IN DEPTH
NEURAL NETWORKS

What’s Hidden

1n the

Hidden Layers?

The contents can be easy to find with a geometrical problem,
but the hidden layers have yet to give up all their secrets

David S. Touretzky and Dean A. Pomerleau

uch of the cur-

rent fascination

with neural

networks has to
do with their ability to learn.
The most popular learning al-
gorithm today is back-propa-
gation, which can be imple-
mented rather easily on a
microcomputer (see ‘‘Back-
Propagation,” October 1987
BYTE),

To solve a problem with a
back-propagation network,
you show it sample inputs
with the desired outputs, over
and over, while the network
learns by adjusting its
weights. If it solves the prob-
lem, it will have found a set of
weights that produce the cor-
rect output for every input.

But what has the network
learned? Unlike an expert
system, neural networks do
not automatically explain
their reasoning. Whatever
knowledge the network acquires is en-
coded in its numerical weights. It’s not
easy to decipher the network’s solution to
a problem when all you have to look at is
a set of floating-point numbers.

In the past, the difficulty in interpret-
ing weight patterns contributed to the
neural-network mystique. Networks
were sometimes billed as magic boxes
whose learning algorithms produced
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solutions unintelligible to mere humans.

Today, we have a better understanding
of neural-network learning procedures
like back-propagation, and we can ana-
lyze, to some extent, the representations
that develop. Back-propagation consists
of two passes. In the forward pass, inputs
proceed through the network and gener-
ate a certain output. Then, in the back-
ward pass, the difference between the ac-

tual and desired outputs
generates an error signal that
is propagated back through
the network to teach it to
come closer to producing the
desired output.

Between the input and out-
put layers, there may be addi-
tional layers of units, called
hidden units. When analyzing
a network, we study two
kinds of hidden-unit repre-
sentations. First, we want to
understand what the weights
mean. Second, we want to
look at the patterns of activa-
tion of units in the hidden
layer in response to particular
inputs.

Hidden units should really
be called “learned-feature
detectors’™ or “re-representa-
tion units,” because the activ-
ity pattern in the hidden layer
is an encoding of what the net-
work thinks are the signifi-
cant features of the input. The
two representations (weights and activity
patterns) are closely related, but, for
some problems, looking at one is more
informative than looking at the other.

To understand the hidden-layer repre-
sentations that real networks develop,
look at two examples of geometric prob-
lems that have recently been solved by
back-propagation. The first is a highly

continued
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nonlinear binary classification problem;
the second involves driving a robotic ve-
hicle along a road through a park.

The Unit Square

In two-layer networks, input units con-
nect directly to output units, and each
connection has a number, or weight, at-
tached to it. One widely known limita-
tion of these networks is that they cannot
compute the XOR function. Introducing
a third, hidden layer of units between the
input and output layers provides the nec-
essary computational power for XOR.

You can view XOR as a special case of
a more general problem: classifying
points in the unit square (as in figures 1a
and 1b). Each point in the unit square is
either in class 0 or class 1. In the case of
XOR, you consider only the four corners
of the square: the points (0,0), (0,1),
(1,0), and (1,1). The first and fourth
points are in class 0 (0 XOR0 =0, and 1
XOR 1 = 0); the second and third are in
class 1 (0XOR1 = 1,and 1 XORO = 1).

A single artificial neuron computes a
linear sum of its inputs and produces
either a 0 or a 1 as output. This in effect
draws a line that partitions this square
into two regions. For all points on one
side of the line, the neuron outputs a 1;
for all points on the other side, the neu-
ron outputs a 0.

The positicn and orientation of the line
are determined by the weights on the
neuron’s input connections. You can’t
draw a single straight line through the
unit square so that (0,1) and (1,0) end up
in one region and (0,0) and (1,1) end up
in the other. Therefore, you can’t solve

Introducing a layer of hidden units in-
creases the power of the network, since
each hidden unit can partition the input
space in a different way. The output unit
then computes a linear combination of
these partitionings to solve the problem.

In the XOR example, a hidden layer
containing two units is adequate (see fig-
ure 1c). The first unit partitions the
space so that it is activated when either
input, (0,1) or (1,0), or both, (1,1), are
active, as in figure la. It has an excit-
atory connection (a positive weight) to
the output unit. The network sets the sec-
ond hidden unit’s weights so that it be-
comes active only when both inputs,
(1,1), are active, as in figure 1b. It has a
stronger inhibitory (negative) influence
on the output unit than the excitatory in-
fluence of the first hidden unit.

