
Source Code’s Challenge to U.S. Law

Introducing a Translator from C to English and Back

By Jonathan M. Baccash

Advised by Andrew W. Appel

May 7, 2001

This thesis is my own work in accordance with
University regulations.

Acknowledgements

I would like to thank my adviser, Professor Appel, for all his advice, patience, and

reassurances (i.e., “the best is the enemy of the good”) along the way. He was an

excellent guide and had a deep understanding and appreciation for the subject matter, and

he made the time to help me.

Thanks also to my Dad, who had some excellent suggestions, and helped make English

this paper.

Thanks also to John Reppy and Dave MacQueen, who quickly answered my questions

concerning the ckit package.

Thanks also to my friends and family, who gave me additional support. Special thanks to

Ishan, who gave some good advice in the early stages of writing. And thanks to Laura

and Anders for teaching me a few legal principles. And thanks to Emile for critiquing

my abstract. But no thanks to Manan, who sent me an email when he had finished

writing his thesis in mid-April saying, “I’m going to Florida, how’s the thesis?”

Contents

Source Code’s Challenge to U.S. Law
1 DeCSS and Napsterized Movies 1

2 Blurring the Lines between Expression and Function 9

2.1 c2txt2c . 10

2.2 c2eng and eng2c . 13

2.3 BabelBuster . 15

2.4 Discussion . 18

3 The Limits of American Speech Rights 19

4 Seeking a Conclusion for DeCSS 24

Appendices
A Technical Analysis of BabelBuster 31

A.1 BabelBuster . 31

A.2 Discussion . 38

A.3 Abridged English Grammar 40

B Example Translations . 47

References . 49

Abstract

As technological advancement blurs the distinction between expressive speech and

functional devices, Americans may be compelled to relinquish their right to discuss

certain computer algorithms. This thesis presents BabelBuster, a program that translates

between C and English. In so doing, BabelBuster supports the idea that an injunction

against publication of source code is futile without also enjoining the publication of any

description of the algorithm in question. The thesis then explores this concept in the

context of the pending DeCSS trial, in which the major motion picture companies seek an

injunction against publication of the DeCSS source code under the Digital Millennium

Copyright Act. This thesis also questions whether courts will give more credence to

Americans’ First Amendment right to openly discuss computer algorithms or to

Congress’s Constitutional power to secure copyrights.

Chapter 1

DeCSS and Napsterized Movies

On July 17, 2000, Leon Gold, attorney representing the major motion picture

companies, stated in federal court that when they accepted the DVD standard to distribute

digital versions of their movies, these companies thought their movies could not be

copied and downloaded over the Internet for free, or “Napsterized,” like mp3 music

files.1 But these members of the Motion Picture Association of America (MPAA) now

realize that if they cannot win their fight to banish the recipe developed by hackers to

extract the movies from DVDs, the day DVD movies are Napsterized could be fast

approaching.

The copyrighted works on DVDs are protected on two fronts. First, the DVD

standard employs an encryption scheme, the Content Scrambling System (CSS), to

control access to movies and thwart efforts to make illegal copies of the copyrighted

works that are the contents of a DVD. Agreed upon in October 1996, this standard uses a

rather weak 40-bit encryption, but one that was the strongest allowed by U.S. government

export regulations at the time.2 Second, the Digital Millennium Copyright Act (DMCA)

bolsters protection of DVD movies. The act, which the 105th U.S. Congress signed into

law on October 28, 1998, aimed to update copyright law for the digital age in preparation

1 Universal City Studios, Inc. v. Reimerdes, 111 F. Supp. 2d 346 (S.D.N.Y.), transcript of testimony, 17
July 2000, at p. 6.
2 Frank Stevenson, “Cryptanalysis of the Content Scrambling System,”
<http://www.cs.cmu.edu/~dst/DeCSS/FrankStevenson/analysis.ps>, 13 November 1999, p. 3.

Chapter 1. DeCSS and Napsterized Movies 2

for the ratification of the World Intellectual Property Organization (WIPO) treaties. It

was the most comprehensive reform of U.S. copyright law in a generation.3 The DMCA

provisions that strengthened copyright protection systems are found in rule 1201(a):

(2) No person shall manufacture, import, offer to the public, provide, or
otherwise traffic in any technology, product, service, device, component,
or part thereof, that--
(A) is primarily designed or produced for the purpose of circumventing a
technological measure that effectively controls access to a work protected
under this title [i.e., a copyrighted work];
(B) has only limited commercially significant purpose or use other than to
circumvent a technological measure that effectively controls access to a
work protected under this title; or
(C) is marketed by that person or another acting in concert with that
person with that person's knowledge for use in circumventing a
technological measure that effectively controls access to a work protected
under this title.4

These provisions clearly restrict the creation and posting on the Internet of technologies

to circumvent CSS, which, according to Judge Lewis Kaplan of the U.S. District Court

for the Southern District of New York, “effectively” controls access to copyrighted

works.5

Although these measures all seem to assure the movie companies a level of

comfort in their hope that DVD movies will not be Napsterized, subsequent events have

shown that such comfort was perhaps illusory. As can be expected, hackers soon reverse

engineered the weak CSS encryption algorithm. In October 1999, 15-year old computer

geek Jon Lech Johansen posted his version of DeCSS, which can decrypt a DVD, on the

Internet.6 Then, when the Hacker Quarterly website, 2600.com, posted DeCSS on its

3 “Digital Millennium Copyright Act,” <http://www.educause.edu/issues/dmca.html>, 20 April 2001.
4 Digital Millennium Copyright Act (Public Law 105-304) of 28 October 1998, section 1201(a).
5 Universal City Studios, Inc. v. Reimerdes, 111 F. Supp. 2d 294 (S.D.N.Y.), decision, 17 August 2000, at
p. 317.
6 Doug Mellgren, “Speaking in Code: Quiet, Polite Teen at Center of DVD-Copying Firestorm,”
ABCNews.com <http://abcnews.go.com/>, 26 February 2001, archived at
<http://more.abcnews.go.com/sections/scitech/DailyNews/johansen010226.html>.

Chapter 1. DeCSS and Napsterized Movies 3

website, the MPAA filed a lawsuit seeking to enjoin the dissemination of the code and

seeking damages from the website. The MPAA claimed that by using DeCSS, users can

illegally copy movies, and with increasing network speeds, users who want to share these

illegal copies would soon be able to do so.

Although this case (Universal City Studios, Inc. v. Reimerdes) is currently

pending before the 2nd Circuit Court of Appeals, the proceedings and outcome in the

district court may shed light on what is to come. In the district court, Judge Lewis

Kaplan held for the plaintiffs by enjoining the publication of DeCSS, finding that it

violated the DMCA. Central to the case was whether or not the publication of DeCSS

was a right afforded 2600.com by the First Amendment to the Constitution. The First

Amendment states:

Congress shall make no law … abridging the freedom of speech, or of the
press; or the right of the people peaceably to assemble, and to petition the
Government for a redress of grievances.7

Modern Constitutional interpretation extends First Amendment protection to such forms

of expression as poetry, dancing, music, and, to some extent, computer source code.

However, as Judge Kaplan stated, “Its [DeCSS’s] expressive element no more immunizes

its functional aspects from regulation than the expressive motives of an assassin

immunize the assassin’s action.”8 DeCSS’s expressive element was protected by the

First Amendment, but its function was to circumvent the technological access control of

CSS, in violation of the DMCA. And indeed, the DMCA has all the backing of the

Constitution as well. The Constitution states:

7 U.S. Constitution, Amendment I.
8 Universal City Studios, Inc. v. Reimerdes, 111 F. Supp. 2d 294 (S.D.N.Y.), decision, 17 August 2000, at
p. 304.

Chapter 1. DeCSS and Napsterized Movies 4

The Congress shall have Power … To promote the Progress of Science
and useful Arts, by securing for limited Times to Authors and Inventors
the exclusive Right to their respective Writings and Discoveries… .9

Since DeCSS’s function was to circumvent the technological access control in violation

of the DMCA, Judge Kaplan ruled in favor of the plaintiffs.

The discussion of First Amendment analysis of computer source code in

Universal v. Reimerdes raises questions including the extent of computer source code’s

expressive nature and the limits of free speech. Although the court enjoined the

dissemination of the source code version of DeCSS, as requested by plaintiffs, it also

indicated that it might be more hesitant to enjoin publication of an English description of

the same algorithm. As demonstrated by this excerpt from his final decision, Judge

Kaplan did not seem unhappy that this issue had not been presented:

During the trial, Professor Touretzky of Carnegie Mellon University
convincingly demonstrated that computer source and object code convey
the same ideas as various other modes of expression, including spoken
language descriptions of the algorithm embodied in the code. He drew
from this the conclusion that the preliminary injunction irrationally
distinguished between the code, which was enjoined, and other modes of
expression that convey the same idea, which were not, although of course
he had no reason to be aware that the injunction drew that line only
because that was the limit of the relief plaintiffs sought. With
commendable candor, he readily admitted that the implication of his view
that the spoken language and computer code versions were substantially
similar was not necessarily that the preliminary injunction was too broad;
rather, the logic of his position was that it was either too broad or too
narrow. Once again, the question of a substantially broader injunction
need not be addressed here, as plaintiffs have not sought broader relief.10

Judge Kaplan may not have needed to decide this issue, but a court some day most

assuredly will.

