CNBC/IGERT MATLAB Minicourse: Lecture 1

David S. Touretzky

January 2007

What Is Matlab?

• Product of The Mathworks, Inc.

http://www.mathworks.com

- Student Version is just \$99 with manual!
- Latest release is version 7.1 (Matlab R14).
- Runs on Linux, Windows, and Macs.
- Strong on matrix manipulation and graphics.
- Full programming language.
- Optional toolboxes for statistics, image processing, signal processing, etc.
- Interfaces with C, Fortran, and Java.
- Can create stand-alone executable files.

Getting Started

Create a folder *myuserid* on the desktop: right click on the desktop New > Folder *myuserid*

Now let's run Matlab:

Start button > All Programs > Math & Stats > MATLAB 7.0

Set your current directory by clicking on "…" above the Matlab command window and selecting Desktop*myuserid*

Variable Creation

who

whos

Matrix Creation

 $x = [1 \ 2 \ 3; \ 9 \ 8 \ 7]$

zeros(3,5)
zeros(5)
zeros(5,1)

ones, rand, randn, eye

The colon operator creates row vectors: 1:5 1:3:15 10:-1:0 pts = 0 : pi/20 : 4*pi;

Size of a Matrix

whos pts

size(pts)

length(pts)

Subscripting

V(3)

M = [1 2 3; 4 5 6; 7 8 9];

M(2,2) M(2) access in column-major order M(6)

Matrix Slices

V(2:4)

V(2:end)

M(1:2,2:3)

M(:)

M(:,:)

Expanding a Matrix

a = [1 2 3]

$$a(7) = 5$$

a(end+1) = 6

 $b = [a; a.^2]$

Efficiency tip: Use ZEROS to preallocate space instead of expanding dynamically.

Reshaping a Matrix

M = reshape(1:15, 5, 3)

М'

M''

Exercise: how can you recreate the following matrix using just the colon, reshape, and transpose operators above?

1	2	3
4	5	6
7	8	9
10	11	12
13	14	15

Adding Rows vs. Columns

M = [12; 34]

M = [M; 5 6]

V = [10 20 30]'

whos M V

 $\mathbf{M} = [\mathbf{M} \mathbf{V}]$

M = [M [99 98 97]']

Deleting Rows or Columns

M(:, 3) = []

M(2, :) = []

size([])

Command Line Editing

Basic editing:	
Forward/back char	∧F \
Left/right word	$\stackrel{\wedge}{\leftarrow}/\stackrel{\wedge}{\rightarrow}$
Beginning/end of line	^A / ^E
Delete forward/back char	^D / ^H
Clear line	۸U
Kill to end of line	^K
Cut/Copy/Paste	^X/^C/^V
Undo	^Z
Interrupt execution:	^C

Command history: Next/previous line Keyed history: wh^P

^N / ^P

help cedit

Command/function completion: cle<tab>

Editing in Matlab

File > New > M-file

Put "3+5" in the file (without the quotes.)

On a new line, put "m = magic(5)".

Save the file as Desktop*myuserid*\foo.m

Type **foo** to Matlab

Basic Plotting

pts = 0 : pi/20 : 4*pi;

plot(sin(pts))

plot(pts, sin(pts))

whitebg(gcf, [0 0 0])

grid on/off

box on/off

axis on/off

clf

clf reset

Plot Labeling

pl^P

xlabel('Input value')

ylabel('y = sin(\theta)')

title('The Sine Function')

Multiple Plots

clf

hold on

plot(pts, sin(pts))

plot(pts, cos(pts), 'm')

plot(pts, cos(pts), 'go')

legend('sin','cos','pts')

Use the mouse to position the legend.

Summary of Plot Options

Color:	red, green, blue, white
r,g,b,w	cyan, magenta, yellow
c,m,y,k	black
Symbol: . o x + * s d	dot, circle, cross, plus, star square, diamond

etc. (there are more)

Line type:

-	solid
	dashed
•	dotted
	dash-dot

helpwin plot

Printing

On the File pulldown menu, select Print.

