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Abstract

Recently there has been much interest in modeling the activity of primate midbrain dopamine
neurons as signalling reward prediction error. But since the models are based on temporal-
di!erence (TD) learning, they assume an exponential decline with time in the value of delayed
reinforcers, an assumption long known to con#ict with animal behavior. We show that
a variant of TD learning that tracks variations in the average reward per timestep rather than
cumulative discounted reward preserves the models' success at explaining neurophysiological
data while signi"cantly increasing their applicability to behavioral data. ( 2000 Published by
Elsevier Science B.V. All rights reserved.
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1. Introduction

Recently there has been much interest in reinforcement learning models of the
dopamine system. These models [3,7,10] explain data on primate midbrain dopamine
neurons (reviewed in [9]) in terms of temporal-di!erence (TD) learning [11]. As TD
models have also been applied to animal behavior [12], the TD interpretation of the
dopamine system has held out hope for a theory connecting neuronal responses to
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high-level behavior: how animals learn to predict rewards and use their predictions to
select optimal actions.

The existing models de"ne optimality using an assumption common in reinforce-
ment learning, that the value of a reward decreases exponentially in the length of its
delay. But in experiments, animals' choices seem not to re#ect such an assumption.
And the predominant understanding of these experiments in psychology * that
animals discount rewards hyperbolically in their delays * is incompatible with
a reinforcement learning formulation.

We argue that an alternative explanation of these experiments, due to Kacelnik [5],
is better suited to reinforcement learning, and hence to a combined model of
dopamine and behavior. If animals' choices are governed by reward rates, rather than
cumulative discounted rewards, then the learning task mirrors an area of active
research in reinforcement learning: maximizing the average reward per time step. We
show that a model based on such an algorithm [13] extends previous models'
behavioral applicability.

2. TD models of dopamine

Recordings by Schultz and collaborators (reviewed in [9]) show that dopamine
neurons in primate substantia nigra pars compacta (SNc) and ventral tegmental area
(VTA) respond to rewards and reward-predicting stimuli. Several models [3,7,10]
propose that this activity signals reward prediction error, as computed by TD
learning [11]. TD systems learn to associate states of the world with a `value
functiona predicting future rewards, and can use these predictions to select actions
maximizing the value function. The value function, <
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r(q) is reward at time q and c(1 is a discounting parameter), can be rewritten
recursively as <
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(t). In the models, dopamine neuron "ring signals d(t),
explaining several properties of the cells: response to unpredicted rewards, response
transfer to earliest predictive stimuli, and baseline inhibition for missed rewards.

The assumption that rewards are discounted exponentially in their delays, as c$%-!:,
is behaviorally suspect but meets two algorithmic requirements. If r(t) is bounded,
<
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(t) converges. Eliminating discounting leads to the cumulative value function
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r(q)], which diverges. Also,<
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(t) is de"nable recursively; the online
learning algorithm exploits the relationship between successive predictions and the
immediately observable reward. Discounting delayed rewards hyperbolically, (as
1/(h#delay) for some h; popular in psychology) produces the value function
<

):1
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1/(h#q!t)r(q)], which both diverges and cannot be expressed

recursively.

3. Behavioral tests of discounting

A number of behavioral experiments have tested reward discounting. The experi-
ments study how animals trade o! reward magnitudes against delays by o!ering
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Fig. 1. Calculation of indi!erence points as a function of delay in the task of Mazur (1987). The line-marked
`dataa plots the average of Mazur's four subjects. Dashed line shows constant D

2
!D

1
, giving a slope of

one.

subjects repeated choices between a small reward of size R
1

after a short delay D
1
, or

a large reward R
2

after a long delay D
2
. Under exponential discounting, both rewards'

values decline multiplicatively by c with each time step, so with "xed magnitudes,
relative preference depends only on the diwerence in delays D

2
!D

1
. Under hyper-

bolic discounting (1/(h#delay)), delaying a reward one further timestep will reduce its
value drastically after a short delay, but will have less proportional e!ect with longer
initial delay. So unlike exponential discounting, this account predicts that any prefer-
ence for the smaller of the two reinforcers should eventually reverse to a preference for
the larger if D

1
and D

2
are both increased while maintaining D

2
!D

1
. Such `prefer-

ence reversalsa are well demonstrated experimentally (reviewed in [1]).
Using pigeons, Mazur [6] studied `points of indi!erencea: pairs of delays D

1
and

D
2

for which "xed small and large rewards are equally likely to be chosen. With
a reasonably small c, exponential discounting predicts the function relating these
delays should be D

2
"logc(R1

/R
2
)#D

1
, a line with slope one. Hyperbolic discount-

ing instead predicts D
2
"(R

2
/R

1
)(h#D

1
), a line with slope '1 (since R

2
'R

1
).

