in the
sections that follow.

Fic. 1. Connections between structures in the model. The firing rate of the
counterclockwise (CCW) angular velocity unit increased monotonically frofylodel of PoS
the baseline (still) value for counterclockwise turns of increasing velocity and - .
decreased m(ono)tonically for clockwise turns. The clockwise %CW) anygularour_ model of PoS used a modified form of the Wilson-Cowan
velocity unit had complementary behavior. The postsubiculum (PoS) mod@guations (Wilson and Cowan 1972) to generate an attractor bump
and both pools of the lateral mammillary nucleus module contained recurréRinto et al. 1996). The PoS module contained both excitatory and
connectivity. inhibitory units, denoted by superscripts in the following equations.
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The recurrent connectivity within PoS was structured to allow a hill afaBLe 2. Parameters for unit interaction within the attractor
activation to form regardless of each unit's initial activity level. Thenodules, PoS and LMN
projection strength between any pair of excitatory units was a Gausss=

ian function of the difference in their preferred directions. There wasq. deviation ¢) for recurrent excitation;, degrees 285

only one inhibitory unit; it received input from all of the excitatory| — E coupling strengthz) -8.0

units and projected back to all of them with equal strength as shown- E coupling strengthxzg) 6.0

in Fig. 2. In the rat there are many inhibitory interneurons, but if eadh— | coupling strength £;,) -4.0

provides input to a different random subset of the excitatory popule-— ! coupling strength £¢)) 0.5

tion independent of their preferred directions, the net effect would be

the same as having a single fully-connected inhibitory unit. Each pool contained a recurrently connected excitatory population
The activation equation for thieh excitatory PoS unit was plus a single inhibitory unit. The parameters used for unit interaction

EPos e PoS cenp o o within LMN(cw) and LMN(ccw) were identical to those used for the
VEP) = ¥E°+ wape SO + it ST + ke X wySTTTY) (5 PoS attractor. In addition, the excitatory units in each LMN pool
i received external input from one of two angular velocity units as

External input was provided by the AD unit with matching preShown in Fig. 1. The CW-sensitive angular velocity unit, which
ferred directiond,. k= and kzz Were coupling constants determiningProjected to units in LMN(cw), fired maximally during a CW high
the strength of input received from the PoS inhibitory unit and frofP€ed turn; it fired minimally during a CCW high speed turn. The
other PoS excitatory units, respective§:"°St) was the synaptic CCW-sensitive angular velocity unit, which projected to units in
drive of the PoS inhibitory unit, angF-"°t) the drive of thejth Pos  LMN(ccw), responded in the opposite manner. .
excitatory unit. The weighty; from unitj to uniti was a Gaussian These angular velocity units have no specific anatomical correlate
function of the difference in the units’ preferred directions. Note th&? the rat; they are merely a conceptual device for introducing angular
because this difference was a circular variable, its magnitude w#ocity information into LMN. While cells tuned to angular velocity
bounded between 0 and 180°. The standard deviatioontrolled the have been reported in LMN (a different population than the LMN HD

width of the Gaussian, which determined (indirectly) the width of thgells), those cells did not discriminate between CW and CCW turns
attractor bump (Stackman and Taube 1998). LMN HD cells might receive angular

velocity information from the dorsal tegmental nucleus, which is

[ — ;1 known to project to LMN and to receive projections from the medial
Wi = eXp<7> 6 vestibular nucleus and nucleus prepositus hypoglossi (Blair and Sharp
1998; Stackman and Taube 1998). Those nuclei contain angular

The PoS inhibitory unit received no external input. It receivedelocity cells thatare sensitive to turn direction (Blair and Sharp
inhibitory input from itself, and excitatory input from the excitatory1998). Direction-sensitive angular velocity cells have also been re-
PoS population, governed by the coupling constaqtsand kg, ported in PoS (Sharp 1996), which might contribute to the PoS
respectively projection to LMN.

o o o In agreement with the observations of Stackman and Taube (1998),

VPR = 31+ i ST + ke X P () the firing rates of our LMN units were modulated by the angular

i velocity signal, increasing for turns in one direction and decreasing for

The parameters for the PoS attractor module are shown in TabldWnS in the opposite direction. To achieve this without distorting the
These values were obtained by experimenting with the simulati§faPe of the tuning curve, we relied on a result described by Salinas
until an acceptable bump shape was produced. The values are fa%rp)gl Abbott (1996), showing that an additive input supplied to all the

robust in the sense that small changes in parameter values do W8S in @ one-dimensional attractor bump can produce a multiplica-
produce drastic changes in model behavior. tive effect on the bump. The activation equation for itheexcitatory