9 U.S. Constitution, Article I, Section 8.

Chapter 1. DeCSS and Napsterized Movies 5

Courts distinguish between two types of speech restrictions, content-based and

content-neutral. A content-based restriction, the more scrutinized of the two, restricts

speech based on the meaning of the messages conveyed. A content-neutral restriction, in

contrast, is not motivated by a desire to limit the message. According to Judge Kaplan, a

content-neutral restriction will be upheld if it serves a substantial government interest and

restricts First Amendment freedoms no more than necessary.11 Judge Kaplan ruled that

the DMCA restrictions are content-neutral and, since they serve the interest of protecting

copyrights, the DMCA serves as a valid exercise of Congress’s authority.

But opponents of the DMCA claim that it does restrict First Amendment freedoms

more than necessary. In their article “Technological Access Control Interferes with

Noninfringing Scholarship,” Princeton University Computer Science Professors Andrew

Appel and Edward Felten point out that technological access controls restrict the use and

testing of algorithms to search for a clip of video in a video file or a bar of music in an

mp3.12 According to Appel and Felten, even if such technologies were built into a video-

viewing program, without a general-purpose method for examining the video file

unencrypted, efforts to develop new and innovative searching techniques would be

impossible.

Others also argue that the DMCA unnecessarily restricts fair use. According to

Law Professor Julie Cohen,

Copyright law has long acknowledged that restrictions on reuse of
another’s copyrighted expression are restrictions on speech. It has also

10 Universal City Studios, Inc. v. Reimerdes, 111 F. Supp. 2d 294 (S.D.N.Y.), decision, 17 August 2000, at
p. 345.
11 Ibid., pp. 327-8.
12 Andrew W. Appel and Edward W. Felten, “Technological Access Control Interferes with Noninfringing
Scholarship,” Communications of the ACM, 43 (9), September 2000, pp. 21-23, archived at
<http://info.acm.org/pubs/articles/journals/cacm/2000-43-9/p21-appel/p21-appel.pdf>.

Chapter 1. DeCSS and Napsterized Movies 6

acknowledged that some such restrictions frustrate rather than promote
creative progress. For these reasons, copyright law forbids authors from
controlling the uncopyrightable ideas or functional principles embodied in
their work and allows others to make “fair use” even of copyrightable
expression for purposes such as criticism, comment, education, and
research. The Supreme Court has indicated that these limitations on
copyright are required by both the Patent and Copyright Clause and the
First Amendment. Trade secret law, meanwhile, does not prohibit the
reverse engineering of publicly distributed products to discover embodied
secrets, and the Court has said that federal intellectual property law
requires this result.

The DMCA and UCITA [Uniform Computer and Information
Transactions Act], however, contain no such limitations on the prior
restraint of speech. On the contrary, both statutes seem designed for the
express purpose of allowing private parties to suppress legitimate public
debate about their products.13

Thus, although the DMCA itself does not restrict fair use, Congress is in effect giving the

movie industries the option to do so.

Furthermore, one could claim that restricting the posting of DeCSS also infringes

on the study of cryptography in general. This point is highlighted by Dr. David

Touretzky’s testimony that (as explained above) in order to effectively stop the

decryption of DVDs, it is necessary to completely eradicate all discussion of the

algorithm.

In his testimony before the court in Universal v. Reimerdes, Touretzky first stated

that an order to stop publication of DeCSS is either too broad to fit existing law or too

narrow to make sense. He made these claims based on the fact that the DeCSS algorithm

as described in computer source code is largely equivalent to the same algorithm as

described in various other forms, and it is not possible to discriminate between them;14

therefore, the injunction, which only banned the source code form, made little sense. He

13 Julie Cohen, “Unfair Use,” The New Republic Online <http://www.tnr.com/>, 23 May 2000, archived at
<http://www.tnr.com/online/cohen052300.html>.

Chapter 1. DeCSS and Napsterized Movies 7

states in his web page, “If code that can be directly compiled and executed may be

suppressed under the DMCA, as Judge Kaplan asserts in his preliminary ruling, but a

textual description of the same algorithm may not be suppressed, then where exactly

should the line be drawn?”15

Touretzky described this idea in more depth in his court testimony. Referring to

his “Gallery of CSS Descramblers”,16 which currently has more than 30 examples of the

DeCSS algorithm expressed in other forms, he first showed that the screen dump of the C

program, which was not enjoined by the court, could be easily converted to the C

program. A screen dump is simply a binary image file that shows the contents of the

program as displayed on the computer screen by a text editor. Touretzky showed that

either a person or a program could trivially convert this program back to the original.

Next, he showed that a program in a made-up language was also trivially converted back

to the original. In fact, a compiler could be constructed to do this. Touretzky even

claimed that a compiler could be constructed to convert the ideas as expressed in any

sufficiently expressive language, even English, back into the original C source code.

Touretzky’s conclusion is that:

If you’re going to be effective about it, if you’re really going to stop
people from doing it [decrypting DVDs], you’ve got to stop them from
hearing the message that the defendants were trying to convey. You’ve
got to stop them from any description of the algorithm, which could be
used to construct one of these devices.17

14 Universal City Studios, Inc. v. Reimerdes, 111 F.Supp. 2d 346 (S.D.N.Y.), transcript of testimony, 25
July 2000, at p. 1066.
15 David Touretzky, “Gallery of CSS Descramblers,”
<http://www.cs.cmu.edu/~dst/DeCSS/Gallery/index.html>, 14 April 2001.
16 Ibid.
17 Universal City Studios, Inc. v. Reimerdes, 111 F.Supp. 2d 346 (S.D.N.Y.), transcript of testimony, 25
July 2000, at p. 1071.

Chapter 1. DeCSS and Napsterized Movies 8

In other words, to stop decryption of DVDs, we must restrict our freedom to express

ourselves, as afforded by modern interpretation of the First Amendment. Such a

restriction is a much higher price to pay for copyright enforcement than one might think

from a reading of the DMCA; however, it may prove to be a necessary evil.

Chapter 2

Blurring the Lines between Expression and Function

Opponents to the view that source code is speech say that there really is a rational

difference between source code and speech in the English language. According to them,

an English explanation of an algorithm informs the intellect, while a source code (say, C)

description of the algorithm can be utilized on the computer to actually do something. In

his attempt to debunk the “myths” of source code non-functionality, Anthony Coppolino

spoke on behalf of the government in Bernstein v. U.S. Department of Justice:

The plaintiff's argument is that software is also speech. It is
information. He says there is no rational distinction between describing
the software in English and describing it in source code, which is
computer language. But we think there is a very rational distinction. The
English explanation of Snuffle [encryption algorithm] would inform the
intellect. The source code can be utilized on the computer to actually
encrypt.18

Assuming this to be the case, Touretzky’s argument that a C description of an algorithm

and an English description of an algorithm are largely equivalent would fail.

But opponents of the DMCA, who claim that DeCSS is at least as expressive as

an English description of the algorithm, make the point that DeCSS does not actually do

anything. It is simply a set of instructions, a “recipe” for performing the algorithm, not a

machine. To actually decrypt a DVD, one must carry out the algorithm as described by

the program (or have their computer do it for them). The algorithm is quite easily

18 Bernstein v. U.S. Department of State, 974 F. Supp. 1288 (N.D. California), transcript of testimony, 20
October 1995, at p. 18.

Chapter 2. Blurring the Lines Between Expression and Function 10

described in English, although many would claim that the same imperative commands

expressed in the source code program are less easily described and understood in an

English description.19

In this vein, attorney Lee Tien has argued that publishing source code is a speech

act because computer scientists and programmers communicate with source code, just as

economists and mathematicians communicate with equations;20 they do so because that is

the simplest way to inform other programmers of their discoveries. In the case of source

code, the computer scientists are the intellect; the source code is used to inform the

intellect.

Of Coppolino’s “rational” distinctions then, the only one that remains is the fact

that a C program can be utilized on a computer to actually encrypt, while an English

description cannot. In this section we prove Coppolino’s argument false, showing that

even an English “program” can be understood by a computer in much the same way as a

C program. In so doing, the similarities between source code and English prose are made

clearer; courts that are willing to enjoin the publication of source code must be willing to

enjoin the publication of the English prose version of that source code.

2.1 c2txt2c

As far as I can tell, c2txt2c was the first attempt to create a program that translates

from C to English and back. Its author, Leevi Marttila, was outraged that Judge James

Gwin of the Federal District Court of the Northern District of Ohio held that software

19 Eben Moglen, “Anarchism Triumphant: Free Software and the Death of Copyright,” First Monday
<www.firstmonday.org>, August 1999, archived at <http://firstmonday.org/issues/issue4_8/moglen/>.
20 Lee Tien, “Publishing Software as a Speech Act,” 15 Berkeley Technology Law Journal 629 (Spring
2000), at p. 633.

Chapter 2. Blurring the Lines Between Expression and Function 11

(namely, blowfish.c, an implementation of the blowfish encryption algorithm) is not

protected by the First Amendment because it is a “functional device” like a telephone

circuit.21 Seeking to prove her wrong, he hacked up a few Perl scripts that he called

c2txt2c, which he hoped would show the equivalence of C and English.

c2txt2c translates a C program into English text that does not describe how to

perform the algorithm. For example, hexadecimal numbers in the C program correspond

to poetry in the English version. Thus, hex 243f6a88 might be mapped to:

... oops, I don't find sugar coated fruits here. Somebody has stolen them.
Instead I see some bad poem: "Very humongous red dog fortunately
dances right of monitor once in hour. "

Although this is not exactly what I would think of as a translation from C to English, the

result is more or less English, and it can be machine-translated back to C.