This network correctly solves the
XOR problem. When neither input is ac-
tive, (0,0), neither hidden unit is active,
so the output unit remains off. When a
single input unit is on, (0,1) or (1,0), the
first hidden unit turns on, activating the
output unit. If both input units are active,
(1,1), both hidden units turn on. Since
the inhibitory input from the larger nega-
tive weight of the second hidden unit is
greater than the excitatory input from the
first, the output unit will be turned off.

Hidden units act as feature detectors,
or filters, for some types of inputs. By
combining these features, the output unit
can perform more powerful classifica-
tions than it can without the hidden units.

Solving Two Spirals
Additional hidden layers allow artificial

the input space into arbitrary regions and
perform complex tasks. One such task is
the two-spirals problem, originally
posed by Alexis Wieland of the Mitre
Corp. in Cambridge, Massachusetts. In
this problem, the network must distin-
guish between points on two intertwined
spirals in the unit square (see figure 2).

The black dots are all in class 0, the
white dots in class 1. Like XOR, this
problem is not linearly separable. There
is no way to draw a single straight line
through the unit square so that all the
black dots end up on one side and all the
white dots on the other.

Two of our colleagues at Carnegie
Mellon University, Kevin Lang and Mi-
chael Witbrock, recently taught a neural
network to solve the two-spirals problem
and analyzed the hidden-layer represen-
tations that developed (see reference 1).
Their network, shown in figure 3, has
two input units, representing the x and y
coordinates of the point, and one output
unit. The activation levels of the input
units are not restricted to binary values,
but they can take on any value between
0.0 and 1.0.

This network has two hidden layers of
five units each. The units in each layer
receive connections from the units in all
layers below it, The connections that skip
layers provide direct information path-
ways from lower layers in the network
and allow more flexible hidden-layer
representations. Unlike the XOR prob-
lem, however, it's not obvious what a
good set of hidden-layer feature detec-
tors would look like for this task.

Back-propagation develops the feature

XOR with a two-layer network. neural networks to efficiently partition continied
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Figure 1: A nerwork designed to solve the XOR problem. (a) and (b) The regions of input space for which the two hidden units
are active. (€) The number inside each unit is its threshold. A unit turns on when its total input exceeds its threshold. The total
input is equal to the sum of its input values (each input multiplied by the weight on the line).
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detectors in figure 4. Each square in the
figure graphs the response of a single
unit to points at various positions in the
interior of the unit square. (The squares
in figure 4 correspond directly to the cir-
cles in the same positions in figure 3.)
The brightness of each point in a square
indicates the activation level of that hid-
den unit when the network is shown an

Figure 2: Training points for the two-
spirals problem. Black points should
produce an output of 0; white points
should produce an output of 1.

input point at that position.

Units in the first hidden layer divide
the input space into two regions along
various angles. Units in the second layer
use combinations of these first-layer fea-
tures to produce curved response pat-
terns. The output unit then uses these
curved patterns to form successive turns
of the spiral.

The imperfections of the solution are
an interesting aspect of the way back-
propagation works. Notice the bumps
and gaps in the spirals that the output unit
forms. The network learns to classify all
the points in the training set in figure 2
correctly, but it is underconstrained: It is
not told how to respond to the remaining
points in the unit square. Given this kind
of freedom, back-propagation almost
never develops a perfect solution,

One of the most difficult parts of train-
ing neural networks is choosing the
training set. You want back-propagation
to develop a network that classifies pat-
terns in the training set correctly and
also generalizes to new patterns correct-
ly. Providing additional training data and
constraining the network architecture
are two techniques that reduce excess
freedom and clean up the network’s rep-
resentations,

\

Output layer

Hidden layer 2

Hidden layer 1

Input layer

Figure 3: Lang and Witbrock 's network for learning the two-spirals problem. Each
unit receives input from all the units in all the layers below it.
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A Road Tracker

Proper generalization is particularly cru-
cial in real-world problems where you
can’t train a network in advance for
every circumstance it might encounter in
the field. One such problem we have been
working on at Carnegie Mellon is auton-
omous vehicle navigation (see photo 1
and reference 2).

The goal of ALVINN (for autonomous
land vehicle in a neural network; see ref-
erence 3) is to drive the NAVLAB vehicle
along a winding road. The inputs to AL-
VINN are more complex than the coordi-
nates of a single point in the unit square,
but they are geometrical in nature.