LMN(cw) unit is shown in the following text. A similar equation
governed LMN(ccw) units

Model of LMN
) ) VF-LMN(CW)(t) — A LMN + . SEPOS(t) + ACW(t) + . SI'LMN(CW)(t)
Our model of LMN consisted of two pools of units, LMN(cw) and Ve o P e
LMN(ccw), with a preference for CW and CCW turns, respectively. + Kee D, WySHNO(D)  (8)
J
X w. The ith excitatory LMN unit's external input was provided by
EE i SP°Si.e., the synaptic drive of the PoS unit with matching preferred
directiond,;. All LMN excitatory units also received a common input
E.PoS pA(t) or pASe™(t) from the angular velocity unit for their respective
pool; p is a scale factor. Note that the angular velocity term is

unsubscripted because it is a global input to all units in the pool,
< independent of preferred directioA®™(t) ranged from 0 to 1, and
IE A1) was always equal to + A°¥(t). As a result, the LMN(cw)
pool received the complement of the angular velocity signal received
LI by the LMN(ccw) pool. The specific values of this term for different
angular velocities were determined experimentally, so that the model
could accurately simulate head turns at speeds ranging from 700°/s

CCW to 700°/s CW, in 100°/s increments. The tonic inhibitige"™
was set toyE°S — p/2 to compensate for the mean added excitation
UK" from the angular velocity signal, and the gajn,,, was set to half

Oros Decause LMN receives strong inputs from both its recurrent
Fic. 2. Connections within the postsubiculum module, illustrating thBrojections and the PoS projection.

structure of an attractor network. E.PoS: excitatory units; 1.PoS: inhibitory AS With PoS, the weight from LMN excitatory urjitto excitatory
unit. unit i within the same pool was a Gaussian function of the difference
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TABLE 3. Parameters for module interaction model parameters to accurately integrate angular velocities
' from O to 700°/s in steps of 100°/s, both CW and CCW, while

ﬁc?s_—: TOMSNCSSS"HE Sgtfe”r?t:'ﬁ(\{) ) (1’-(2)2 maintaining desired tuning curve shapes.

VN o AD Cougling Strength,(;) > Once this tuning process was complete, the behavior of the

LMN — AD offset amount §), degrees 27 (nominal) Model in response to velocity changes could be studied. In

Strength of angular velocity inpup) 4.9 particular, we assessed the integration accuracy of the model,

the shapes of the tuning curves in all three modules, and the

in their preferred directions. The same weight mawixwas used as degree of anticipation in AD as a function of angular velocity.
for PoS. Also as in PoS, the inhibitory unit in each LMN pool received

a projection from each of the excitatory units in its pool, governed htegrating a real angular velocity profile
the coupling constankg,, and an inhibitory projection from itself
governed by the constarf,. The inhibitory unit received no input  To examine whether the network was capable of integrating

from units external to LMN. Parameter values are shown in Tablesa2real angular velocity profile, we used data obtained from

and 3. Blair and Sharp (personal communication). This was the same
data as were used in Redish et al. (1996). The data consisted of
Model of AD a rat head-direction trajectory lasting 12 s, sampled at 60 Hz.

Because AD contained no attractor dynamics, the activity of ABO compute the angular velocity Of. the animal during each
units was entirely dependent on external input. This input consistedstﬂ‘mple’ we grouped each sample W'th the wo samples before
the offset projections from the two LMN pools. Thea unit in AD, and two samples after. Then we defined the angular velocity of
with preferred direction,, received projections from LMN units with the sample as the slope of the best fit line through these five
preferred directionsp; = 8. For example, if the offset amount waspoints. Because the real data were sampled at 60 Hz, each
15°, an AD unit with a preferred direction of 90° would receive inpusample accounted for approximately 16 ms of time. However,
from an LMN(cw) unit with a preferred direction of 75° and anthe simulations were performed with a time step of 0.1 ms, so
LMN(ccw) unit with a preferred direction of 105°. As described inve used linear interpolation to generate an angular velocity
ResuLTs the size of this offset was important in determining both tr_‘?rofile with all the intermediate values required for the model.
;”z;:gg tch”g;’eeiﬁﬁ‘)ﬁe exhibited by AD units and the degree of antici-\y/e gefined the speed at which the model was turning as the

; ' ) . rate of change of the location of the PoS activation hill.

