15-441 Lecture 5

Physical Layer & Link Layer Basics

Copyright © Seth Goldstein, 2008

Based on slides from previous 441 lectures

Last Time

- Application Layer
- · Example Protocols
 - ftp
 - http
- Performance

Application
Presentation
Session
Transport
Network

Datalink Physical

Lecture 5

Today (& Tomorrow (& Tmrw))

- 1. Physical layer.
- 2. Datalink layer introduction, framing, error coding, switched networks.
- 3. Broadcast-networks, home networking.

Application

Presentation

Session

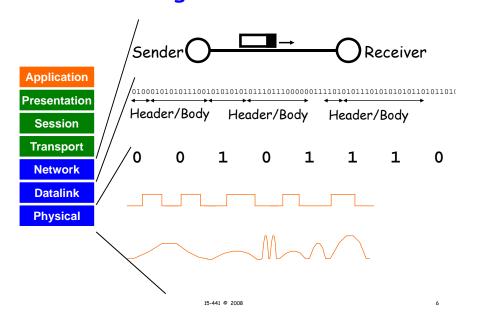
Transport

Network

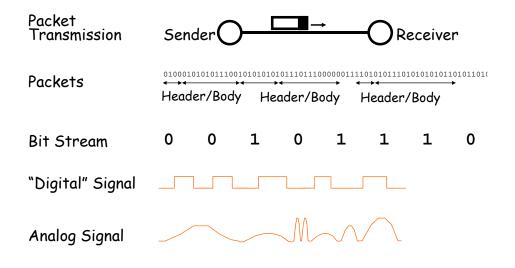
Datalink

Physical

Transferring Information


- · Information transfer is a physical process
- · In this class, we generally care about
 - Electrical signals (on a wire)
 - Optical signals (in a fiber)
 - More broadly, EM waves
- · Information carrier can also be?

Transferring Information


- Information transfer is a physical process
- In this class, we generally care about
 - Electrical signals (on a wire)
 - Optical signals (in a fiber)
 - More broadly, EM waves
- · Information carriers can also be
 - Sound waves
 - Quantum states
 - Proteins
 - Ink & paper, etc.

Lecture 5 15-441 © 2008

From Signals to Packets

From Signals to Packets

Today's Lecture

- · Modulation.
- · Bandwidth limitations.
- Frequency spectrum and its use.
- · Multiplexing.
- Media: Copper, Fiber, Optical, Wireless.
- · Coding.
- · Framing.

Lecture 5 15-441 © 2008 7 Lecture 5 15-441 © 2008

Why Do We Care?

- I am not an electrical engineer?
- Physical layer places constraints on what the network infrastructure can deliver
 - Reality check
 - Impact on system performance
 - Impact on the higher protocol layers
 - Some examples:
 - Fiber or copper?
 - · Do we need wires?
 - · Error characteristic and failure modes
 - Effects of distance

Lecture 5

Lecture 5 15-441 © 2008

Lecture 5

From Music:

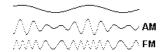
- Volume

- Pitch

- Timing

15-441 © 2008

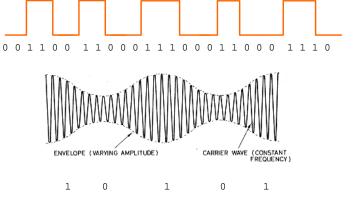
Modulation


Changing a signal to convey information

Modulation

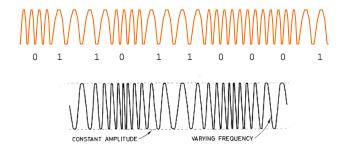
- Changing a signal to convey information
- · Ways to modulate a sinusoidal wave

Volume: Amplitude Modulation (AM)Pitch: Frequency Modulation (FM)

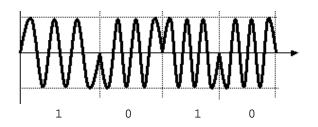

- Timing: Phase Modulation (PM)

 In our case, modulate signal to encode a 0 or a 1. (multi-valued signals sometimes)

