Scene Understanding Tutorial: Surfaces and 3D Models

Derek Hoiem
University of Illinois

Outline

1) How do we model 3D scenes?

- 2) How do we recover individual geometric properties?
 - Surface orientations / materials / depth
 - Occlusion boundaries
 - Viewpoint
- 3) How do we infer complete 3D scenes?
 - Probabilistic model
 - Structured SVM
 - Sequential prediction

How can we model 3D scenes?

Scene-Level Geometric Description

Gist, Spatial Envelope

Oliva Torralba 2001, 2006

Stages

Nedovic et al. 2007

Pixel Map Geometric Description

Geometric Context

Hoiem et al. 2005, 2007

Depth Map

Saxena et al. 2005, 2007

Loosely structured 3d model

Point Cloud

Agarwal et al. 2009

Voxels

Kim et al. 2013

Structured models: supporting planes

Ground Plane

Multiple Support Planes

Structured models: coarse 3d

Ground Plane with Billboards

Hoiem et al. 2008

Structured models: coarse 3d

Ground Plane with Walls

Lee et al. 2010

3D Box Model

Hedau et al. 2009/10

Structured models: detailed 3D

Guo Hoiem (unpublished)

Representational Trade-Offs

Representational Trade-Offs

Lends to solutions derived from geometry and physics

Easily quantifiable results

Not directly useful for most interaction/understanding tasks

Requires hand-crafted representations and annotations

More difficult to measure error

More directly useful for highlevel tasks

Representational Trade-Offs

Simple

Robust inference from limited cues

Incomplete scene information

Useful for general guidance and priors

Complex

Requires more sensor data for similar accuracy; important to represent uncertainty

Complete models enable highlevel priors and constraints

Useful for moving, grasping, understanding

How can we recover geometric properties?

Surface orientations, materials, depth

Occlusion boundaries

Viewpoint

The challenges

Ambiguity 2D projection (loss of depth info)

Ambiguity from occlusion (loss of 3d info)

Ambiguity in connectedness (requires direct manipulation)

Geometric properties can be inferred only because our world is structured

Abstract World

Our World

Recovering surface properties: two main approaches

1. Train classifier/regressor

- 2. Transfer from patch/image matcher
 - Discussed in more detail later in tutorial

Example: describe 3D surfaces with geometric classes

Geometry estimation as recognition

Use a variety of image cues

Vanishing points, lines

Color, texture, image location

Texture gradient

Surface Layout Algorithm

Surface Layout Algorithm

Hoiem Efros Hebert (2007)

Surface Description Result

Results

Input Image Ground Truth Our Result

Failures: Reflections, Rare Viewpoint

General framework for geometric pixel labeling

O.Input
RGB Image
Multiple Images
Video
RGBD Image

1. Split into Regions Pixels

Square patches
Segmentation

Multiple segmentation

2. Extract features

Color

Texture

Lines (perspective)

Position

3D Normal (w/ depth)

3D Planarity (w/ depth)

3. Classify

Boost decision trees

SVM

KNN

Random forest

4. Regularize Solution

Average predictions

MRF

Fit model

5. Pixel map of labels/values

Geometric classes

Surface normals

Depth

Occlusion boundaries

Materials

Indoor surfaces

Object categories

3D reconstruction from geometric context

Labeled Image

Fit Ground-Vertical Boundary with Line Segments

Form Segments into Polylines

Cut and Fold

Final Pop-up Model

[Hoiem Efros Hebert 2005]

Need object/occlusion boundaries for more complex scenes

Surface Layout

3D Model

Recovering major occlusions

Occlusion Cues

Region color, position, shape

Boundary strength, length, continuity

Objects

Surface Layout

Depth

Gestalt Cues continuity, closure, valid junctions

Pb: Martin Fowlkes Malik '02

Occlusion Algorithm

Occlusion Result

Boundaries, Foreground/Background, Contact

Depth (Min)

Depth (Max)

3D Model with Occlusions

3D Model without Occlusion Reasoning

3D Model with Occlusion Reasoning

Occlusion boundary map

Input Image

P(occlusion) boundary map

Viewpoint

Ground plane model: horizon + height

3D box model: vanishing points + extent

Viewpoint cues

Vanishing line

Vanishing

point

Vanishing Points Vertical vanishing point (at infinity)

Image Texture / Transfer

Vanishing

point

Summary of key points

 Geometric properties can be recovered by modeling (or learning) the structure of the world

 Surface, boundary, and viewpoint properties can be inferred from multiple cues

Retain uncertain estimates, avoid early decisions

How to interpret scenes as a whole?