AD units were governed by the following equation Location was defined as the weighted mean of ghealues,

VPP (1) = ¥E® + kpa s STV + kpp s SEEMVEY (1) (9) Wwhere the weights were the firing ratés In other words, we

o . _ o calculated the population vector (Georgopoulos et al. 1983) of

\’/\lvherej =1~ 8- Ne/360° (moduloNg), k =1 + 8- N/360° (modulo 4,0 pog populgticl)on. Assigning a?ocatign I[t)o the PoS activat)ion
g), 6 is the offset angle in degrees, ailNkL is the number of | . ~. . . .

excitatory units in an LMN pooly2® was made slightly larger than h!" IS more stralghtforwarq than for AD since AD profiles hr_:lve
yPoShecause AD has no inhibitory inputs, but it might be possible fdiStorted shapes. The tuning curves in the PoS module did not
have all three modules use the same value by adjusting other €xhibit the shape distortions that were present in AD even
parameters. though PoS received direct projections from AD. The primary
reason for this was the recurrent connections in PoS, which
tended to minimize the effects of distortions in the input. The
amplitude of the PoS attractor bump also remained fairly

Most of the parameters of the model were kept fixed for atlonstant, making PoS cells insensitive to angular velocity.
simulations reported here. In particular, the tonic inhibition When we exposed the model to the complex angular velocity
valuesyg andy, and time constantg: andr, for all units, the trajectory taken from a real rat, we found it maintained heading
weight matrixw; used in PoS and LMN, the number of unitswith good accuracy, comparable with the Redish et al. model.
in each structure, and the coupling strengths among the AD,

PoS, and LMN modulesup, kpy, K a) were all kept constant. Shapes of AD tuning curves

We varied$, the extent of the offset in the connections from

LMN to AD, to fit the tuning curves of several real AD cells. According to the proposal of Blair et al. (1997), one primary
We also varied the strength of the angular velocity inffitif(t) source of differences among AD HD cells with identical pre-
to simulate turns at various speeds. The effects of varying thésered directions is the amount of offset in the projections they
parameters are described in the following text. receive from angular velocity-tuned HD cells. This proposal

At the beginning of a simulation, we set the activation leveksuggests that for each AD cell there is a particular offset value
of units in PoS and LMN to random values. Then at each tinteat determines both the cell’s tuning curve shape and the
step of the simulation, all units updated their activation levelextent to which it anticipates head direction.

Soon a stable activation hill formed over the PoS, LMN, and To examine the validity of this hypothesis, we chose the HD
AD populations. This settling process required 10-50 ms oéll from Blair and Sharp’s population that showed the highest
simulation time. degree of tuning curve distortion. Then we varied the level of

When the activation hills stabilized, we experimentally adsffset in the projection between LMN and AD until we were
justed the model so that a continuous turn at particular fixedble to best fit the tuning curve of that AD HD cell. Figure 3
angular velocity values would cause the expected change in #iws the activation hills produced in our simulated AD in
position of the PoS activation hill. We did this by varying theelation to the tuning curves of the actual AD HD cell.
angular velocity inputA®(t) to LMN until it produced the  As can be seen, the simulation was able to fit this particular
appropriate speed of activation hill movement. We tuned th#D cell quite well. Thed value used to generate the simulated

RESULTS
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achievable offset in degrees between AD and PoS hills was less
-~ data than the value ob. For the HD cell modeled in Fig. 3 was
— model 27°, but simulations showed that even at high velocities, when
AD was receiving virtually all its input from the one LMN
activation hill projecting ahead in time, the actual offset be-
tween AD and PoS hills was only 24°. Thus despite the offset
% o0 180 270 360 from LMN to AD, the AD activation hill was not as advanced
Stil relative to LMN as it would have been in a model with
‘0 0 instantaneous-time units, i.e., wit close to zero.

' Our simulations showed there was indeed a positive rela-
tionship between the offset paramet@rand the extent of
anticipation in AD. The result suggests that the degree of offset
is a critical factor in explaining tuning curve variability of AD
HD cells. Therefore according to this model, the reason that
R T o 50 290 ok many HD cglls do not showla visible degree of distortion is that
Clockwise Slow Clockwise Fast the 6 value is too small. With a very small value fér there
was almost no visible tuning curve distortion because the two
activation hills from LMN overlapped almost completely. Nev-
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£ £30 ertheless even in these cases, there was still a measurable ATI.
'§, E,,zo Another feature of AD tuning curve shapes is that their peak
= £ amplitude rises with increasing velocity (Taube 1995). That
10 result is also consistent with the AD tuning curves generated by
e A= this model.
0 90 180 270 360 0 20 180 270 360
Counterclockwise Slow Counterclockwise Fast

FIc. 3. Real and simulated anterior dorsal thalamus (AD) tuning curves gtonStanCy of anticipation in AD

different angular velocities. For the real curves, Blair and Sharp defined faSt;—ane and Muller (1998) reported that the extent to which

turns as exceeding 270°/s, slow turns as 30—270°/s, and speeds below 30°/s as_". . N . .

