
In T. G. Dietterich, S. Becker, Z. Ghahramani, eds., NIPS 14. MIT Press, Cambridge MA, 2002. (In Press)

Modeling Temporal Structure in Classical

Conditioning

Aaron C. Courville1,3 and David S. Touretzky2,3

1Robotics Institute, 2Computer Science Department
3Center for the Neural Basis of Cognition

Carnegie Mellon University, Pittsburgh, PA 15213-3891
{aaronc,dst}@cs.cmu.edu

Abstract

The Temporal Coding Hypothesis of Miller and colleagues [7] sug-
gests that animals integrate related temporal patterns of stimuli
into single memory representations. We formalize this concept
using quasi-Bayes estimation to update the parameters of a con-
strained hidden Markov model. This approach allows us to account
for some surprising temporal effects in the second order condition-
ing experiments of Miller et al. [1, 2, 3], which other models are
unable to explain.

1 Introduction

Animal learning involves more than just predicting reinforcement. The well-known
phenomena of latent learning and sensory preconditioning indicate that animals
learn about stimuli in their environment before any reinforcement is supplied. More
recently, a series of experiments by R. R. Miller and colleagues has demonstrated
that in classical conditioning paradigms, animals appear to learn the temporal struc-
ture of the stimuli [8]. We will review three of these experiments. We then present
a model of conditioning based on a constrained hidden Markov model, using quasi-
Bayes estimation to adjust the model parameters online. Simulation results confirm
that the model reproduces the experimental observations, suggesting that this ap-
proach is a viable alternative to earlier models of classical conditioning which can-
not account for the Miller et al. experiments. Table 1 summarizes the experimental
paradigms and the results.

Expt. 1: Simultaneous Conditioning. Responding to a conditioned stimulus
(CS) is impaired when it is presented simultaneously with the unconditioned stimu-
lus (US) rather than preceding the US. The failure of the simultaneous conditioning
procedure to demonstrate a conditioned response (CR) is a well established result
in the classical conditioning literature [9]. Barnet et al. [1] reported an interesting



Phase 1 Phase 2 Test ⇒Result Test ⇒Result
Expt. 1 (4)T+US (4)C → T T ⇒ – C ⇒CR

Expt. 2A (12)T → C (8)T → US C ⇒ –
Expt. 2B (12)T → C (8)T −→ US C ⇒CR

Expt. 3 (96)L → US → X (8)B → X X ⇒ – B ⇒CR

Table 1: Experimental Paradigms. Phases 1 and 2 represent two stages of training trials,
each presented (n) times. The plus sign (+) indicates simultaneous presentation of stimuli;
the short arrow (→) indicates one stimulus immediately following another; and the long
arrow (−→) indicates a 5 sec gap between stimulus offset and the following stimulus onset.
For Expt. 1, the tone T, click train C, and footshock US were all of 5 sec duration. For
Expt. 2, the tone and click train durations were 5 sec and the footshock US lasted 0.5
sec. For Expt. 3, the light L, buzzer B, and auditory stimulus X (either a tone or white
noise) were all of 30 sec duration, while the footshock US lasted 1 sec. CR indicates a
conditioned response to the test stimulus.

second-order extension of the classic paradigm. While a tone CS presented simulta-
neously with a footshock results in a minimal CR to the tone, a click train preceding
the tone (in phase 2) does acquire associative strength, as indicated by a CR.

Expt. 2: Sensory Preconditioning. Cole et al. [2] exposed rats to a tone T
immediately followed by a click train C. In a second phase, the tone was paired
with a footshock US that either immediately followed tone offset (variant A), or
occurred 5 sec after tone offset (variant B). They found that when C and US both
immediately follow T, little conditioned response is elicited by the presentation of
C. However, when the US occurs 5 sec after tone offset, so that it occurs later than
C (measured relative to T), then C does come to elicit a CR.

Expt. 3: Backward Conditioning. In another experiment by Cole et al. [3],
rats were presented with a flashing light L followed by a footshock US, followed by
an auditory stimulus X (either a tone or white noise). In phase 2, a buzzer B was
followed by X. Testing revealed that while X did not elicit a CR (in fact, it became
a conditioned inhibitor), X did impart an excitatory association to B.