Consistent with hyperbolic discounting, but not exponential, Mazur's measurements
were well "t by lines with slopes ranging between two and three (Fig. 1, line-marked
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`dataa). The existence of preference reversals can also be inferred from this data. If the
indi!erence line separates the region (above) where the small reinforcer is preferred
from the region (below) where the large reinforcer is preferred, then starting above the
line and increasing both delays equally, which maintains their di!erence, traces a line
of slope one (dashed line), which must cross the steeper-sloped separator to enter the
region where the larger reinforcer is preferred. But it will never cross the slope-one
separator of exponential discounting.

Since hyperbolic discounting is incompatible with TD, these results constrain TD
models of the dopamine system's role in behavior. Kacelnik [5] argued that an
undiscounted model, in which animals maximize rate of reward, could also explain the
results. Since the rate is magnitude divided by time, on these experiments, rate
maximization implies maximizing R/(ITI#delay), which resembles hyperbolic dis-
counting with h taken as the intertrial interval, ITI. Reinforcement learning algo-
rithms for the discrete-time analog of this problem * maximizing undiscounted
average reward per timestep* could be used to model both dopamine cell responses
and behavior.

4. An average reward TD model of dopamine and behavior

A TD-like algorithm which tracks average rather than discounted reward was
proposed by Tsitsiklis and Van Roy [13]. They rede"ne the TD value function as
<
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reward per timestep. <
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By its di!erence from zero, <
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is the current reward expectation. The error signal is d(t)"r(t)!r
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We used this algorithm to model both the responses of dopamine cells and animal
discounting behavior. We estimated the value function as <

!7'
(t)"=(t) ) S(t), the dot

product of trainable weights=(t) and a state vector S(t) that included both stimuli
and recent history.=(t) was updated by the delta rule, using the average reward TD
error: *=(t)Jd(t)S(t).

The model behaves almost identically to earlier TD models when tested on
simulated tasks from Montague et al. [7] modeling dopamine responses. However,
the average reward model also "ts the behavioral data on discounting, which previous
TD models did not. Fig. 1 compares the average reward and exponentially discounted
TD algorithms on the task from [6]. For making choices, both models were aug-
mented with a simple `actora which used the TD predictions to learn choice prefer-
ences. Preference for the alternatives was represented by parameters P

1
(t) and P

2
(t).

The "rst action was chosen with probability Prob
1
(t)"eP1 (t)/(eP1(t)#eP2 (t)), and

whichever action was chosen, its parameter was updated proportionately to the
resultant TD error: *P(t)Jd(t).

Both models were exposed to 350 series of 5000 trials each using di!erent pairs
of delays, and their preferences after training recorded. Indi!erence points were

682 N.D. Daw, D.S. Touretzky / Neurocomputing 32}33 (2000) 679}684



estimated by linearly interpolating between measurement pairs. The average reward
algorithm's results were "t by a slope of 3 (Fig. 1, top line), similar to those measured
by Mazur [6] (middle line), while the standard TD model (with c"0.6) produced
a much lower slope (bottom line). These results also show that the average reward
algorithm, but not the exponential one, could produce preference reversals (dashed
line). In order to match the low y-intercepts of Mazur's data* controlled by the ITI
under these models* we assumed an ITI shorter than that used by Mazur. Kacelnik
[5] suggests this is necessary because animals may not mark time e!ectively between
trials.

5. Discussion

We have reviewed data constraining models of the dopamine system's role in
reward-guided behavior. The data support an average reward TD model of the
dopamine system over previous exponentially discounted models. Our model
preserves earlier models' success explaining dopamine responses, but extends the
models' behavioral applicability, in part by connecting with existing psychological
theories, for which rate is often a key variable (e.g. [4]).

The model requires the dopamine neurons to use an estimate of the average reward
to compute the TD error. Simple learning rules could produce this estimate in an area
such as central amygdala, which inhibits the VTA. Alternatively, average reward need
not be computed separately; whatever cells (presumably hypothalamic) transmit
primary rewards r(t) to the dopamine neurons could exhibit fatigue, reducing their
e!ective output to r(t)!r

!7'
(t).

Our model suggests an untested prediction about the response of dopamine
neurons to unpredicted rewards. For rewards delivered on a Poisson schedule, d(t)
reduces to r(t)!r

!7'
(t). If the dopamine response is sensitive to the magnitude of d(t)

(itself an untested prediction), then the responses to rewards, and baseline "ring
between rewards, should decrease as the rate of reward delivery increases. This holds
even for exponentially discounted TD, so it could provide a generic test of the TD
approach.

One might also attempt to bring previous TD models into line with the behavioral
results by increasing c to such a level that the value function approaches <

#6.
, since

choices maximizing cumulative reward will also maximize average reward. But the
level of c (at least 0.99) required to reproduce the behavioral measurements is
impractical: as c approaches one and the value function approaches divergence, the
algorithm converges increasingly slowly.

Future work in models of dopamine and behavior includes incorporating atten-
tional e!ects, important both to dopamine responses and conditioning behavior [2].
Also, the history, state and action space representations of TD models are too poor to
represent the hierarchical structure of real instrumental conditioning [8]. The changes
we suggest are orthogonal to these issues, and could combine with other proposals for
addressing them.
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