This early attempt at a C to English to C translator met with a fair amount of

success; through the lively discussion on a message board following an editorial on the

Slashdot website, we can see that many people were enthusiastic about the program:

> it’s not English, it’s data that has been encoded into English.
… .
A language *is* a form of encoding by nature. The majority of people
(last time i checked) can’t read minds at will, so societies had to come up
with a way to put your thoughts into a form that can be easily transmitted.
Language can also help us pore over our own thoughts (thinking out loud).
- Ex-Cyber

I would say that the output of the C-to-text converter is MORE “purely
functional” than the actual C code. This is because the code is basically
full of imperatives. The data declarations are declaratives (what a
coincidence!), but the meat of the stuff still consists of instructions. Add
the fact that it’s REALLY HARD to understand exactly what the code is
doing after it’s been converted – it would be difficult to glean any

21 Leevi Marttila, “Accurate Language to Inaccurate Language (and back) Translator c2txt2c v0.2.1,”
<http://personal.sip.fi/~lm/c2txt2c/>, 15 January 2000, citing Junger v. Daley, 8 F. Supp. 2d 708 (N.D.
Ohio), decision, 2 July 1998, at p. 712.

Chapter 2. Blurring the Lines Between Expression and Function 12

computer science ideas from that stuff. So this “English” is basically
meaningless to anything but a computer – much like object code.

Maybe if people learned how to interpret the English text really well, they
could derive as many ideas from it as from the C code. But it seems like
that would be much harder, since the text files are “blown up” so much by
the converter.
- Chris Peikert22

Still, others questioned whether c2txt2c’s output was even English at all:

This is quite funny, but I don’t think you’d ever be able to convince
someone that the output is just plain english.

I could write a program that would convert an arbitrary binary file into
some intelligible but meaningless text file, but I don’t think I could claim
that sensitive information encoded that way is protected by the 1st
amendment – it’s not English, it’s data that has been encoded into English.

Why not try to write a description of the algorithm in English?… .
- Austin Appleby23

User “j.e.hahn” replied to such accusations:

While it may use english words, it’s not really english
unless the sentence structure is at least somewhat passable
as english.

So then what are the writings of Ginsberg, as well as many other beat
poets and others, James Joyce, William Faulkner, and many others who
play with words to the point that they are outside the realm of standard
sentence structure and grammar? Ulysses has sections that are virtually
unreadable due to their construction, and Ginsberg & co. played with the
“cut-up method”. Aren’t these still english?
- j.e.hahn24

Some of the ideas that arose from these Slashdot postings were incorporated into later C

to English to C translators.

22 “C to English and English to C Translator,” from Slashdot message board,
<http://slashdot.org/articles/980815/105250.shtml>, 15-20 August 1998.
23 Ibid.

Chapter 2. Blurring the Lines Between Expression and Function 13

2.2 c2eng and eng2c

In October 2000, Omri Schwartz released c2eng, which translated from C into an

English description of the program, and eng2c, which translated back. The main

difference between these and c2txt2c is that the English generated actually describes to a

person (or computer) what to do to perform the algorithm, just as the C does. Thus, the C

preprocessor statement “#define Pi 3.14159265358979” is translated as “Note: we define

Pi to mean ‘3.14159265358979’.”25 This is exactly what the preprocessor statement tells

the C compiler.

Although Schwartz claims that the English output is “grammatically correct”, I

found that this is not true in some cases. In particular, he ran into difficulty translating

highly nested C constructs and in translating preprocessor statements that appeared in the

middle of an expression.

For instance, consider the C expression “key[4] = k[4] ^ csstab1[key[4]] ^

key[3]”. Here, we might attempt to interpret this in English as “Assign element of array

key at index 4 the result of array k’s element with index 4 bitwise exclusive-orred with

array csstab1’s element with index array key’s element with index 4 bitwise exclusive-

orred with array key’s element with index 3.” This interpretation has two main problems.

First of all, it is very difficult for a person to understand. A person has difficulty

understanding long, complex clauses, and when clauses are nested within others, the

sentence becomes unwieldy. We want to break the clause up into smaller pieces.

Second, the English description is ambiguous. We can interpret the C description (again,

in the more understandable C language) as “key[4] = k[4] ^ csstab1[key[4] ^ key[3]]” or

24 Ibid.

Chapter 2. Blurring the Lines Between Expression and Function 14

“key[4] = k[4 ^ csstab1[key[4] ^ key[3]]]”, in addition to the original C. When

expressions (clauses) are nested in this manner, ambiguities frequently arise.

Schwartz used two tactics to solve this problem. First, he used parentheses to

group clauses, just as expressions are grouped in C. Thus, his program would interpret

our example statement as ‘Assign to array key’s element at address (4) the value “array

k’s element at address (4) bitwise xorred by array csstab1’s element at address (array

key’s element at address (4)) bitwise xorred by array key’s element at address (3)”.’26

This use of parentheses is clearly not standard English. In English, parentheses usually

connote that a less important but perhaps interesting piece of information is being

conveyed; if we remove the parentheses and all the text they enclose, we end up with

grammatically correct English that still describes the proceedings of the program.

Furthermore, the translation’s use of quotations to connote an expression that produces a

value is non-standard. Second, he used phrases like “the 2-level parenthetical

expression” to signal that a parenthetical expression has begun. He compares this to a

math teacher saying “the quantity x plus y, all over z… .”27 This is reasonable, but again,

this does not solve the problem of a person comprehending what is being described.

When the parenthetical expressions have nested too deep, we must split up the clause.

The second major problem Schwartz encountered was with preprocessor macros

in the middle of an expression. For instance, we could have the following C statement:

x = y + z
#ifdef ADD_W

+ w
#endif

25 Omri Schwartz, “Converting C to English with Perl,” The Perl Journal, <www.tpj.com>, Fall 2000, p.
70.
26 Ibid.
27 Ibid.

Chapter 2. Blurring the Lines Between Expression and Function 15

;

Here, the difficulty is handling the plethora of ways preprocessor macros can be used to

modify the meaning of the code. We might wish to translate this code snippet as “set x

equal to y plus z (plus w, if ADD_W is defined)”. However, Schwartz did not find a

satisfactory method to handle all the possible places a preprocessor macro can occur. For

example, a preprocessor macro could be used to simply modify which operator is used in

a binary operator expression. It might be possible to use duplication to extract the

preprocessor declarations outside the expression, as follows:

#ifdef ADD_W
x = y + z + w

#else
x = y + z;

#endif

But Schwartz did not explore such an alternative.

2.3 BabelBuster

I created BabelBuster with the vision that C source code can be machine

translated into grammatically correct English that is easy to read, and that this English

can be machine translated back into C.

To really translate the C into grammatically correct English, we first solve the

problem of compounded nesting of expressions. Suppose we have the expression “1 + 2

* 3”. Due to mathematical convention, we first multiply and then add. But the

corresponding English, “1 plus 2 times 3”, has no such convention. We are left to

wonder whether we should add first and then multiply or multiply first and then add. See

Figure 1 for a tree diagram of the alternative meanings of this English clause.

Chapter 2. Blurring the Lines Between Expression and Function 16

The idea in BabelBuster is to replace nested clauses with temporary variables and

list the contents of the temporary variables in later clauses. For instance, the above

expression becomes “1 plus x, where x is 2 times 3”. Note that in so doing, we have

eliminated the ambiguity present in the simpler translation. A more complicated

expression, “key[4] = k[4] ^ csstab1[key[4]] ^ key[3]”, becomes “set the element of key

at index 4 equal to the bitwise exclusive or of x and y, where x is the element of k at

index 4, y is the bitwise exclusive or of z and the element of key at index 3, z is the

element of csstab1 at index w, and w is the element of key at index 4”.

Since BabelBuster translates preprocessed C (code in which the preprocessor

statements are removed in preparation for compilation), it does not need to address the

problem of preprocessor definitions arising in tricky spots. Thus, the two main problems

in c2eng are overcome in BabelBuster.

A few other interesting problems arose in translating C to English. For instance,

non-functional information such as comments and unary pluses were removed from the

program in translation to English. Also, transitions were added to the English description

of the algorithm in an attempt to improve readability and avoid the tedious nature of

repeated imperative statements. To denote the end of an operation, we say “continuing

+

*1

2 3

+

*

1 2

3

Figure 1a. Tree diagram
for 1+2*3.

Figure 1b. Tree diagram
for (1+2)*3.

Figure 1.

Chapter 2. Blurring the Lines Between Expression and Function 17

on”; in addition, it was found that three other transitions (“then”, “next”, and “after that”)

were sufficient. For instance, the following series of statements can be greatly improved:

“To perform operation 3, continue to do nothing as long as done is equal to zero.

Increment x by 7. Decrement z by 6. Apply x and z to f. Return the result of calling

clean_up.” With transitions, it is much better: “To perform operation 3, continue to do

nothing as long as done is equal to zero. Continuing on, we next increment x by 7. Then

decrement z by 6. Next, apply x and z to f. After that, return the result of calling

clean_up.” Here, the importance of transitions is clearly understood.

Putting it all this together, we might translate the following program as:

struct A {
int x;
unsigned : 5;
struct B {float f;} t;

} y;

int f(int a, struct A s) {
if (a > 0)

while (a++ < y.x) s -= a;
else {

y.x = s.x;
s.x = a;

}
}

Let B be a structure with member f, where f is a floating point number.
Let A be a structure with members x, an unnamed 5-bit unsigned integer,
and t, where x is an integer and t is a B structure. Let y be an A structure.

Let f be a function returning an integer. It is called with arguments "a"
and s, where "a" is an integer and s is an A structure. To perform the
function, perform operation 1 provided "a" is greater than 0; otherwise,
perform block 2. To perform operation 1, continue to decrement e1 by
"a", where e1 is member x of s as long as e1 is less than e2, where e1 is
"a" before incrementing "a" by one and e2 is member x of y at the
beginning of the iteration. To perform block 2, first set member x of y
equal to member x of s. Then set member x of s equal to "a". This ends
block 2.

