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—
Keyboard Exercise ,
can
In this keyboard exercise we will write some routines for moving Robbie the tabl
robot around in a house. The map of the house appears in Figure 6-2. Robbie
can move in any of four directions: north, south, east, or west.
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Figure 6-2 Map of the House.

The layout of the house is described in a table called ROOMS, with one
element for each room:

((living-room ...)
(upstairs-bedroom ...)
(dining-room ...)
(kitchen ...)
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B1 B4
green blue
B6
purple
B2 B3 BS
red red green

Figure 7-1 A typical blocks world scene.

A collection (in other words, a list) of assertions is called a database.
Given a database describing the blocks in the figure, we can write functions to
answer questions such as, ‘““What color is block B2?’ or “What blocks
support block B1?”” To answer these questions, we will use a function called
a pattern matcher to search the database for us. For example, to find out the
color of block B2, we use the pattern (B2 COLOR ?).

> {fetch ' (b2 color ?))
({(B2 COLOR RED))

To find which blocks support B1, we use the pattern (? SUPPORTS B1):

> (fetch ' (? supports bl))
((B2 SUPPORTS B1l) (B3 SUPPORTS B1))

FETCH returns those assertions from the database that match a given
pattern. It should be apparent from the preceding examples that a pattern is a
triple, like an assertion, with some of its elements replaced by question marks.
Figure 7-2 shows some patterns and their English interpretations.

A question mark in a pattern means any value can match in that position.
Thus, the pattern (B2 COLOR ?) can match assertions like (B2 COLOR
RED), (B2 COLOR GREEN), (B2 COLOR. BLUE), and so on. It cannot
match the assertion (Bl COLOR RED), because the first element of the
pattern is the symbol B2, whereas the first element of the assertion is Bl.

Figure

EXER
7.29



s of two lists.
2) (C 3)). You

ve sublists of a
'FIE FOE) (FIE

sive version of
function of two

tumns the largest
EST-EVEN (5 2
ould return zero.
st of its inputs.

mber to its own
«d return 33 = 27,
1se REDUCE.

also in stories and
i Nights contains
flavor. A similar
s in The Cat in the
[he nesting of cats
unction calls itself.
| recursive function
jon eventually gets
this story has any

ecursion and self-
. C. Escher, whose
Douglas Hofstadter
«matics in his book
-agon stories in this

CHAPTER 8 Recursion 269

Figure 8-9 Recursively nested cats, from The Cat in the Hat Comes Back, by Dr

Suess. Copyright (c) 1958 i
e ) by Dr. Suess. Reprinted by permission of Random House,




270

Common Lisp: A Gentle Introduction to Symbolic Computation

Figure 8-10 ‘“‘Drawing Hands’’ by M. C. Escher. Copyright (c) 1989 M. C. Escher
heirs/Cordon Art-Baam-Holland.

SUMMARY

Recursion is a very powerful control structure, and one of the most important
ideas in computer science. A function is said to be “‘recursive’’ if it calls

itself. To write a recursive function, we must solve three problems posed by
the Dragon’s three rules of recursion:

1. Know when to stop.

2. Decide how to take one step.

3. Break the journey down into that step plus a smaller journey.
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Keyboard Exercise

In this exercise we will extract different sorts of information from a
genealogical database. The database gives information for five generations of
a family, as shown in Figure 8-11. Such diagrams are usually called family
trees, but this family’s genealogical history is not a simple tree structure.
Marie has married her first cousin Nigel. Wanda has had one child with
Vincent and another with Ivan. Zelda and Robert, the parents of Yvette, have
two great grandparents in common. (This might explain why Yvette turned
out so weird.) And only Tamara knows who Frederick’s father is; she’s not
telling.

Colin Deirdre Arthur Kate Frank Linda

[ L |
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Suzanne Bruce Charles David Ellen George Hillary Andre
Tamara Vincent Wanda Ilvan Quentin Julle Marie Nigal

I | | | —
[ 1

Frederick Zelda Joshua Robert Olivia  Peter Erica

Yvette Diane

Figure 8-11 Genealogy information for five generations of a family.
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Figure 12-1 A portion of the Common Lisb type hierarchy.

g 12.3 DEFINING STRUCTURES

Structures are programmer-defined Lisp objects with an arbitrary number of
named components. Structure types automatically become part of the Lisp
type hierarchy. The DEFSTRUCT macro defines new structures and specifies

the names and default values of their components. For example, we can define
a structure called STARSHIP like this:

(defstruct starship
(name nil)
(speed 0)
(condition ’green)
(shields ’down))

This DEFSTRUCT form defines a new type of object called a STARSHIP
whose components are called NAME, SPEED, CONDITION, and SHIELDS.

STARSHIP becomes part of the system type hierarchy and can be referenced
by such functions as TYPEP and TYPE-OF.
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Figure 12-2 A portion of a discrimination net for solving automotive diagnosis
problems.

EXERCISE

12.4. In this exercise you will create a discrimination net for automotive
diagnosis that mimics the behavior of the system shown in the
preceding pages.

a. Write a DEFSTRUCT for a structure called NODE, with four

components called NAME, QUESTION, YES-CASE, and NO-
CASE.

b. Define a global variable *NODE-LIST* that will hold all the nodes
in the discrimination net. Write a function INIT that initializes the
network by setting *NODE-LIST* to NIL.

c. Write ADD-NODE. It should return the name of the node it added.

d. Write FIND-NODE, which takes a node name as input and returns
the node if it appears in *NODE-LIST*, or NIL if it doesn’t.
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DIME
Clink!

NICKEL
Clunk!

Clink!

NICKEL
Clunk!

DIME
Clink!

GUM-BUTTON

Deliver gum,
GUM-BUTTON nickel‘change

Deliver gum

MINT-BUTTON

Deliver mints
Figure 14-1 Finite state diagram for a vending machine.

moves to a state named HAVE-5.- If it’s in state HAVE-5 and it gets the
symbol DIME as input, it goes ‘‘Clink!”’ and moves to state HAVE-15. In

state HAVE-15, if it gets the input GUM-BUTTON, it delivers a packet of
gum and goes to state END.

The machine has a total of six states: START, HAVE-5, HAVE-10,
HAVE-15, HAVE-20, and END. (It’s called a finite state machine precisely
because the number of states is finite.) Each state is represented by a node in
Figure 14-1, and each possible transition from one state to the next is
represented by an arc (an arrow). The arc is labeled with the input needed to
make the transition and the action the machine should take when it follows

that transition. For example, the arc from HAVE-10 to HAVE-15 is labeled
NICKEL / ““Clunk!”’.