Strategies for structured prediction

Probabilistic models

Structured SVM

Sequential structured prediction

Probabilistic models: example "objects in perspective"

$$P(\theta, \mathbf{o}, \mathbf{g} | \mathbf{e}_g, \mathbf{e}_o) = P(\theta) \prod_i P(o_i | \theta) \frac{P(o_i | \mathbf{e}_{oi})}{P(o_i)} \frac{P(g_i | \mathbf{e}_{gi})}{P(g_i)}$$

- Use when dependencies are sparse
- When dependencies form a tree, learning and inference are easy and fast
- Most likely and marginal solutions possible (depending on model)

Structured SVM

Example: Fitting a box to a room (Schwing Urtasun 2012)

Orientation Maps (Lee et al. 2009)

Geometric Context (Hoiem et al. 2007)

Predicted box layout

Box Layout Model

- Room is an oriented 3D box
 - Three vanishing points specify orientation
 - Two pairs of sampled rays specify position/size

SSVM example: fitting a box

Features are sum of predictions in wall/floor/ceiling regions from geometric context and orientation maps

Train weights w to minimize

$$\min_{\mathbf{w}} \|\mathbf{w}\|^2 + C \sum_{n=1}^{l} \max_{y \in Y} (\Delta(y_n, y) + \mathbf{w}(\psi(x_n, y) - \psi(x_n, y_n)))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
Loss Margin

SSVM example: fitting a box

- Main idea: correct solution should have higher score than each other solution by a margin of that solution's loss
- Cutting plane training algorithm requires iteratively solving for "most violating constraint", so inference must be fast
- Area-sum features computed quickly with integral geometry
- Inference computed quickly (~10ms) with branch and bound

Structured SVM: comments

Train weights w to minimize

$$\min_{\mathbf{w}} \|\mathbf{w}\|^2 + C \sum_{n=1}^{l} \max_{\mathbf{y} \in \mathbf{Y}} (\Delta(y_n, \mathbf{y}) + \mathbf{w}(\psi(x_n, \mathbf{y}) - \psi(x_n, y_n))$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
Loss Margin

- Most often used when predicted variables have same type (e.g., so single loss makes sense)
- Learning can be difficult when loss is complex (when lossaugmented inference is intractable)
- Often used when single solution is desired (though there are some n-best approaches cf. Batra et al.)

Sequential structured prediction

Iteratively predict each variable based on features and confidences of other variables

Sequential structured prediction

Example: reasoning about surfaces, occlusion, objects, and viewpoint

Hoiem Efros Hebert 2008

Sequential prediction as belief propagation

- Sequential prediction updates each prediction based on marginals of related predictions
 - New update function learned for each iteration (typically)
 - Classifier encodes complex functions of many variables
 - Each iteration improves likelihood of training predictions
 - Can provide guarantees on prediction loss

What strategy to use?

- Graphical model (probabilistic or energy/SVM)
 - Dependencies are sparse and easy to model
 - Single loss or probability function makes sense
 - Want an explicit global objective function

- Sequential prediction
 - Dependencies are dense and/or complex
 - Need to make multiple predictions with different loss functions

Big open problems

Modeling uncertainty in complex scene representations

 Developing approaches that easily adapt to different input sensors

 Cumulative scene understanding over long observations

Questions?

- Next up
 - Abhinav Gupta on "Volumetric and Functional Constraints"
 - David Fouhey on "Non-parametric approaches to 3D scene understanding"