2 Existing Models of Classical Conditioning

The Rescorla-Wagner model [11] is still the best-known model of classical condi-
tioning, but as a trial-level model, it cannot account for within-trial effects such
as second order conditioning or sensitivity to stimulus timing. Sutton and Barto
developed Y-dot theory [14] as a real-time extension of Rescorla-Wagner. Further
refinements led to the Temporal Difference (TD) learning algorithm [14]. These
extensions can produce second order conditioning. And using a memory buffer
representation (what Sutton and Barto call a complete serial compound), TD can
represent the temporal structure of a trial. However, TD cannot account for the em-
pirical data in Experiments 1–3 because it does not make inferences about temporal
relationships among stimuli; it focuses solely on predicting the US. In Experiment
1, some versions of TD can account for the reduced associative strength of a CS
when its onset occurs simultaneously with the US, but no version of TD can explain
why the second-order stimulus C should acquire greater associative strength than



T. In Experiment 2, no learning occurs in Phase 1 with TD because no prediction
error is generated by pairing T with C. As a result, no CR is elicited by C after
T has been paired with the US in Phase 2. In Experiment 3, TD fails to predict
the results because X is not predictive of the US; thus X acquires no associative
strength to pass on to B in the second phase.

Even models that predict future stimuli have trouble accounting for Miller et al.’s
results. Dayan’s “successor representation” [4], the world model of Sutton and
Pinette [15], and the basal ganglia model of Suri and Schultz [13] all attempt to
predict future stimulus vectors. Suri and Schultz’s model can even produce one
form of sensory preconditioning. However, none of these models can account for
the responses in any of the three experiments in Table 1, because they do not make
the necessary inferences about relations among stimuli.

Temporal Coding Hypothesis The temporal coding hypothesis (TCH) [7]
posits that temporal contiguity is sufficient to produce an association between stim-
uli. A CS does not need to predict reward in order to acquire an association with
the US. Furthermore, the association is not a simple scalar quantity. Instead, infor-
mation about the temporal relationships among stimuli is encoded implicitly and
automatically in the memory representation of the trial. Most importantly, TCH
claims that memory representations of trials with similar stimuli become integrated
in such a way as to preserve the relative temporal information [3].

If we apply the concept of memory integration to Experiment 1, we get the memory
representation, C → T+US. If we interpret a CR as a prediction of imminent

reinforcement, then we arrive at the correct prediction of a strong response to C
and a weak response to T. Integrating the hypothesized memory representations of
the two phases of Experiment 2 results in: A) T → C+US and B) T→ C→ US. The
stimulus C is only predictive of the US in variant B, consistent with the experimental
findings. For Experiment 3, an integrated memory representation of the two phases
produces L+B → US → X. Stimulus B is predictive of the US while X is not. Thus,
the temporal coding hypothesis is able to account for the results of each of the three
experiments by associating stimuli with a timeline.

3 A Computational Model of Temporal Coding

A straightforward formalization of a timeline is a Markov chain of states. For
this initial version of our model, state transitions within the chain are fixed and
deterministic. Each state represents one instant of time, and at each timestep a
transition is made to the next state in the chain. This restricted representation is
key to capturing the phenomena underlying the empirical results. Multiple time-
lines (or Markov chains) emanate from a single holding state. The transitions out
of this holding state are the only probabilistic and adaptive transitions in the sim-
plified model. These transition probabilities represent the frequency with which
the timelines are experienced. Figure 1 illustrates the model structure used in all
simulations.

Our goal is to show that our model successfully integrates the timelines of the two
training phases of each experiment. In the context of a collection of Markov chains,
integrating timelines amounts to both phases of training becoming associated with
a single Markov chain. Figure 1 shows the integration of the two phases of Expt. 2B.
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Figure 1: A depiction of the state and observation structure of the model. Shown are two
timelines, one headed by state j and the other headed by state k. State i, the holding state,
transitions to states j and k with probabilities aij and aik respectively. Below the timeline
representations are a sequence of observations represented here as the symbols T, C and
US. The T and C stimuli appear for two time steps each to simulate their presentation for
an extended duration in the experiment.

During the second phase of the experiments, the second Markov chain (shown in
Figure 1 starting with state k) offers an alternative to the chain associated with the
first phase of learning. If we successfully integrate the timelines, this second chain
is not used.

As suggested in Figure 1, associated with each state is a stimulus observation.
“Stimulus space” is an n-dimensional continuous space, where n is the number
of distinct stimuli that can be observed (tone, light, shock, etc.) Each state has
an expectation concerning the stimuli that should be observed when that state is
occupied. This expectation is modeled by a probability density function, over this
space, defined by a mixture of two multivariate Gaussians. The probability density
at stimulus observation xt in state i at time t is,

p(xt|st = i) = (1− ωi) · N (xt|µi0, σ
2
i0) + ωi · N (xt|µi1, σ

2
i1), (1)

where ωi is a mixture coefficient for the two Gaussians associated with state i. The
Gaussian means µi0 and µi1 and variances σ2

i0
and σ2

i1
are vectors of the same

dimension as the stimulus vector xt. Given knowledge of the state, the stimulus
components are assumed to be mutually independent (covariance terms are zero).
We chose a continuous model of observations over a discrete observation model to
capture stimulus generalization effects. These are not pursued in this paper.