Chapter 2. Blurring the Lines Between Expression and Function 18

For a technical analysis of BabelBuster, see Appendix A. For more example translations,

see Appendix B.

2.4 Discussion

BabelBuster succeeds in correctly translating the entire C language. By

“succeeds”, I mean that the program compiled from the English will have the same

effects as the program compiled from the original C source code. The English is quite

readable, and several things could be done to make it even more readable and true to the

original C code. From the insights gained in programming a translator from C to English,

I conclude that it is certainly possible to machine translate C to English in a very

comprehensible manner, and BabelBuster does this in most cases.

Because a machine can translate between C and English, it seems that there is

little sense in distinguishing between them in a First Amendment analysis. Source code

can be at least as expressive as the English, and the English can be at least as functional

as source code. Source code has always been used by computer scientists to express an

algorithm’s workings. Now English can be used as a functional device. Furthermore, if

one is easily converted to the other, nothing is accomplished by banning only one of

them. In this sense, a court that bans C code must also be prepared to the English

expression of the algorithm, and all other forms of expression whose purpose is to

express the idea represented in the C code. Such a ban would test the limits of American

speech rights.

Chapter 3

The Limits of American Speech Rights

Americans were fascinated by the expression of individual beliefs even before the

signing of the Declaration of Independence. For instance, on December 16, 1773, a band

of men disguised as Mohawk Indians boarded three British ships in Boston harbor and

dumped their cargo of tea. The Boston Tea Party, as it is referred to now, is still revered

by many patriotic Americans today as a political statement, although in fact it seems to

push the limits of speech we would be willing to afford our own citizens. By

acknowledging such reverence, we gain understanding into the respect possessed by

many Americans for courageous (even zealous) expressions of speech.

Indeed, a central notion in creating a Constitution was that the people should have

their say; the system of electing leaders depends on people expressing their opinions.

Ithiel de Sola Pool writes:

The cohesion and effective functioning of a democratic society depends
upon some sort of public agora in which everyone participates and where
all deal with a common agenda of problems, however much they may
argue over the solutions.28

Clearly, being well informed and expressing one’s own opinions is a fundamental

element of American society.

Although Americans have guarded their right to speak freely, the freedom of

expression is not necessarily the only value at stake in any given First Amendment case.

Chapter 3. The Limits of American Speech Rights 20

For example, courts have stopped the publication of texts to preserve human life,

especially in the context of war.29 The American press must be careful to prevent

libelous accusations, or risk damage awards. And authors must give credit where credit

is due; plagiarism breaks the law, not just school rules.30

Two modern cases shed light on just how far the U.S. Supreme Court is willing to

go to protect an individual’s right to speak freely. First, the case of the Pentagon Papers

pitted the free speech claim of The New York Times against the government’s concern for

national security. On June 13, 1971, The New York Times printed the first articles and

top-secret Defense Department documents that had been leaked to the Times in a series

that would expose a negative evaluation of the government’s handling of the Vietnam

War.31 When Attorney General John Mitchell asked that the Pentagon Papers be returned

to the Department of Defense and no further documents be published, the Times refused

to comply.

A lawsuit was soon filed, in which the government claimed that the papers

contained stolen government secrets that, if published, would put many American

soldiers at risk and embarrass the United States in the eyes of the world.32 The Court’s

struggle to decide the case is exemplified in Justice Stewart’s hypothetical question

during closing arguments:

Let us assume that when the members of the Court go back and open up
this sealed record, we find something there that absolutely convinces us
that its disclosure would result in the sentencing to death of a hundred

28 Ithiel de Sola Pool, Technologies Without Boundaries: On Telecommunications in a Global Age, edited
by Eli M. Noam, 15; quoted in Lawrence Lessig, Code, 180.
29 Lawrence Lessig, Code, 169.
30 David D. Kirkpatrick, “Court Halts Book Based on ‘Gone With the Wind,’” The New York Times, 21
April 2001, late ed., p. A1.
31 Peter Irons and Stephanie Guitton, ed., May it Please the Court, 167.
32 Lessig, 169.

Chapter 3. The Limits of American Speech Rights 21

young men whose only offense had been that they were nineteen years old
and had low draft numbers. What should we do?33

Although the arguments for enjoining the papers’ publication had substantial merit, the

government in this case was seeking prior restraint, which many believe to be more

dangerous to a system of free speech than a post-publication lawsuit.34 To win such a

case, the government must show “irreparable harm” would result from not restraining the

speech.35 The Supreme Court held that the government failed to make the necessary

showing, and The New York Times was therefore allowed to publish without the threat of

prior restraint.

The second free speech case with which U.S. courts struggled began when a left-

wing magazine, The Progressive, planned to publish an article describing the workings of

a hydrogen bomb. The Progressive first submitted a draft manuscript of the article to the

Department of Energy for review, at which point the government brought an injunction to

block its publication.36 According to Howard Morland, the Progressive writer whose

manuscript was under scrutiny, the government’s official reason for preventing its

publication was that it would materially shorten the development time of thermonuclear

weapons in other nations, and that this posed a significant risk to national security.37 One

might even think that such a claim was in fact an understatement; such information poses

a significant risk to all humanity.

But Morland claims that he wrote the article without official access to classified

information; anyone could have come to the same conclusions based on publicly

33 Irons and Guitton, 173.
34 Lessig, 169.
35 Ibid.
36 Ibid., 170

Chapter 3. The Limits of American Speech Rights 22

available documents and a little knowledge of physical principles.38 Indeed, after the

district judge considered whether or not to allow publication of the manuscript for two

and a half months, on September 16, 1979, the Press-Connection of Madison, Wisconsin

published a letter written by Chuck Hansen, a computer programmer, detailing his own

knowledge of the workings of an H-bomb. The cat already having been let out of the

bag, the government dropped its case against The Progressive the next day.39

The cases of the Pentagon Papers and The Progressive presented the courts with

difficult decisions, in part due to their content-based motivations for prior restraint. As

noted earlier, a content-neutral restriction of speech is within Congress’s power if it

serves a substantial government interest and restricts First Amendment freedoms no more

than necessary. But for a content-based restriction to pass muster in the courts, more

scrutiny is necessary. The Supreme Court’s opinion in Turner v. FCC, in which a cable

company was required to carry certain stations, illustrates this point:

The First Amendment, subject only to narrow and well-understood
exceptions, does not countenance governmental control over the content of
messages expressed by private individuals. Our precedents thus apply the
most exacting scrutiny to regulations that suppress, disadvantage, or
impose differential burdens upon speech because of its content. Laws that
compel speakers to utter or distribute speech bearing a particular message
are subject to the same rigorous scrutiny. In contrast, regulations that are
unrelated to the content of speech are subject to an intermediate level of
scrutiny, because in most cases they pose a less substantial risk of excising
certain ideas or viewpoints from the public dialogue.40

In each of these cases, the whole point of the suppression of speech was to excise certain

ideas from the public dialogue. Although in each case such excision may have had a

37 Howard Morland, “The Holocaust Bomb: A Question of Time,”
<http://www.fas.org/sgp/eprint/morland.html>, 15 November 1999.
38 Ibid.
39 Lessig, 170.

Chapter 3. The Limits of American Speech Rights 23

worthy cause, it is clear that the Framers of the Constitution would not have approved of

eradicating an idea from public dialogue without the most detailed scrutiny.

Note that in each of these cases, our freedom to express ourselves is given the

utmost attention and respect. Yet, in each of these cases other matters are also

considered, and interests of humanity are perhaps held even more sacred. In so doing, the

Court has recognized the inability of a government to perform its most vital function of

protecting citizens’ welfare when it allows people to express themselves in any manner

they choose.

Applying these principles, one must consider the freedom of expression in

Universal v. Reimerdes with the utmost respect and ask whether publication in this case

threatens the government’s ability to effectively carry out other important interests.

40 Turner Broadcasting System, Inc. v. Federal Communications Commission, 512 U.S. 622, decision, 27
June 1994, at pp. 641-2.

Chapter 4

Seeking a Conclusion for DeCSS

The cases that challenge the limits of our right to free speech and the blurring of

the lines between speech and machine raise issues that must be considered if we are to

come to a satisfying conclusion in the case of DeCSS.

First, one must recognize the fact that CSS decrypting software is already

abundant on the Internet, and even available in print media.41 Compare this to The

Progressive’s case, where the government dropped its case to enjoin the publication of

information on how to make an H-bomb when such information was published in another

magazine. Applying this logic to DeCSS, it would seem likely that, as Judge Kaplan

analogizes, “the barn is unlocked and this horse is out.”42 Yet the DeCSS case differs

from that of The Progressive in that if the wrong person learns how to make an H-bomb,

he or she can cause great destruction; one person is all it takes; with DeCSS, however, an

economic benefit for the MPAA could result from any effort to slow or stop

dissemination of DeCSS. Mikhail Reider, manager of worldwide Internet anti-piracy

operations for the MPAA, testified that in her opinion a permanent injunction against

DeCSS “would send a very strong message to both those that would engage in illegal

41 Omri Schwartz, “Converting C to English with Perl,” The Perl Journal, Fall 2000, p. 70.
42 Universal City Studios, Inc. v. Reimerdes, 111 F.Supp. 2d 346 (S.D.N.Y.), transcript of testimony, 20
July 2000, at p. 670.

Chapter 4. Seeking a Conclusion for DeCSS 25

behavior and to law enforcement.”43 Thus, by barring the publication of source code may

not only deter users from trafficking it and using it, but may also encourage better law

enforcement.

Still, it is unclear that it is even possible to effectively enforce a source code ban.