Amplitude Modulation


- · AM: change the strength of the signal.
- Example: High voltage for a 1, low voltage for a 0

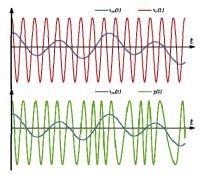
15-441 © 2008 11 Lecture 5 15-441 © 2008

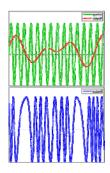

Frequency Modulation

• FM: change the frequency

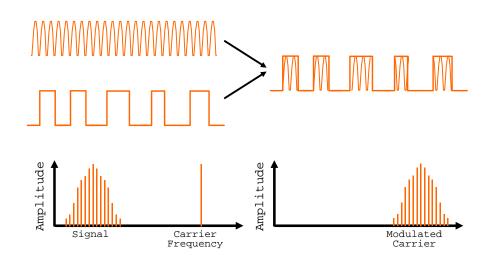
Phase Modulation

· PM: Change the phase of the signal




 Lecture 5
 15-441 ● 2008
 13
 Lecture 5
 15-441 ● 2008
 14

Baseband vs Carrier Modulation


- · Baseband modulation: send the "bare" signal.
- Carrier modulation: use the signal to modulate a higher frequency signal (carrier).
 - Can be viewed as the product of the two signals
 - Corresponds to a shift in the frequency domain

15-441 @ 2008

Amplitude Carrier Modulation

Lecture 5 15-441 ◎ 2008

Why Different Modulation Methods?

Why Different Modulation Methods?

- Transmitter/Receiver complexity
- Power requirements
- Bandwidth
- Medium (air, copper, fiber, ...)
- Noise immunity
- Range
- Multiplexing

Lecture 5 15-441 © 2008 17

Lecture 5 15-441 © 2008

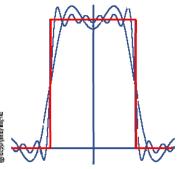
What Do We Care About?

- How much bandwidth can I get out of a specific wire (transmission medium)?
- What limits the physical size of the network?
- How can multiple hosts communicate over the same wire at the same time?
- How can I manage bandwidth on a transmission medium?
- How do the properties of copper, fiber, and wireless compare?

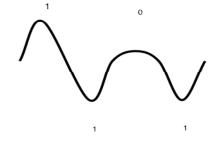
Bandwidth

- Bandwidth is width of the frequency range in which the fourier transform of the signal is non-zero.
- · Sometimes referred to as the channel width
- Or, where it is above some threshold value (Usually, the half power threshold, e.g., -3dB)
- · dB
 - Short for decibel
 - Defined as 10 * $log_{10}(P_1/P_2)$
 - When used for signal to noise: $10 * log_{10}(S/N)$

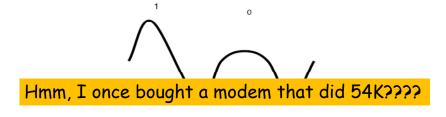
Lecture 5 15-441 © 2008 19 Lecture 5 15-441 © 2008 20


Signal = Sum of Waves

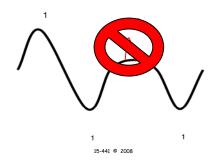
The Frequency Domain


- A (periodic) signal can be viewed as a sum of sine waves of different strengths.
 - Corresponds to energy at a certain frequency
- Every signal has an equivalent representation in the frequency domain.
 - What frequencies are present and what is their strength (energy)

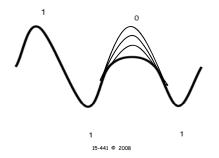
· E.g., radio and TV signals.


The Nyquist Limit

- A noiseless channel of width H can at most transmit a binary signal at a rate 2 x H.
 - Assumes binary amplitude encoding


The Nyquist Limit

- A noiseless channel of width H can at most transmit a binary signal at a rate $2 \times H$.
 - Assumes binary amplitude encoding
 - E.g. a 3000 Hz channel can transmit data at a rate of at most 6000 bits/second


Lecture 5 15-441 © 2008 23 Lecture 5 15-441 © 2008

How to Get Past the Nyquist Limit

How to Get Past the Nyquist Limit

- Instead of 0/1, use lots of different values.
- (Remember, the channel is noiseless.)
- Can we really send an infinite amount of info/sec?