“still.” Simulated velocities required to match the real curves were 101°/s f&%e signal in AD anticipates the signal in PoS does not vary
slow turns and 330°/s for fast turns. Model unit “firing rates” (values betweanith angular velocity. We were interested in determining
0and 1) were multiplied by 50 to convert to equivalent spike rates in the grapphether our model exhibited similar behavior. To assess this in
;e_xcept for the fast CCW case where a multiplication factor of 60 gave a bet{ﬁre current model. we conducted simulations at a range of
it. ’

different angular velocities. For each angular velocity, we

curves was 27°. It should be noted that this cell shows a véfgmputed the ATI in AD relative to PoS. Figure 4 plots the
visible degree of tuning curve distortion. We also performek lationship between angular velocity and temporal difference
simulations to match another HD cell and found a simildf€tween AD and PosS for real HD cells and for the model.
quality of fit. To fit the tuning curves of this new cell, we only AS can be seen from the graph, the model exhibited a nearly

had to change the extent of offskin the projection from LMN constant ATl as a function of angular velocity. However, _it i_s
to AD. also important to note that there is a great deal of variability in

To measure anticipatory firing in AD, we arbitrarily desig-the real HD data, which makes it difficult to determine how

nated the position of the attractor hill in the PoS module as t@nstant the anticipation of real AD HD cells actually is.
simulated animal’s actual head direction. Thus the ATI for Pos Constancy of anticipation means that the difference in po-
was always 0, and the ATI for AD was measured in relation ﬁitlon'of AD versus PoS activation hills vaneslllnearly with the
this reference. To measure the ATl at any time step in tp{g!omty at W_hlch t_he activation hills are moving. In o_rgler for
simulation, we computed the position of the AD activation hif? linear relationship to be preserved, we found it is critical that
and subtracted the position of the PoS activation hill from this
value. This difference represented the actual offset in degrees
between the AD and PoS activation hills. The ATI was then
computed by dividing this difference by the current angular
velocity of the PoS activation hill.

For the simulated cell shown in Fig. 3, the calculated ATI
was 28 ms. This value was lower than that of the real cell
whose tuning curve we had fit (47 ms), a result that suggests
that other mechanisms besides the one proposed here are acting
to increase the level of anticipation in AD. In our model, one
reason a higher level of anticipation could not be achieved with
this offset was the existence of transmission time delays from
PoS to LMN and then from LMN to AD. The delays resulted 10

from the nonzero time constants of the individual units. The 0 L?,?gu.arVe.oc%f;"(degrees,si‘é? 400

synaptic drive of a unltliq. 3 varied as a function of net Input 1G. 4. Comparison of the anticipatory time interval for model anterior

o ) . F
P'US the unit's current drive value at a rate determlned by theiamic cells vs. real anterior thalamic cells (real data courtesy of Jeffrey S.
time constantrz. As a result of this delay, the maximumTaube).
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there be conservation of strength in the projections from LMN A Blair & Sharp cell B g  Modelno LMN Anticipation
to AD. If during a turn the increase in total activity of CW 40 '
LMN units is not exactly balanced by a decrease in activity for 240
CCW LMN units, then AD units will receive more total ex- &

ternal input during high-speed turns than during low-speed £20
turns. Depending on how this extra input is distributed, the * 4,

o
»

Activation Level
o
s

0.2
change in the shape of the AD activation hill will produce an
effect on the speed of the PoS Hhilhove and beyonthe effect % % e 180 270 360
produced by the difference in position between AD and PoS

. . ! . . . Model w/LMN Anticipation
activation hills. As a result, there will not be a linear relation- Cos P

ship between the difference in position of AD versus PoS

activation hills and the velocity at which the activation hills are — fast
moving, which means ATI will not be constant. Thus the -~ stil
model suggests that equal and opposite changes in the two

o
=

Activation Level
(=]
<Y

LMN populations’ projections to AD are critical for the sta- 02
bility of AD anticipation across different angular velocities. 0