Today, members of the hacker community can traffic a program by encrypted email or

anonymous email. Hackers can also easily convert a program into a multitude of various

forms, many of which do not seem to correspond to the original source code (consider

c2txt2c). But if government does not at least attempt to enforce the law, it is essentially

succumbing to anarchy; through its attempts, it can gain insights into more effective

enforcement strategies.

Another issue is that, assuming the DMCA provisions fall under the content-

neutral category as Judge Kaplan determined, one must question whether or not there is a

better way to protect the movies’ copyrights, and whether the DMCA provisions restrict

First Amendment rights more than is necessary. To answer this question, it is first

necessary to understand just how restrictive the DMCA provisions are. As a

demonstration of the DMCA restrictions, consider the case of the group of researchers

who recently cracked digital watermarks in the SDMI Challenge that are used to enforce

a technological access control. These researchers have made a valuable contribution to

the field of steganography, the science of hiding information in plain sight; upon cracking

all the watermarks in the Challenge, they concluded on a note of pessimism: “Ultimately,

if it is possible for a consumer to hear or see protected content, then it will be technically

43 Ibid, p. 669.

Chapter 4. Seeking a Conclusion for DeCSS 26

possible for the consumer to copy that content.”44 However, the researchers are being

threatened with legal action if they publish their paper, on DMCA grounds, and as of 27

April, the researchers had still not published the paper. 45 Here, the DMCA provisions

are so restrictive to speech that it is unclear whether they deter progress in the arts and

sciences more than promote progress as they were designated to do.

In the fast-paced Internet world, it seems reasonable that attempts to identify a

less restrictive means to enforce movies’ copyrights may someday succeed.

As a first example of such an attempt, one might think that if we simply restrict

the keys used in the algorithm, we can protect the copyright and prevent unnecessary

banning of the algorithm. But even in this case, there is still the possibility of publishing

an algorithm to determine the keys (for, after all, hackers did follow a procedure to

determine them). Thus, it would be pointless to enjoin the keys from publication without

also banning publication of the algorithm to determine them.

Second, the DMCA could be revised so that a user’s right to fair use is better

protected, as noted above. Yet, as also noted above, it would be difficult to completely

protect fair use without actually allowing users to circumvent the technological access

controls that the DMCA fortifies.

Third, Dan Burk criticizes the law’s current categorizations of computer source

code. He writes that the law associated with copyright and patent is difficult to apply to

source code; accordingly, we should invent a new “method to securing for limited Times

to Authors and Inventors the exclusive Right” to their algorithms, as afforded by the

44 Scott A. Craver et. al, “Reading between the Lines: Lessons from the SDMI Challenge,”
<http://cryptome.org/sdmi-attack.htm>, 27 April 2001.
45 John Markoff, “Record Panel Threatens Researcher with Lawsuit,” The New York Times,
<www.nytimes.com>, 24 April 2001.

Chapter 4. Seeking a Conclusion for DeCSS 27

Constitution.46 With such a legal categorization for source code, movie industries might

attempt to secure the exclusive right to CSS and its decrypting algorithm. Still, details of

such a categorization have not been invented, and the possibility of doing so is not

certain. Also, Burk conceded that it might be too late to apply such a formulization of

law.47

In fact, since banning the description of an algorithm in any form is necessary to

rationalize the DMCA provisions, one might even question whether the provisions are

content-neutral at all. This is a difficult and complex issue. The Supreme Court’s

opinion in Turner v. FCC states:

Deciding whether a particular regulation is content-based or content-
neutral is not always a simple task. We have said that the “principal
inquiry in determining content-neutrality… is whether the government has
adopted a regulation of speech because of [agreement or] disagreement
with the message it conveys.” The purpose, or justification, of a regulation
will often be evident on its face. But while a content-based purpose may
be sufficient in certain circumstances to show that a regulation is content-
based, it is not necessary to such a showing in all cases.48

It appears that under this “principal inquiry”, which examines only the intentions of the

regulation, the DMCA is a content-neutral restriction. Indeed, this is the line of

reasoning Judge Kaplan followed in his opinion in the DeCSS case. However, the Court

notes that this is not the only inquiry.

In this regard, the decision in Turner v. FCC refers to Minneapolis Star & Tribune

Co. v. Minnesota Comm'r of Revenue, where the Supreme Court stated that it has long

recognized that “even regulations aimed at proper governmental concerns can restrict

46 Dan L. Burk, “Copyrightable Functions and Patentable Speech,” Communications of the ACM, 44 (2),
February 2001, p. 75, archived at
<http://www.acm.org/pubs/articles/journals/cacm/2001-44-2/p69-burk/p69-burk.pdf>.
47 Ibid.

Chapter 4. Seeking a Conclusion for DeCSS 28

unduly the exercise of rights protected by the First Amendment.”49 In support for this

statement, the Court cites Schneider v. State. In that case, the Court stated:

This court has characterized the freedom of speech and that of the press as
fundamental personal rights and liberties. The phrase is not an empty one
and was not lightly used. It reflects the belief of the framers of the
Constitution that exercise of the rights lies at the foundation of free
government by free men. It stresses, as do many opinions of this court, the
importance of preventing the restriction of enjoyment of these liberties. In
every case, therefore, where legislative abridgment of the rights is
asserted, the courts should be astute to examine the effect of the
challenged legislation. Mere legislative preferences or beliefs respecting
matters of public convenience may well support regulation directed at
other personal activities, but be insufficient to justify such as diminishes
the exercise of rights so vital to the maintenance of democratic
institutions.50

Here, the Court makes clear that another essential examination in determining content-

neutrality is the effect of the legislation.

And as noted above, the effects of the DMCA are to ban publication of all

descriptions of the DeCSS algorithm, and this contrasts with a typical content-neutral

restriction. (For instance, one could choose to express his disapproval of a law by

shooting his Congressman. This form of expression is suppressed in a content-neutral

manner. However, one could still express that disapproval in another manner, such as

speaking out in public or holding a rally.) In the DeCSS case, no alternative mode of

expression is afforded; although the motivation for the DMCA is content-neutral, its

effect is to ban all expression containing certain content. Such a provision, based on the

analysis above, is content-based.

48 Turner Broadcasting System, Inc. v. Federal Communications Commission, 512 U.S. 622, decision, 27
June 1994, at p. 642.
49 Minneapolis Star & Tribune Co. v. Minnesota Comm'r of Revenue, 460 U.S. 575, decision, 29 March
1983, at p. 592.
50 Schneider v. State, 308 U.S. 147, decision, 22 November 1939, at pp. 150-1.

Chapter 4. Seeking a Conclusion for DeCSS 29

Note also that in this case, the DMCA allows movie industries to ban algorithms

based on content; if the movie maker wishes to ban a particular decryption algorithm,

say, Decrypter, it need only encrypt its DVDs so that Decrypter must be used to gain

access to the DVD’s content. Such a power would be rejected as content-based if

Congress assumed it; it seems strange that movie industries are given this privilege and

Congress is not.

Another critical argument pushed by the defense in Universal v. Reimerdes is the

fact that the DeCSS code was created in an effort to provide DVD support in the open

source Linux operating system. How, asked the defense, can an open source

implementation of the algorithm be provided without posting DeCSS? But since the code

in question actually compiles in the Windows closed source environment rather than the

Linux open source environment, the court rejected this argument. Again, since the source

code is easily converted into a program that runs on a Linux machine, the difference

between a Windows source code program and a Linux source code program is trivial.

Furthermore, by the argument that closed source (i.e., machine code) is trivially

converted to open source (i.e., source code), we see that it makes no difference whether

or not the source code is provided; what matters is whether the disseminating party has a

license to provide the code.

In the end, the DeCSS case raises a difficult question. If the court grants

defendants the free speech protection they request, the court may be giving up on

copyright protection entirely. If it upholds the DMCA, it may be “overruling” one of our

most fundamental values – free speech. Judge Kaplan may have averted needing to make

such a decision, but the judicial system might not be let off so easy some day. When the

Chapter 4. Seeking a Conclusion for DeCSS 30

issue is finally decided, none can be certain of the outcome. In this age of rapid

technological progress, who can say whether the provisions of DMCA too will fall victim

to changing times.

Appendix A

Technical Analysis of BabelBuster

A.1 BabelBuster

BabelBuster is an ML program written for SML/NJ that translates preprocessed C

source code into English; it can then translate the English back to C. It aims to translate

in such a manner that the English produced describes the workings of the program, just as

the C code, and that the English is both grammatically correct and readable.

ckit version 1.0 was modified slightly and used to parse C into an abstract syntax

tree and pretty print the C corresponding to an abstract syntax tree. It was written by

several programmers at Bell Labs in 1997-98.51 The only modifications to the original

libraries were made to fix a bug parsing large integers.

When using ckit, we have the choice of using the abstract syntax tree or the direct

parse tree of the C grammar. Each has advantages and disadvantages. The main

disadvantage to using the abstract syntax tree over the parse tree was that some

information was not present in the abstract syntax tree that was in the parse tree. For

instance, declarations that declared more than one variable (“int x, y;”) were separated

into multiple declarations of one variable each to simplify the abstract syntax tree (“int x;

int y;”). But note that the two are functionally equivalent, and the abstract syntax tree is

simpler. Other simplifications were also incorporated into the abstract syntax tree: nested

structures and unions were moved to the top level; declarations that defined both a

Appendix A. Technical Analysis of BabelBuster 32

structure and one or more variables were separated into separate structure definition and

variable declarations; and anonymous structures were given names. Furthermore,

programs were type-checked in translation from parse tree to abstract syntax tree.