ALVINN receives two types of sensor
inputs from the NAVLAB (see figure 5).
One is a 30- by 32-pixel image from a
video camera mounted on the roof of the
vehicle. (Each pixel in the video image
corresponds to an input unit in the video
retina.) The activation level of each unit
in the video retina indicates the bright-
ness of the corresponding pixel in the
video image.

The other input is an 8- by 32-pixel
image from a laser range finder. The ac-
tivation levels of units in the range find-
er’s retina represent its distance from the
corresponding area in the image. The
darker the color, the closer the object is.
A stylized input sample is shown in fig-
ure 5. Notice that the tree to the left of the
road in the video image shows up as an
area of constant brightness in the range
finder image. This is because the tree
surface is essentially perpendicular to
the horizontal range finder beam and,
therefore, at a constant distance away.

The two input retinas are connected to
a single layer of hidden units, which are
in turn connected to the output units. (In
other words, all input units are con-
nected to all hidden units, and all hidden
units are connected to all output units.)
The response of the output layer is a lin-
ear representation of the direction in
which the vehicle should travel to head
toward the center of the road. The center-
most output unit represents the “travel
straight ahead” condition, while units to
the left and right of center represent suc-
cessively sharper left and right turns.

To drive the NAVLAB vehicle, video
and range finder data from the on-board
sensors are injected into the input layer.
After completing a forward pass, the net-
work reads a steering command from the
output layer. The output unit with the
highest output value determines the di-
rection in which the vehicle will head.

Training the network is difficult. To
develop a hidden-layer representation
that generalizes correctly to new situa-
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tions, we fed the network road images
taken under a wide variety of viewing an-
gles and lighting conditions. It would be
impractical to try to collect thousands of
real road images for such a data set. In-
stead, we developed a synthetic road-
image generator that can create as many
training examples as we need.

To train the network, 1200 simulated
road images are presented 40 times each,
while the weights are adjusted using the
back-propagation learning algorithm.
This takes about 30 minutes on Carnegie
Mellon’s Warp systolic-array supercom-
puter. (This machine was designed at
Carnegie Mellon and is built by General
Electric. It has a peak rate of 100 million
floating-point operations per second and
can compute weight adjustments for
back-propagation networks at a rate of 20
million connections per second.)

Once it is trained, ALVINN can accu-
rately drive the NAVLAB vehicle at
about 3% miles per hour along a path
through a wooded area adjoining the
Carnegie Mellon campus, under a vari-
ety of weather and lighting conditions.
This speed is nearly twice as fast as that
achieved by non-neural-network algo-
rithms running on the same vehicle. Part
of the reason for this is that the forward
pass of a back-propagation network can
be computed quickly. It takes about 200

milliseconds on the Sun-3/160 worksta-
tion installed on the NAVLAB.

The hidden-layer representations AL-
VINN develops are interesting. When
trained on roads of a fixed width, the net-

for trial runs.

work chooses a representation in which
hidden units act as detectors for complete
roads at various positions and orienta-
tions. When trained on roads of variable

continied

— .

Photo 1: The NAVLAB autonomous navigation test-bed vehicle and the road used

Output layer

Hidden
layer 2

Hidden
layer 1

Figure 4: Response function plots for the units in the two-spirals network. Each plot shows the activation level of a single unit
as the x,y input to the network ranges over the interior of the unit square. The topmost plot is for the output unit, and the plots
below are for the five units in each of the two hidden layers. (Figure courtesy of Kevin Lang and Michael Witbrock)

AUGUST 1989 « BYTE 231




T L e e R —————————..

IN DEPTH
HIDDEN LAYERS

widths, the hidden units turn into road-
edge detectors, sensitive to only one of
the two road edges. (Some look for left
edges, and some for right edges.)

Figure 6 shows the weights to and
from a single hidden unit after ALVINN
was trained on roads of a fixed width.
White squares represent positive values;
black squares represent negative values.
This hidden unit acts as a filter for two
types of roads, one slightly to the left of
center and one slightly to the right.

The weights from the video camera
retina, along with the explanatory sche-
matic, show the positions and orienta-
tions of the two road types that activate
the hidden unit. Notice that the road
specifications overlap: The large white
region in the center of the weight diagram
is a merger of the weights for the left edge
of the rightmost road with the weights for
the right edge of the leftmost road.