0 90 180 270 360
Does LMN drive AD? Fic. 5. Effect of anticipation on tuning curve shapge.comparison of fast

CCW curve and still curve from the same cell as Fig. 3: the fast peak is at the

. . .., same location as the right peak of the bimodal still curve, and the flanks are
All of our results for AD were obtained by drlvmg AD with also similar.B: comparison of model’'s fast and still tuning curves without

nonanticipatory HD signals offset by a constant amatftin  ateral mammillary nucleus (LMN) anticipation shows that both the peak and
the model, AD was driven by a velocity-modulated signal frorthe edges are aligne@: with anticipation in LMN, the fast AD curve shifts
LMN, which was in turn driven by PoS, giving LMN an ATI relative to the still curve; peaks and edges fail to align.
value of —3 ms relative to PoS due to transmission delay. But . . - .
observed ATl values for LMN range from 40 to 95 ms (Blaif'Si"d P€ak, producing an anticipatory effect. For the curves in
and Sharp 1998: Stackman and Taube 1998). This raises i 3 the recozereq d|rectlons were 173° (fast CV\!)’ 176
question of whether the data on AD and LMN response profglow CW), 184° (still) 192° (slow CCW), and 198° (fast
erties are compatible with the hypothesis that LMN drives ABzCW). . o
Although bilateral LMN lesions eliminate the AD head direc- The anticipatory LMN simulation did not produce correct
tion signal (Blair et al. 1999; Tullman and Taube 1998), thi8D tuning curves because the fast tuning curve was shifted in
does not prove that AD activity is principally derived directlyposition, not just height, relative to the still curve. Figuri 5
from the LMN projection. compares fast and still tuning curves for the cell shown in Fig.
To investigate this hypothesis, we modified the model & Note that the peak of the fast CCW curve is at the same
force LMN to anticipate PoS by a modest amount by shiftinigcation as the right peak of the still curve. Figurg $hows
the PoS input to LMN CW or CCW as a function of angulathat the model correctly reproduces this relationship when
velocity. This produced ATI values of 31-46 ms in LMN. (Thehere is no LMN anticipation. But if LMN anticipates PoS, the
variation is due to the fact that the PoS activity vector wasD tuning curve shifts in the direction opposite the turn, as
always shifted by a whole number of units, i.e., in steps shown in Fig. &. Hence the AD curve is not correct since the
3.56° since there were 101 units per module.) We found tHast peak does not coincide with the still peak.
LMN anticipation combined additively with the effect of offset To further investigate the effect of LMN anticipation on AD,
connections from LMN to AD, producing an ATI of 60—80 mswve constructed a separate linear network model to determine
in AD. Thus AD anticipated LMN, when the reverse should behether there waany pattern of weights between LMN and
true. In addition, the shapes of the AD tuning curves no long&dD that would allow LMN to be anticipatory and AD to
fit the data of Blair and Sharp, as will be discussed in thexhibit the desired tuning curve shapes. This model was a
following text. two-layer network of linear units, where the input layer's 202
Why does PoS in the model have a smaller ATI than ADynits represented the two LMN pools, and the output layer’s
which drives it, but AD does not have a smaller ATl thari01 units represented AD. The training set consisted of a set of
LMN? The AD projection to PoS does not involve offseLMN activity patterns corresponding to bumps centered at
connections. But more importantly, PoS is an attractor modukach of 101 positions around the circle, for five different
input from AD is only one influence on PoS unit activityangular velocities from fast CCW (approximatelty300°/s)
Recurrent connections in PoS have significant influence byough still to fast CW. Thus there were a total of 505 training
stabilizing and maintaining the bump that the AD input pepatterns. The amplitudes of the activity patterns in the two
turbs. In AD, which lacks recurrent connections, unit activity isMN pools were modulated by angular velocity in the appro-
determined solely by the offset LMN projections, with theriate way. In simulations where LMN was supposed to be
offset amounts determined by the distance between the twanticipatory, we also shifted the bumps in the two LMN pools
peaks in the bimodal still tuning curve. We produced anticby appropriate amounts corresponding to an ATI of roughly 46
pation in AD by increasing the height of one of the peak®is. When simulating a nonanticipatory LMN, the bumps were
during turns while decreasing the height of the other. p&ak not shifted, only their amplitudes varied.
locations do not actually shift with velocity (FigA5, but since  Given a set of LMN input patterns and a set of desired AD
their relative amplitudes change, thecovered directionin output patternsy, we sought a weight matri¥V that could
AD, calculated using the population vector, shifts toward theatisfy WX = Y. The weights can be derived by gradient
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descent learning using the LMS (least mean squares) algoritBB. Our intuition about why the PoS input helped is that PoS
(Hertz et al. 1991) or they can be computed directiyas= is somewhat “out of phase” with an anticipatory LMN, so the
YX 1, whereX ! denotes the pseudo-inverse of the 20805 PoS input vector contributes a new set of basis functions on
matrix X. The latter solution is faster to compute but numeriwhich the linear approximator can draw. The idea is analogous
cally unstable; it produces more erratic weight vectors thao adding more terms to a Fourier series.