For each state, the first Gaussian pdf is non-adaptive, meaning µi0 is fixed about
a point in stimulus space representing the absence of stimuli. σ2

i0
is fixed as well.

For the second Gaussian, µi1 and σ2

i1
are adaptive. This mixture of one fixed and

one adaptive Gaussian is an approximation to the animal’s belief distribution about
stimuli, reflecting the observed tolerance animals have to absent expected stimuli.
Put another way, animals seem to be less surprised by the absence of an expected
stimulus than by the presence of an unexpected stimulus.

We assume that knowledge of the current state st is inaccessible to the learner. This
information must be inferred from the observed stimuli. In the case of a Markov
chain, learning with hidden state is exactly the problem of parameter estimation in
hidden Markov models. That is, we must update the estimates of ω, µ1 and σ2

1
for



each state, and aij for each state transition (out of the holding state), in order to
maximize the likelihood of the sequence of observations

The standard algorithm for hidden Markov model parameter estimation is the
Baum-Welch method [10]. Baum-Welch is an off-line learning algorithm that re-
quires all observations used in training to be held in memory. In a model of classical
conditioning, this is an unrealistic assumption about animals’ memory capabilities.
We therefore require an online learning scheme for the hidden Markov model, with
only limited memory requirements.

Recursive Bayesian inference is one possible online learning scheme. It offers
the appealing property of combining prior beliefs about the world with cur-
rent observations through the recursive application of Bayes’ theorem, p(λ|Xt) ∝
p(xt|Xt−1, λ)p(λ|Xt−1). The prior distribution, p(λ|Xt−1) reflects the belief over
the parameter λ before the observation at time t, xt. Xt−1 is the observation his-
tory up to time t − 1, i.e. Xt−1 = {xt−1,xt−2, . . .}. The likelihood, p(xt|Xt−1, λ)
is the probability density over xt as a function of the parameter λ.

Unfortunately, the implementation of exact recursive Bayesian inference for a con-
tinuous density hidden Markov model (CDHMM) is computationally intractable.
This is a consequence of there being missing data in the form of hidden state.
With hidden state, the posterior distribution over the model parameters, after the
observation, is given by

p(λ|Xt) ∝
N∑

i=1

p(xt|st = i,Xt−1, λ)p(st = i|Xt−1, λ)p(λ|Xt−1), (2)

where we have summed over the N hidden states. Computing the recursion for
multiple time steps results in an exponentially growing number of terms contributing
to the exact posterior.

We instead use a recursive quasi-Bayes approximate inference scheme developed
by Huo and Lee [5], who employ a quasi-Bayes approach [12]. The quasi-Bayes
approach exploits the existence of a repeating distribution (natural conjugate) over
the parameters for the complete-data CDHMM. (i.e. where missing data such as the
state sequence is taken to be known). Briefly, we estimate the value of the missing
data. We then use these estimates, together with the observations, to update the
hyperparameters governing the prior distribution over the parameters (using Bayes’
theorem). This results in an approximation to the exact posterior distribution over
CDHMM parameters within the conjugate family of the complete-data CDHMM.
See [5] for a more detailed description of the algorithm.

Estimating the missing data (hidden state) involves estimating transition probabil-
ities between states, ξτij = Pr(sτ = i, sτ+1 = j|Xt, λ), and joint state and mixture

component label probabilities ζτik = Pr(sτ = i, lτ = k|Xt, λ). Here lτ = k is the
mixture component label indicating which Gaussian, k ∈ {0, 1}, is the source of the
stimulus observation at time τ . λ is the current estimate of all model parameters.

We use an online version of the forward-backward algorithm [6] to estimate ξτij and
ζτi1. The forward pass computes the joint probability over state occupancy (taken to
be both the state value and the mixture component label) at time τ and the sequence
of observations up to time τ . The backward pass computes the probability of the
observations in a memory buffer from time τ to the present time t given the state



occupancy at time τ . The forward and backward passes over state/observation
sequences are combined to give an estimate of the state occupancy at time τ given
the observations up to the present time t. In the simulations reported here the
memory buffer was 7 time steps long (t− τ = 6).

We use the estimates from the forward-backward algorithm together with the ob-
servations to update the hyperparameters. For the CDHMM, this prior is taken
to be a product of Dirichlet probability density functions (pdfs) for the transition
probabilities (aij), beta pdfs for the observation model mixture coefficients (ωi)
and normal-gamma pdfs for the Gaussian parameters (µi1 and σ2

i1
). The basic hy-

perparameters are exponentially weighted counts of events, with recency weighting
determined by a forgetting parameter ρ. For example, κij is the number of expected
transitions observed from state i to state j, and is used to update the estimate of
parameter aij . The hyperparameter νik estimates the number of stimulus observa-
tions in state i credited to Gaussian k, and is used to update the mixture parameter
ωi. The remaining hyperparameters ψ, φ, and θ serve to define the pdfs over µi1

and σ2

i1
. The variable d in the equations below indexes over stimulus dimensions.