This hidden unit is also excited by ob-
stacles in the periphery of the image and
inhibited by obstacles in the center of the
image where it expects the road to be. By
fusing data from the video-camera and
range finder sensors, hidden units can
determine the position and orientation of
the road more accurately than they could
with either sensor alone.

This hidden unit makes excitatory
connections to two sets of output units,
dictating a slight left or right turn. Since
it provides support for two turn direc-
tions, it must work with other hidden
units to pin down the correct steering di-
rection. Double-duty hidden units like
this provide a compact representation.
They allow a network with a small hid-
den layer to perform a complex task, like
following a road, accurately.

Reducing the size of the hidden layer
not only increases the rate at which a
computer can simulate the network, it
can also improve the network's perfor-
mance. With too many hidden units, a
network can simply memorize the cor-
rect response to each pattern in its train-
ing set instead of learning a general so-
lution.

By limiting the size of the hidden
layers, the network is forced to develop
appropriate feature detectors to efficient-
ly classify large sets of input patterns.
These general-purpose feature detectors
are more likely to be relevant to novel in-
puts, so the network performs better. In
one experiment, we drove the NAVLAB
vehicle using a network trained with only
nine hidden units without any significant
loss in driving proficiency.

Sharp left

Straight ahead

30 x 32 video input retina

Sharp right
\ 45 output
units
29 hidden

8 x 32 range finder
input retina

Figure 5: The architecture of ALVINN (autonomous land vehicle in a neural

network).
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Hidden units that act as filters for one
to three roads are the most common re-
sult when ALVINN is trained on roads of
a fixed width. The network develops a
different representation when trained on
images with varying road widths, In-
stead of developing into detectors for en-
tire roads, the hidden units learn to look
for a single road edge at a particular posi-
tion and orientation.

The units support a wide range of trav-
el directions. The correct travel direction
for a road with an edge at a particular lo-
cation varies substantially depending on
the road’s width. The hidden units coop-
erate with each other to determine the
correct travel direction in any situation.

It’s important to understand that no
single hidden unit can perform the task
alone; the collective activity of all the
hidden units determines how the network
behaves. Through this kind of coopera-
tion, the network can use relatively
coarse feature detectors and still main-
tain performance accuracy.

Hidden Units Demystified

It's easy to uncover what's in the hidden
layers when you apply a neural network
tora geometrical problem, as illustrated
by the two-spirals and road-tracking ex-
amples. The visualization tools made
practical by microcomputers and per-
sonal workstations have proved invalu-
able for this type of analysis.

Some researchers display only a hid-
den unit’s weights when trying to ana-
lyze a network. The work of Lang and
Witbrock (see reference 1) shows that,
for geometric problems, it can be more
helpful to display the unit’s response to a
systematic sampling of points in the input
region, especially when the network has
more than one hidden layer.

This practice is also common in classi-
cal neuroscience investigations of the vi-
sual system. You can't measure the
weights between living neurons in the
cortex of the brain, but you can measure
their response to various inputs. Many
studies of the visual system have been
done by graphing the firing rate of corti-
cal neurons while varying a stimulus pat-
tern presented to the retina,

In the case of ALVINN, we saw from
the weights that the network learns to ef-
ficiently exploit regularities in the input
by making its hidden-layer units sensi-
tive to a range of road types. We also
tried plotting the units’ response patterns
while varying the retinal input (present-
ing roads at various positions and orien-
tations); this confirmed our interpreta-
tion of what the hidden layer was doing.

Training ALVINN is time-consuming
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Figure 6: Pattern of weights projecting to and from a single ALVINN hidden unit
after training on roads with a fixed width. This hidden unit acts as a filter for two
types of road, one slightly to the left of center and one slightly to the right.

The explanatory schematics on the right side of the figure highlight our

interpretation of these weights.

and requires serious computing power,
but you can implement the resulting net-
work on a personal computer or worksta-
tion. We see this as a developing trend in
neural computing: Training for real-
world applications will be expensive, but
delivery will be cheap. Analysis of net-
works through visualization is also eas-
ily done on personal workstations.
While we have removed some of the
mystery concerning the representations
that neural networks develop, the hidden
layers have yet to give up all their secrets.
One question still to be answered is how
ALVINN accomplishes “sensor fu-
sion,” combining inputs from its video-
camera and range finder retinas to arrive
at the best steering direction. Experi-
ments are under way to answer this. &
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