Or type **^P** in the figure window.

print -depsc -r300 myfig.ps

print -dtiff myfig.tiff

print -djpeg myfig.jpg

help print

Plotting with Error Bars

clf

y = sin(pts);

e = rand(1, length(y)) * 0.4;

errorbar(pts,y,e)

Multiple Figures

figure

figure(5)

delete(2)

Or type **^W** in the figure window.

Histograms

dat = randn(10000,1);

hist(dat)

hist(dat,50)

b = hist(dat, 6)

bar(b)

Writing Functions

In the editor, create the file parabola.m

function y = parabola(x)% y = PARABOLA(x)% computes a quadratic $y = x .^2;$

parabola(5)

help parabola

parabola *gives an error message -- why?* clf, plot(parabola(-10:10))

Scripts take no input arguments and return no values.

Scripts operate in the workspace of their caller (i.e., the "base" workspace if called from the command line.)

Functions can take zero or more arguments and return zero or more values.

Functions operate in their own local workspace.

Variables created inside a function are local to that function; they disappear when the function returns.

Logical Operations

Operators: $= = \sim = < > < = > =$

Logical 1/0 values for true/false

The IF statement:

if x > 3 y = x; else y = x - 3; end

Short form (all on one line):

if x>3, y=x; else y=x-3; end

Boolean Subscripting

V = [1 2 3 4 5];

V(logical([1 0 1 1 0]))

$$a = V >= 3;$$

whos a

V(V >= 3) = 0

S = 'banana cabana'

$$S(S = = 'a') = []$$

Control Structure

```
for i = 1:5
[i i^2]
end
```

```
clf, hold on
for x = pts
plot(x,cos(x),'gd')
pause(1)
end
(you can use ^C to exit)
```

```
x = 0; i = 0;
while x < 5
i = i + 1;
x = x + rand(1);
end
i, x
```

Matrix Arithmetic

Element-wise operators: + - .* ./ .^

- M = rand(5,3)
- M + 100
- M * 5
- M .* M
- M ./ M
- M .^ 2

Matrix Multiplication

m1 = rand(5,3)

m2 = rand(3, 5)

- m1 * m2
- m2 * m1
- m1 * m1 -- error! --
- m1'/m2

pinv(m1)

```
function rot(theta)
 % ROT(theta) - print rotated sine wave
 rads = theta/360*2*pi;
 rotmat = [cos(rads) sin(rads); ...
           -sin(rads) cos(rads)];
 pts = 0 : pi/20 : 4*pi;
 data = rotmat * [pts/(4*pi); cos(pts)];
 plot(data(1,:), data(2,:))
 axis([-1.5 1.5 -1.5 1.5])
```

Rotation Exercise (cont.)

Test your function:

rot(30)

Now try this:

for i = 0 : 10 : 90rot(i), pause end

Hit the space bar to continue from the pause.

Reduction Operators

M = rand(5,3)

sum(M)

sum(M,2) *sum along 2nd dimension*

sum, prod, min, max, mean, var

min(min(M))

min(M(:))

Expanding with REPMAT

The REPMAT function is often used to expand a vector to fit the shape of a matrix.

Example: adjusting a dataset to have zero means.

M = rand(5,3)

avg = mean(M)

Ma = repmat(avg,5,1)

Mz = M - Ma

sum(Mz)

Exercise

Suppose we want the rows of M to sum to zero, instead of the columns.

How would you do this, without using transpose?

MATLAB Documentation

doc cos

help cos

helpwin cos

peaks

which peaks

lookfor rotate

Help pulldown menu MATLAB Help > Statistics Toolbox > Probability Distributions > Overview of the Distributions > Beta Distribution

Hint: Starting Matlab

The Matlab "desktop" feature is built in Java. It's okay on most machines, but on a slow machine, it can be painful to use.

To disable the entire Java Virtual Machine: % matlab -nojvm

To disable just the desktop: % matlab -nodesktop

In lieu of the desktop, Matlab will give you a pure text command line interface. You can edit your Matlab code using Emacs or some other text editor.