Si1d is an estimate of the sample variance, and is a constant in the present model.

κτij = ρ(κ
(τ−1)
ij − 1) + 1 + ξτij ντik = ρ(ν

(τ−1)
ik − 1) + 1 + ζτik

ψτi1d = ρψ
(τ−1)
i1d + ζτi1 φτi1d = ρ(φ

(τ−1)
i1d − 1

2 ) +
1+ζτ

i1

2

θτi1d = ρθ
(τ−1)
i1d +

ζτ
i1Si1d

2 +
ρψ

(τ−1)

i1d
ζτ

i1

2(ρψ
(τ−1)

i1d
+ζτ

i1
)
(xτd − µ

(τ−1)
i1d )2

In the last step of our inference procedure, we update our estimate of the model
parameters as the mode of their approximate posterior distribution. While this is
an approximation to proper Bayesian inference on the parameter values, the mode
of the approximate posterior is guaranteed to converge to a mode of the exact
posterior. In the equations below, N is the number of states in the model.

aτij =
κτ

ij−1∑
N

n=1
(κτ

in
−1)

ωτi =
ντ

i1−1
ντ

i0
+ντ

i1
−2 µτi1d =

ρψ
(τ−1)

i1d
µ

(τ−1)

i1d
+ζτ

i1x
τ
d

ρψ
(τ−1)

i1d
+ζτ

i1

(σ2
i1d)

τ =
2ρθ

(τ−1)

i1d
+ρψ

(τ−1)

i1d
·(µτ

i1d−µ
(τ−1)

i1d
)2+ζτ

i1Si1d+ζτ
i1(x

τ
d−µ

τ
i1d)2

ρ(2φ
(τ−1)

i1d
−1)+ζτ

i1

4 Results and Discussion

The model contained two timelines (Markov chains). Let i denote the holding
state and j, k the initial states of the two chains. The transition probabilities were
initialized as aij = aik = 0.025 and aii = 0.95. Adaptive Gaussian means µi1d were
initialized to small random values around a baseline of 10−4 for all states. The
exponential forgetting factor was ρ = 0.9975, and both the sample variances Si1d
and the fixed variances σ2

i0d were set to 0.2.

We trained the model on each of the experimental protocols of Table 1, using the
same numbers of trials reported in the original papers. The model was run contin-
uously through both phases of the experiments with a random intertrial interval.
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Figure 2: Results from 20 runs of the model simulation with each experimental paradigm.
On the ordinate is the total reinforcement (US), on a log scale, above the baseline (an
arbitrary perception threshold) expected to occur on the next time step. The error bars
represent two standard deviations away from the mean.

Figure 2 shows the simulation results from each of the three experiments. If we
assume that the CR varies monotonically with the US prediction, then in each case,
the model’s predicted CR agreed with the observations of Miller et al.

The CR predictions are the result of the model integrating the two phases of learning
into one timeline. At the time of the presentation of the Phase 2 stimuli, the states
forming the timeline describing the Phase 1 pattern of stimuli were judged more
likely to have produced the Phase 2 stimuli than states in the other timeline, which
served as a null hypothesis. In another experiment, not shown here, we trained the
model on disjoint stimuli in the two phases. In that situation it correctly chose a
separate timeline for each phase, rather than merging the two.

We have shown that under the assumption that observation probabilities are mod-
eled by a mixture of Gaussians, and a very restrictive state transition structure, a
hidden Markov model can integrate the memory representations of similar temporal
stimulus patterns. “Similarity” is formalized in this framework as likelihood under
the timeline model. We propose this model as a mechanism for the integration of
memory representations postulated in the Temporal Coding Hypothesis.

The model can be extended in many ways. The current version assumes that event
chains are long enough to represent an entire trial, but short enough that the model
will return to the holding state before the start of the next trial. An obvious
refinement would be a mechanism to dynamically adjust chain lengths based on
experience. We are also exploring a generalization of the model to the semi-Markov
domain, where state occupancy duration is modeled explicitly as a pdf. State tran-
sitions would then be tied to changes in observations, rather than following a rigid
progression as is currently the case. Finally, we are experimenting with mechanisms
that allow new chains to be split off from old ones when the model determines that
current stimuli differ consistently from the closest matching timeline.

Fitting stimuli into existing timelines serves to maximize the likelihood of current
observations in light of past experience. But why should animals learn the temporal
structure of stimuli as timelines? A collection of timelines may be a reasonable
model of the natural world. If this is true, then learning with such a strong inductive
bias may help the animal to bring experience of related phenomena to bear in novel
situations—a desirable characteristic for an adaptive system in a changing world.
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