gradient descent. Besides PoS, another area that could be affecting AD tuning

Results for these simulations are shown in Fig. 6. Theurve shapes is retrosplenial cortex, which like LMN receives
network was easily able to associate nonanticipatory activityojections from PoS and provides input to AD (van Groen and
profiles in LMN with the proper AD tuning curve shapes (FigWyss 1990, 1992). In addition, evidence suggests that some
6A). It was unable to do this for anticipatory activity profiles ircells in retrosplenial cortex fire as a function of the animal’s
LMN (Fig. 6, B andC). The matrix inverse solution producedmovements (Chen et al. 1994), implying there is velocity
the same unsatisfactory result as LMN. The bimodality of Abhodulation there.
tuning curves during zero-turn cases was especially hard to
reproduce.

Because the LMS algorithm with a two-layer network i
known to converge to a solution if one exists (Hertz et al. The contributions of this modeling effort to our understand-
1991), these additional simulations suggest that there is jg of the rodent head-direction system &ye confirmation of
linear mapping between an anticipatory LMN and an AD witkhe Blair and Sharp hypothesis that a single offset angle pa-
the tuning curve profiles described by Blair et al. (1997}yameter §) can account for both degree of tuning curve dis-
Therefore although velocity-driven amplitude modulation ifortion and degree of anticipation in AR) a prediction that to
LMN provides a mechanism that can account for tuning curyghieve a constant ATI over a range of angular velocities, the
distortions in AD, it would seem that the anticipatory nature gfead-direction system must be balancing CW and CCW offset
real LMN cells precludes their providing a full account of thi$nputs SO as to maintain an overall constant input to gpa
phenomenon. o _ demonstration that an additive angular velocity signal can

PoS has a reciprocal projection to AD. PoS lesions do ngfoduce suitable amplitude modulation (a multiplicative effect)
eliminate HD cell firing in the AD, but they do alter the shapef an attractor network model of LMN§) a demonstration that
of AD tuning curves, making them slightly broader and int MN anticipation of AD is incompatible with LMN being the
creasing the ATI (Goodridge and Taube 1997). On the othgsle input responsible for AD tuning curves, if AD curves are
hand, bilateral lesions of LMN abolish head direction cefimodal and distort with velocity as described by Blair and
firing in AD (Blair et al. 1999; Tullman and Taube 1998). Tosharp. However5) a combination of anticipatory, velocity-
investigate the possibility that LMN and PoS inputs togethefiodulated LMN input and nonanticipatory, velocity-indepen-
could produce the observed tuning curves in AD, we addecjant PoS input does suffice to reproduce AD tuning curves.
PoS input to the two-layer linear network model, expanding the Several issues remain. We derived a workable combination
input layer to 303 units. Wlth this addition, the network wagf LMN and PoS to AD weights using a simple linear model,
able to reproduce the desired AD response, as shown in Figit we have not yet tried to retrofit these weights into the more

complex nonlinear model. Also a more recent report by Blair

QISCUSSION

Ao 6 No LMN Anticipation BO8 LMN Anticipation (Still and Sharp (1998) describes LMN cells as being width-modu-
' — desired ' — desired lated as well as showing velocity modulation; the tuning curves
0.6 -~ model 06 -~ model narrow with increasing velocity in the cell’'s preferred turning
direction. This effect was not reported by Stackman and Taube
0.4 0.4 (1998). We await the results of further experiments that could
02 02 resolve the issue. In the mean time, a model for producing
width-modulated LMN tuning curves would be useful so that
% 90 180 270 360 % "0 180 290 360 the implications for AD tuning curve shapes may be investi-
C LMN Anticipation (Fast) D LMN Anticipation + PoS gated'
08 — desired 08 — desired
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