Because of the simplicity of using the abstract syntax tree, it was chosen over the parse

tree.

To parse the English prose, it was necessary to ensure that the printed English was

LALR(1). A C declaration like “type_name x;” was translated into English of the form

“let x be a type_name”. Translating types in an LALR(1) grammar was rather

straightforward. For instance, “int” translated to “integer”, “int (**)(int)” translated to “a

pointer to a pointer to a function with argument an integer and returning an integer”, and

“int [5]” translated to “an array of length 5 each element of which is an integer”.

Although very complicated types could become difficult to comprehend in the English

prose (“int (*)(int (*)(int))” translated to “a pointer to a function with argument a pointer

to a function with argument an integer and returning an integer and returning an

integer”), such complicated types occur quite rarely in practice. (Nonetheless, a possible

remedy to this problem is given below.)

Structure definitions and union definitions were also translated with ease once

they were simplified (as noted above) by ckit when building the abstract syntax tree. The

strategy used was to first list the members present in the structure or union, including

unnamed bit-fields, and then list the types of each named member. For example, “struct

S {float x,y; int : 5; int i;};” is translated as “Let S be a structure with members x, y, an

unnamed 5-bit integer, and i, where x is a floating point number, y is a floating point

number, and i is an integer.”

51 “ckit,” <http://cm.bell-labs.com/cm/cs/what/smlnj/doc/ckit/index.html>, 25 April 2001.

Appendix A. Technical Analysis of BabelBuster 33

Top-level declarations and definitions were grouped together in paragraphs

separate from function definitions, and each function definition was described in a

separate paragraph. Paragraphs were delineated by two newlines. A function’s workings

were described after first giving the function’s name and types of arguments and return

values, as in the following example: “Let Blowfish_Test be a function returning an

integer. It is called with argument ctx, where ctx is a pointer to a BLOWFISH_CTX. To

perform the function, … .” Return types of “void” were translated as “no result”.

Once a scheme for translating C expressions to English was developed, it was

clear the same scheme could be used to translate types, structures, and statements. Each

of these C constructs pose difficulty for a translator due to the fact that they can be nested

in each other. In a naïve English translation, expressions that are highly nested become

ambiguous or difficult to read. For instance, “a[3] + 2 * 3” becomes the impossibly

ambiguous “the element of a at index 3 plus 2 times 3” when trying to translate in the

most straightforward way. The strategy used for translating C expressions was to break

complicated expressions into smaller “tiles” and list the tiles. In our example expression,

we might say “x plus y, where x is the element of a at index 3 and y is 2 plus 3.”

Tiling schemes have been used for years to translate C expressions to another

language that does not allow nested constructs – machine language. Once the tiles are

described by tree patterns, the two most common methods for tiling an expression are

maximal munch and dynamic programming.52 BabelBuster uses maximal munch. See

Figure A1 for a pictorial representation of the tiling scheme.

52 Andrew W. Appel, Modern Compiler Implementation in ML, 190-191.

Appendix A. Technical Analysis of BabelBuster 34

For C expressions that are translated to English, each tile can be composed of an

expression with some expressions and temporary variables nested in it. The problem is to

determine when to nest and when to create a temporary variable.

In the most conservative case, we will never nest an expression. Thus, the C

expression “(&x | &y) + 8” becomes “a plus b, where a is the bitwise or of c and d, b is 8,

c is the address of e, d is the address of f, e is x, and f is y”. While this is certain to be

correct, our expression will be more readable if we sometimes decided to nest, as in “a

plus 8, where a is the bitwise or of the address of x and the address of y”.

Clearly, we must be certain not to nest if it will result in an ambiguity. Also, we

must be careful not to nest if it will deter from the readability of the English.

BabelBuster was written so that only certain types of expressions can be nested in a given

type of expression. Thus, nestability is a predicate on the type of the outer expression

and the type of the inner expression.

Figure A1. Tiling expressions. Each tile represents an English clause.

op2

var2

op1

op2op3

op2op3 op2

op2var3

var1

var4 var5 var6 var7 var8

var9 var10

Appendix A. Technical Analysis of BabelBuster 35

The names of temporary variables in expressions were e1, e2, and so on. For less

complicated expressions, such names might seem rather obtrusive. But for extremely

complex expressions, they help the reader of the English prose to find where the

temporary variable’s contents are described.

To allow flexibility in deciding just what expressions can be nested in what other

expressions, the parser rules were chosen to allow the least conservative tiling scheme

(i.e., “(&x | &y) + 8” becomes “the bitwise or of the address of x and the address of y

plus 8”). Note that such a scheme is ambiguous. Thus, it was necessary to be careful to

avoid “tickling” the ambiguity by using a conservative enough tiling scheme when

producing the English translation. This parsing strategy resulted in a large number of

shift-reduce errors, as expected, which somewhat encumbered the debugging process.

Two forms of C initializer expressions were also translated to English – simple

and aggregate. Simple expressions were trivially translated. Aggregate expressions

(comma-separated initializer expressions enclosed in curly braces) typically correspond

to array initializers, but can also be structure initializers. These were both handled in the

same way. If the aggregate array was made up of simple initializer expressions, their

contents were simply listed. If it was made up of aggregate initializer expressions, it was

referred to as “the array with values a0 to aN, where a0 is … .”. Thus, the initializer

expression “{{{1, 2}, {3, 4}}, {{5, 6}, {7, 8}}}” is translated as “the array with elements

a0 to a1, where a0 is the array with elements a0_0 to a0_1, where a0_0 is the array with

elements 1 and 2 and a0_1 is the array with elements 3 and 4 and a1 is the array with

elements a1_0 to a1_1, where a1_0 is the array with elements 5 and 6 and a1_1 is the

array with elements 7 and 8.” Note that this is a simplification; to correctly translate

Appendix A. Technical Analysis of BabelBuster 36

aggregate expressions that correspond to structure initializers, we must first use the type

information to determine what type the aggregate initializer is.

Nested statements were handled by the same tiling strategy as nested expressions,

except the function to determine nestability takes only the inner statement; thus, a

statement can either be nested in all other kinds of statements, or in no other kinds of

statements. If a statement is not nestable, we refer to it as an operation (or block) and

then explain how to perform the operation in a later sentence.

Transitions were added to the English description of the algorithm in an attempt

to improve readability and avoid the tedious nature of repeated imperative statements. To

denote the end of an operation, we say “continuing on”; in addition, it was found that

three other transitions (“then”, “next”, and “after that”) were sufficient. For instance, the

following series of statements can be greatly improved: “To perform operation 3,

continue to do nothing as long as done is equal to zero. Increment x by 7. Decrement z

by 6. Apply x and z to f. Return the result of calling clean_up.” With transitions, it is

much better: “To perform operation 3, continue to do nothing as long as done is equal to

zero. Continuing on, we next increment x by 7. Then decrement z by 6. Next, apply x

and z to f. After that, return the result of calling clean_up.” Here, the importance of

transitions is clearly understood.

So that the lexer could distinguish between variable (ID) tokens and keyword

tokens, variable names that clashed with one of the English keywords were quoted in the

English text. To demonstrate this, consider what happens when the C declaration “int

one = 1;” is translated to English. If we do not quote the variable name, we get “Let one

be an integer whose initial value is 1.” This seems quite understandable, but the lexer

Appendix A. Technical Analysis of BabelBuster 37

recognizes “one” as a keyword. Instead of returning the ID token with value “one” as it

should, the lexer returns the ONE token. The parser is thoroughly confused. So if we

quote the variable name, as in “Let ‘one’ be an integer whose initial value is 1”, the lexer

will recognize that “one” is an ID. Note that quoting objects with unusual names is

standard in English text.

Non-functional information such as comments and unary pluses were removed

from the program in translation to English.

Finally, lists of variables declared with the same type were described in the same

English sentence. For instance, “int x, y, z;” becomes “Let x, y, and z each be an

integer.”

One problem that arose in the creation of BabelBuster is that the lexer table

becomes extremely large if many large English phrases are lexed at once. To reduce the

size of the table, alphanumeric tokens were processed by the lexer, and a hash table was

used to determine if they were variable names or special tokens. To further reduce the

lexer table size, no tokens with spaces in them (i.e., no English phrases) were lexed, with

the exception of a few phrases here and there to simplify the LALR(1) grammar. For

instance, the parsing rules for a structure definition are as follows:

structdef: structdef' NO MEMBER
 | structdef' MEMBER smnlist COMWHERE smlist

Here, the MEMBER token corresponds to the English word “member”, NO corresponds

to “no”, and COMWHERE corresponds to “, where”. Additionally, a typical example of

a “structdef'” is “let S be a structure with”, a typical “smnlist” might be “x, y, and z”, and

a corresponding “smlist” might be “x is an integer, y is a character, and z is a floating-

Appendix A. Technical Analysis of BabelBuster 38

point number”. For these typical examples, the entire structure definition is “let S be a

structure with members x, y, and z, where x is an integer, y is a character, and z is a

floating-point number”.

Suppose we try to split COMWHERE into separate tokens for “,” and “where”.

Then we run into a problem when the parser reaches the “,” after “x”. Here, it is not

possible for an LALR(1) parser to determine if the list has just a single member and the

“,” is part of COMWHERE or if the “,” signals that more members are to follow. Rather

than write an extra rule wherever such a situation occurred in the grammar, “,” and

“where” were combined into a single token.

A.2 Discussion

BabelBuster succeeds in correctly translating the entire C language. By

“succeeds”, I mean that the program compiled from the English will have the same

effects as the program compiled from the original program. (See Appendix B for

complete-program examples.) The English is quite readable, but several things could be

done to make it even more readable and true to the original C code.

First, types could be treated with the same nestability logic as expressions.