Lecture 5

Lecture 5

Past the Nyquist Limit

- More aggressive encoding can increase the channel bandwidth.
 - Example: modems
 - \cdot Same frequency number of symbols per second
 - · Symbols have more possible values

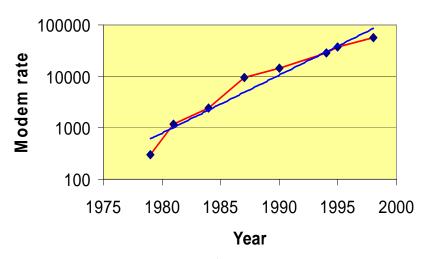
- Every transmission medium supports transmission in a certain frequency range.
 - The channel bandwidth is determined by the transmission medium and the quality of the transmitter and receivers
 - Channel capacity increases over time

Capacity of a Noisy Channel

- Can't add infinite symbols
 - you have to be able to tell them apart.
 - This is where noise comes in.

 Lecture 5
 15-441 © 2008
 27
 Lecture 5
 15-441 © 2008

Capacity of a Noisy Channel


- · Can't add infinite symbols
 - you have to be able to tell them apart.
 - This is where noise comes in.
- · Shannon's theorem:

$$C = B \times \log_2(1 + 5/N)$$

- C: maximum capacity (bps)
- B: channel bandwidth (Hz)
- S/N: signal to noise ratio of the channel
 Often expressed in decibels (db) ::= 10 log(S/N)

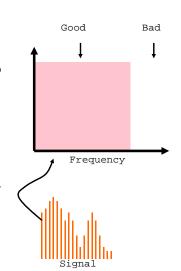
Lecture 5 15-441 © 2008

Example: Modem Rates

Capacity of a Noisy Channel

- · Can't add infinite symbols
 - you have to be able to tell them apart.
 - This is where noise comes in.
- Shannon's theorem:

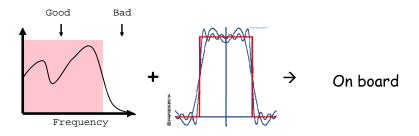
$$C = B \times \log_2(1 + 5/N)$$


- C: maximum capacity (bps)
- B: channel bandwidth (Hz)
- S/N: signal to noise ratio of the channel
 Often expressed in decibels (db) ::= 10 log(S/N)
- Example:
 - Local loop bandwidth: 3200 Hz
 - Typical S/N: 1000 (30db)
 - What is the upper limit on capacity?
 - Modems: Teleco internally converts to 56kbit/s digital signal, which sets a limit on B and the S/N.

Lecture 5 15-441 © 2008

Transmission Channel Considerations

- Every medium supports transmission in a certain frequency range.
 - Outside this range, effects such as attenuation, .. degrade the signal too much
- Transmission and receive hardware will try to maximize the useful bandwidth in this frequency band.
 - Tradeoffs between cost, distance, bit rate
- As technology improves, these parameters change, even for the same wire.


31

Lecture 5 15-441 © 2008

Attenuation & Dispersion

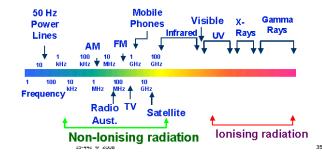
- Real signal may be a combination of many waves at different frequencies
- · Why do we care?

Lecture 5 15-441 © 2008

Limits to Speed and Distance

 Noise: "random" energy is added to the signal.

 Attenuation: some of the energy in the signal leaks away.


 Dispersion: attenuation and propagation speed are frequency dependent.
 (Changes the shape of the signal)

- Effects limit the data rate that a channel can sustain.
 - » But affects different technologies in different ways
- Effects become worse with distance.
 - » Tradeoff between data rate and distance

Today's Lecture

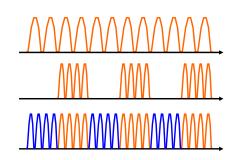
- · Modulation.
- · Bandwidth limitations.
- Frequency spectrum and its use.
- · Multiplexing.
- Media: Copper, Fiber, Optical, Wireless.
- Coding.
- Framing.