Furthermore, since types can be nested within expressions and expressions within types

(i.e., “int y[5 + (int)4.5]”), we can treat them both as “clauses.” Then we can tile clauses

instead of expressions and types separately.

Second, we can experiment with new nestability predicates. For instance,

BabelBuster allows us to nest the dereferencing operator within itself. Thus, “****x”

becomes “the variable pointed to by the variable pointed to by the variable pointed to by

Appendix A. Technical Analysis of BabelBuster 39

the variable pointed to by x”. While this might be easy enough to understand, it might be

possible to nest too deeply. So we might try to stop nesting once we have reached a

certain depth.

Next, we can experiment with representing sentences and expressions in multiple

forms. For instance, “x+y” is most easily read as “x plus y.” But if we have “&x+y”, we

must write “a plus y, where a is the address of x” because “the address of x plus y” is

ambiguous. (It could be interpreted as “&(x+y)” (wrong) or “(&x)+y”.) However, we

could write “the sum of the address of x and y”. This is not ambiguous, and might be

better for this particular situation.

We could also experiment with various strategies to lex and parse the English

prose. For example, the COMMA token led to problems in parsing because it made it

difficult to construct an LALR(1) grammar. But perhaps if we ignore commas (which

seem somewhat redundant), it will be easier to create an LALR(1) English grammar.

Also, often a trailing “s” at the end of a word was ignored by BabelBuster in lexing. For

instance, “argument x” results in the same two tokens as “arguments x”. While the

trailing “s” was thought to be redundant, perhaps if we do not ignore it, we will be

improve our chances of quickly constructing an LALR(1) grammar.

Another interesting problem might be to write a program that determines just

what clauses we can nest in other clauses without causing an ambiguity. BabelBuster’s

nestability logic is hard-coded. But what if we said that a clause could be nested in

another if and only if it will not arise in an ambiguity? Such a constraint seems difficult

to implement.

Appendix A. Technical Analysis of BabelBuster 40

Finally, the C produced from translation to English and back could be more true

to the original version. For instance, comments could be turned into footnotes, or could

be parenthesized in the English, and returned to comments when translating back to C.

Structure initializers could be indicated by “the structure with contents … ” rather than

“the array with values … .” Unary plus could be indicated in the English text, and

hexadecimal numbers could retain their base (rather than converting to decimal).

A.3 Abridged English Grammar

program: ast

ast: declarationList newpar ast
 | functionDef ast
 | (* empty *)

declarationList: declaration
 | vardecList
 | declarationList DOT declaration
 | declarationList DOT vardecList

vardecList: LET smnlist EACH BE article typ

declaration : tydec
 | tydef
 | vardec

tydef : structdef
 | uniondef
 | tydef'
 | enumdef

enumdef': LET id BE article ENUMERATION WITH

enumdef: enumdef' NO VALUE
 | enumdef' VALUE memintlist

memintlist: memintlist' “, and” memint
 | memint AND memint
 | memint

Appendix A. Technical Analysis of BabelBuster 41

memintlist': memint COMMA memint
 | memintlist' COMMA memint

memint: id EQUAL TO INT

tydef': LET id BE ANOTHER NAME FOR article typ

uniondef': LET id BE article UNION WITH

uniondef: uniondef' NO MEMBER
 | uniondef' MEMBER smnlist “, where” smlist

structdef':LET id BE article STRUCTURE WITH

structdef: structdef' NO MEMBER
 | structdef' MEMBER smnlist “, where” smlist
 | structdef' MEMBER smnlist

smlist: smlist' “, and” sm
 | sm AND sm
 | sm

smlist': sm COMMA sm
 | smlist' COMMA sm

sm: id IS article bitopt typ

smnlist: smnlist' “, and” smn
 | smn AND smn
 | smn

smnlist': smn COMMA smn
 | smnlist' COMMA smn

smn: article UNNAMED bitopt typ
 | id

bitopt: (* empty *)
 | NBITS

tydec : ASSUME id IS article STRUCTURE
 | ASSUME id IS article UNION

vardec : LET id BE article typ
 | LET id BE article typ COMMA WHOSE INITIAL VALUE IS initExpr

Appendix A. Technical Analysis of BabelBuster 42

initExpr: expr
 | initArrExpr

tagInitExprList: tagInitExpr
 | tagInitExpr AND tagInitExpr
 | tagInitExprList' “, and” tagInitExpr

tagInitExprList': tagInitExpr COMMA tagInitExpr
 | tagInitExprList' COMMA tagInitExpr

tagInitExpr: ELEMID IS initExpr

initArrExpr: THE ARRAY WITH NO ELEMENT
 | THE ARRAY WHOSE ONLY ELEMENT IS initExpr
 | THE ARRAY WITH ELEMENT ELEMID TO ELEMID “, where”
tagInitExprList

typ : VOID
 | ARGUMENT LIST
 | qual typ
 | numeric
 | stClass typ
 | POINTER TO article typ
 | id
 | id STRUCTURE
 | ARRAY OF LENGTH expr EACH ELEMENT OF WHICH IS article typ
 | FUNCTION WITH NO ARGUMENT result
 | FUNCTION WITH ARGUMENT artyplist “, and” result
 | UNKNOWN TYPE

result: WITH NO RESULT
 | RETURNING article typ

artyplist: artyplist' “, and” article typ
 | article typ AND article typ
 | article typ

artyplist': article typ COMMA article typ
 | artyplist' COMMA article typ

numeric : sat frac sign ik

sign: SIGNED
 | UNSIGNED
 | (* blank *)

Appendix A. Technical Analysis of BabelBuster 43

ik: CHARACTER
 | INTEGER
 | EXTRALONG INTEGER
 | FLOATPN
 | DOUBLEP FLOATPN

expr: coreExpr

coreExpr: simpleExpr
 | simpleExpr “, where” simpleTaggedExprList

tag: TEMPEXP IS

simpleTaggedExprList: tag simpleExpr
 | tag simpleExpr AND tag simpleExpr
 | simpleTaggedExprList' “, and” tag simpleExpr

simpleTaggedExprList': tag simpleExpr COMMA tag simpleExpr
 | simpleTaggedExprList' COMMA tag simpleExpr

simpleExprList: simpleExprList' “, and” simpleExpr

simpleExprList': simpleExpr COMMA simpleExpr
 | simpleExprList' COMMA simpleExpr

binop: simpleExpr PLUS simpleExpr
 | simpleExpr MINUS simpleExpr
 | NONZERO IF AND ONLY IF simpleExpr IS GREATER THAN simpleExpr
 | THE BITWISE OR OF simpleExpr AND simpleExpr
 | simpleExpr SHIFTED LEFT simpleExpr BITS
 | simpleExpr AFTER INCREMENTING simpleExpr BY simpleExpr

unop: ZERO IF AND ONLY IF simpleBoolExpr
 | THE ADDITIVE INVERSE OF simpleExpr
 | THE BITWISE COMPLEMENT OF simpleExpr
 | simpleExpr AFTER INCREMENTING simpleExpr BY ONE
 | simpleExpr BEFORE DECREMENTING simpleExpr BY ONE

call: THE RESULT OF CALLING simpleExpr
 | THE RESULT OF PASSING simpleExprList TO simpleExpr

simpleBoolExpr: simpleExpr IS GREATER THAN simpleExpr
 | simpleExpr IS LESS THAN simpleExpr
 | BOTH simpleExpr AND simpleExpr ARE NONZERO
 | EITHER simpleExpr OR simpleExpr IS NONZERO

Appendix A. Technical Analysis of BabelBuster 44

 | ZERO EQUALS simpleExpr
 | ZERO DOES NOT EQUAL simpleExpr

simpleExpr: TEMPEXP
 | INT | REAL | string' | id | call
 | simpleExpr IF simpleBoolExpr ANDOTHERWISE simpleExpr
 | THE CONTENTS OF simpleExpr UPON ASSIGNING simpleExpr TO IT
 | THE ELEMENT OF simpleExpr ATINDEX simpleExpr
 | MEMBER id OF simpleExpr
 | MEMBER id OF THE STRUCTURE POINTED TO BY simpleExpr
 | THE VARIABLE POINTED TO BY simpleExpr
 | THE ADDRESS OF simpleExpr
 | binop
 | unop
 | simpleExpr CAST TO article typ
 | ENUMERATION id
 | THE SIZE OF article typ

simpleExprStmt: COMPUTE NOTHING
 | EVALUATE simpleExpr
 | CALL simpleExpr
 | PASS simpleExprList TO simpleExpr
 | SET simpleExpr EQUAL TO simpleExpr
 | INCREMENT simpleExpr BY simpleExpr
 | ASSIGN simpleExpr TIMES simpleExpr TO simpleExpr
 | INCREMENT simpleExpr BY ONE
 | DECREMENT simpleExpr BY ONE

exprStmt: simpleExprStmt “, where” simpleTaggedExprList
 | simpleExprStmt

boolExpr: simpleBoolExpr
 | simpleBoolExpr “, where” simpleTaggedExprList

blockend: FIRST declarationList blockend'
 | FIRST declarationList DOT stmtList blockend'
 | FIRST stmtList blockend'
 | DO NOTHING
blockend': DOT THIS ENDS BLOCK INT

coreStmt: exprStmt (A.Expr exprStmt)
 | blockInS COMMA WHICH IS DEFINED AS FOLLOWS DOT declaration
 | CONTINUE TO coreStmt AS LONG AS boolExpr AT
 THE BEGINNING OF THE ITERATION
 | REPEATEDLY coreStmt startExpr loopExpr
 | LABEL THIS POINT IN THE CODE id DOT coreStmt

Appendix A. Technical Analysis of BabelBuster 45

 | LET THIS BE THE START OF CASE INT DOT coreStmt
 | GO TO LABEL id
 | BREAK FROM THE NEAREST ENCLOSING LOOP OR CASEBLOCK
 | CONTINUE EXECUTION AT THE START OF THE LOOP
 | RETURN FROM THE FUNCTION
 | RETURN expr
 | blockInS PROVIDED boolExpr DOT followUpStmt
 | opInS PROVIDED boolExpr DOT followUpStmt
 | coreStmt “, starting” AT CASE expr “, or” THE DEFAULT
 CASE IF NO SUCH CASE EXISTS

startExpr: SEMIC BEFORE STARTING THIS LOOP COMMA exprStmt
 | (*nothing*)

loopExpr: SEMIC UPON COMPLETION OF EACH ITERATION OF THE LOOP
COMMA exprStmt
 | (*nothing*)

blockInS: PERFORM BLOCK INT
opInS: PERFORM OPERATION INT

followUpStmt: TO opInS COMMA coreStmt
 | TO blockInS COMMA blockend
 | TO blockInS COMMA declaration
 | TO blockInS COMMA coreStmt

stmtList: coreStmt
 | stmtList DOT coreStmt

function'': LET id BE article FUNCTION result DOT IT IS CALLED WITH
 | LET id BE article stClass FUNCTION result DOT IT IS CALLED WITH

function': function'' NO ARGUMENT DOT (function'', nil)
 | function'' ARGUMENT smnlist DOT
 | function'' ARGUMENT smnlist “, where” smlist DOT

functionDef: function' TO PERFORM THE FUNCTION COMMA DO NOTHING
newpar
 | function' TO PERFORM THE FUNCTION COMMA declarationList newpar
 | function' TO PERFORM THE FUNCTION COMMA declarationList
 DOT stmtList newpar
 | function' TO PERFORM THE FUNCTION COMMA stmtList newpar

id : ID
 | QUOTEID

Appendix A. Technical Analysis of BabelBuster 46

string': THE STRING QUOTEID

newpar: DOT EOP

Appendix B

Example Translations

C source:
extern printf ();

enum S {
 x1, x2
};

main () {

 struct S {
 int abdd;
 } j;
 int i = x1;

 switch(i) {

 case 1:
 case 2: printf ("%d\n",45);
 default: printf ("%d\n",45);;;
 }

 if(i) { printf ("%d\n",i); }

 while(i--) { 2; }

 for(i; i; i++);

 do {3;} while (i);
}

English translation:

Let printf be an external function with no arguments returning an integer. Let S be an
enumeration with values x1 equal to 0 and x2 equal to 1.

Let main be a function returning an integer. It is called with no arguments. To perform
the function, let S be a structure with member abdd, where abdd is an integer. Let j be a
S structure. Let i be an integer, whose initial value is enumeration x1. Perform block 1,
starting at case i, or the default case if no such case exists. To perform block 1, first let
this be the start of case 1. Let this be the start of case 2. Pass the string "%d\n" and 45 to
printf. Then let this be the start of the default case. Pass the string "%d\n" and 45 to
printf. Next, compute nothing. After that, compute nothing. This ends block 1.
Continuing on, we next perform block 2 provided zero does not equal i. To perform
block 2, pass the string "%d\n" and i to printf. Continuing on, we next continue to
perform block 3 as long as zero does not equal i before decrementing i by one at the
beginning of the iteration. To perform block 3, evaluate 2. Continuing on, we next
continue to compute nothing as long as zero does not equal i prior to the iteration; before
starting this loop, evaluate i; upon completion of each iteration of the loop, increment i by
one. Then continue to perform block 4 as long as zero does not equal i at the end of the
iteration. To perform block 4, evaluate 3.

Appendix B. Example Translations 48

C source:
struct hi {
 int i;
 struct hi_nest {
 int k, j : 5;
 double : 4;
 }
 p;
} *k;

int (*f)(int, int*);
int (*g)();

int main() {
 double d, e;
 int i;
 i = f(k->p.j, (int)d + (&(k->p.k)));
}

English translation:

Let hi_nest be a structure with members k, j, and an unnamed 4-bit double-precision
floating point number, where k is an integer and j is a 5-bit integer. Let hi be a structure
with members i and p, where i is an integer and p is a hi_nest structure. Let k be a
pointer to a hi structure. Let f be a pointer to a function with arguments an integer and a
pointer to an integer, and returning an integer. Let g be a pointer to a function with no
arguments returning an integer.

Let main be a function returning an integer. It is called with no arguments. To perform
the function, let d and "e" each be a double-precision floating point number. Let i be an
integer. Set i equal to the result of passing member j of member p of the structure
pointed to by k and e1 to f, where e1 is e2 plus e3, e2 is d cast to an integer, and e3 is the
address of member k of member p of the structure pointed to by k.

References

Appel, Andrew W. Modern Compiler Implementation in ML. Cambridge: University
Press, 1998.

Appel, Andrew W., and Edward W. Felten. “Technological Access Control Interferes
with Noninfringing Scholarship.” Communications of the ACM, 43 (9),
September 2000. Archived at
<http://info.acm.org/pubs/articles/journals/cacm/2000-43-9/p21-appel/p21-appel.pdf>.

Bernstein v. U.S. Department of State, 974 F. Supp. 1288 (N.D. California). Transcript
of testimony, 20 October 1995.

Burk, Dan L. “Copyrightable Functions and Patentable Speech.” Communications of the
ACM. 44 (2), February 2001. Archived at
<http://www.acm.org/pubs/articles/journals/cacm/2001-44-2/p69-burk/p69-burk.pdf>.

“C to English and English to C Translator.” From Slashdot message board,
<http://slashdot.org/articles/980815/105250.shtml>. 15-20 August 1998.

“ckit.” <http://cm.bell-labs.com/cm/cs/what/smlnj/doc/ckit/index.html>. 25 April 2001.

Cohen, Julie. “Unfair Use.” The New Republic Online <www.tnr.com>, 23 May 2000.
Archived at <http://www.tnr.com/online/cohen052300.html>.

Craver, Scott A., Drew Dean, Edward W. Felten, Bede Liu, John R. McGregor, Adam
Stubblefield, Ben Swartzlander, Dan S. Wallach, and Min Wu. “Reading between
the Lines: Lessons from the SDMI Challenge.” <http://cryptome.org/sdmi-
attack.htm>. 27 April 2001.

De Sola Pool, Ithiel. Technologies Without Boundaries: On Telecommunications in a
Global Age, edited by Eli M. Noam. Cambridge: Harvard University Press, 1990,
15. Quoted in Lawrence Lessig. Code. 180. New York: Basic Books, 1999.

Digital Millennium Copyright Act (Public Law 105-304) of 28 October 1998, section
1201(a).

“Digital Millennium Copyright Act.” <http://www.educause.edu/issues/dmca.html>. 20
April 2001.

Irons, Peter, and Stephanie Guitton, ed. May it Please the Court. New York: The New
Press, 1993.

Junger v. Daley, 8 F. Supp. 2d 708 (N.D. Ohio). Decision, 2 July 1998.

Kirkpatrick, David D. “Court Halts Book Based on ‘Gone With the Wind.’” The New
York Times, 21 April 2001, late ed., p. A1.

Lessig, Lawrence. Code. New York: Basic Books, 1999.

Markoff, John. “Record Panel Threatens Researcher with Lawsuit,” The New York
Times, <www.nytimes.com>. 24 April 2001.

Marttila, Leevi. “Accurate Language to Inaccurate Language (and back) Translator
c2txt2c v0.2.1.” <http://personal.sip.fi/~lm/c2txt2c/>. 15 January 2000.

Mellgren, Doug. “Speaking in Code: Quiet, Polite Teen at Center of DVD-Copying
Firstorm.” ABCNews.com <abcnews.go.com>. 26 February 2001. Archived at
<http://more.abcnews.go.com/sections/scitech/DailyNews/johansen010226.html>.

Minneapolis Star & Tribune Co. v. Minnesota Comm'r of Revenue, 460 U.S. 575.
Decision, 29 March 1983.

Moglen, Eben. “Anarchism Triumphant: Free Software and the Death of Copyright.”
First Monday <www.firstmonday.org>, August 1999. Archived at
<http://firstmonday.org/issues/issue4_8/moglen/>.

Morland, Howard. “The Holocaust Bomb: A Question of Time.”
<http://www.fas.org/sgp/eprint/morland.html>. 15 November 1999.

Schneider v. State, 308 U.S. 147. Decision, 22 November 1939.

Schwartz, Omri. “Converting C to English with Perl.” The Perl Journal
<www.tpj.com>, Fall 2000.

Stevenson, Frank. “Cryptanalysis of the Content Scrambling System.”
<http://www.cs.cmu.edu/~dst/DeCSS/FrankStevenson/analysis.ps>. 13 November
1999.

Tien, Lee. “Publishing Software as a Speech Act.” 15 Berkeley Technology Law Journal
629 (Spring 2000).

Touretzky, David. “Gallery of CSS Descramblers.”
<http://www.cs.cmu.edu/~dst/DeCSS/Gallery/index.html>. 14 April 2001.

Turner Broadcasting System, Inc. v. Federal Communications Commission, 512 U.S.
622. Decision, 27 June 1994.

Universal City Studios, Inc. v. Reimerdes, 111 F. Supp. 2d 346 (S.D.N.Y.). Transcript of
testimony, 17,20,25 July 2000.

Universal City Studios, Inc. v. Reimerdes, 111 F. Supp. 2d 346 (S.D.N.Y.). Decision, 17
August 2000.