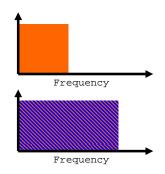
Lecture 5

Today's Lecture

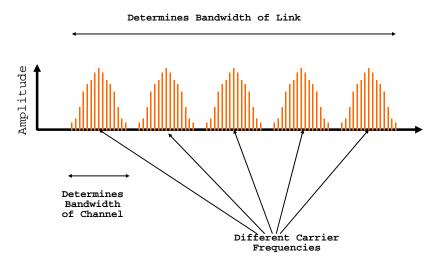
- · Modulation.
- · Bandwidth limitations.
- Frequency spectrum and its use.
- · Multiplexing.
- Media: Copper, Fiber, Optical, Wireless.
- · Coding.
- · Framing.

Lecture 5 15-441 @ 2008


Supporting Multiple Channels

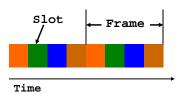

- Multiple channels can coexist if they transmit at a different frequency, or at a different time, or in a different part of the space.
 - Three dimensional space: frequency, space, time
- Space can be limited using wires or using transmit power of wireless transmitters.
- Frequency multiplexing means that different users use a different part of the spectrum.
 - Similar to radio: 95.5 versus 102.5 station
- Controlling time (for us) is a datalink protocol issue.
 - Media Access Control (MAC): who gets to send when?

Lecture 5 15-441 © 2008


Time Division Multiplexing

- · Different users use the wire at different points in time.
- · Aggregate bandwidth also requires more spectrum.

FDM: Multiple Channels


Frequency versus Time-division Multiplexing

- With FDM different users use different parts of the frequency spectrum.
- I.e. each user can send all the time at reduced rate
- Example: roommates

39

- With TDM different users send at different times.
- I.e. each user can sent at full speed some of the time
- Example: a time-share condo
- The two solutions can be combined.

Lecture 5 15-441 © 2008

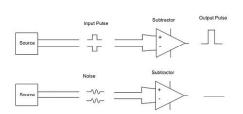
Today's Lecture

- · Modulation.
- · Bandwidth limitations.
- Frequency spectrum and its use.
- · Multiplexing.
- · Media: Copper, Fiber, Optical, Wireless.
- Coding.
- Framing.

Lecture 5 15-441 @ 2008

UTP

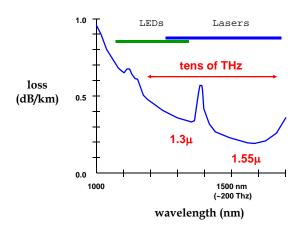
Why twist wires?

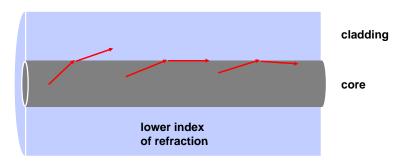

Copper Wire

- Unshielded twisted pair (UTP)
 - Two copper wires twisted avoid antenna effect
 - Grouped into cables: multiple pairs with common sheath
 - Category 3 (voice grade) versus category 5
 - 100 Mbit/s up to 100 m, 1 Mbit/s up to a few km
 - Cost: ~ 10cents/foot
- Coax cables.
 - One connector is placed inside the other connector
 - Holds the signal in place and keeps out noise
 - Gigabit up to a km
- Signaling processing research pushes the capabilities of a specific technology.
 - E.g. modems, use of cat 5

Lecture 5 15-441 © 2008

UTP


- · Why twist wires?
 - Provide noise immunity
- · Combine with Differential Signaling



Light Transmission in Fiber

Lecture 5 15-441 ● 2008 45

Ray Propagation

(note: minimum bend radius of a few cm)

Lecture 5 15-441 © 2008 46

Fiber Types

· Multimode fiber.

- 62.5 or 50 micron core carries multiple "modes"
- used at 1.3 microns, usually LED source
- subject to mode dispersion: different propagation modes travel at different speeds
- typical limit: 1 Gbps at 100m

Single mode

- 8 micron core carries a single mode
- used at 1.3 or 1.55 microns, usually laser diode source
- typical limit: 10 Gbps at 60 km or more
- still subject to chromatic dispersion

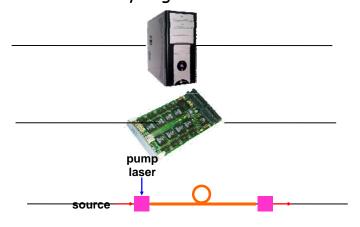
Fiber Types

 Lecture 5
 15-441 © 2008
 47
 Lecture 5
 15-441 © 2008

Gigabit Ethernet: Physical Layer Comparison

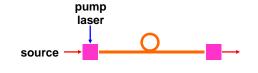
Transmit/ receive	Distance	Comment
1000BASE-CX	25 m	machine room use
1000BASE-T	100 m	not yet defined; cost? Goal:4 pairs of UTP5
1000BASE-SX	260 m	·
1000BASE-LX	500 m	
1000BASE-SX	525 m	
1000BASE-LX	550 m	
1000BASE-LX	5000 m	
100BASE-T	100 m	2p of UTP5/2-4p of UTP:
100BASE-SX	2000m	
	receive 1000BASE-CX 1000BASE-T 1000BASE-SX 1000BASE-LX 1000BASE-LX 1000BASE-LX	1000BASE-CX 25 m 1000BASE-T 100 m 1000BASE-SX 260 m 1000BASE-LX 500 m 1000BASE-LX 525 m 1000BASE-LX 550 m 1000BASE-LX 5000 m

How to increase distance?


- Even with single mode, there is a distance limit.
- I.e.: How do you get it across the ocean?

Lecture 5 15-441 © 2008 50

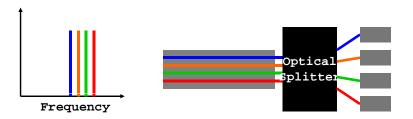
How to increase distance?


15-441 @ 2008

- Even with single mode, there is a distance limit.
- I.e.: How do you get it across the ocean?

Regeneration and Amplification

- At end of span, either regenerate electronically or amplify.
- Electronic repeaters are potentially slow, but can eliminate noise.
- Amplification over long distances made practical by erbium doped fiber amplifiers offering up to 40 dB gain, linear response over a broad spectrum. Ex: 40 Gbps at 500 km.



Lecture 5 15-441 ● 2008

Lecture 5

Wavelength Division Multiplexing

- · Send multiple wavelengths through the same fiber.
- Multiplex and demultiplex the optical signal on the fiber
- Each wavelength represents an optical carrier that can carry a separate signal.
- E.g., 16 colors of 2.4 Gbit/second
- ·Like radio, but optical and much faster

Things to Remember

- Bandwidth and distance of networks is limited by physical properties of media.
 - Attenuation, noise, dispersion, ...
- Network properties are determined by transmission medium and transmit/receive hardware.
 - Nyquist gives a rough idea of idealized throughput
 - Can do much better with better encoding
 - Low b/w channels: Sophisticated encoding, multiple bits per wavelength.
 - High b/ $\bar{\rm w}$ channels: Simpler encoding (FM, PCM, etc.), many wavelengths per bit.
 - Shannon: $C = B \times \log_2(1 + S/N)$
- Multiple users can be supported using space, time, or frequency division multiplexing.
- · Properties of different transmission media.

Wireless Technologies

- Great technology: no wires to install, convenient mobility, ...
- High attenuation limits distances.
 - Wave propagates out as a sphere
 - -Signal strength attenuates quickly $\rightarrow 1/d^3$
- High noise due to interference from other transmitters.
 - -Use MAC and other rules to limit interference
 - Aggressive encoding techniques to make signal less sensitive to noise
- · Other effects: multipath fading, security, ...
- Ether has limited bandwidth.
 - Try to maximize its use
 - -Government oversight to control use

Lecture 5 15-441 ● 2008 54

Lecture 5 15-441 ● 2008 55