Introduction

- What are we trying to achieve?
- Why are we doing this?
- What do we learn from past history?
- What will we talk about today?

What are we trying to achieve?

Example from Scott Satkin

3D interpretation from image

Geometric labels

Volumetric layout

Sparse primitives

Dense reconstruction

3D scene model

Why are we doing this?

Applications

3D for motion

...when there is no direct way to get 3D

Informing detectors

D. Hoiem, A. A. Efros, and M. Hebert. *Putting Objects in Perspective*. International Journal of Computer Vision, Vol. 80, No. 1, October, 2008.

Learned Primitives (Examples)

Contact points

Object surfaces + Contact points

Editing images

Predicting actions

Input Image

Estimated Geometry

Predicted Sitting Locations

Sitting Upright

Laying Down

Sitting Reclined

Reaching (4 poses)

Sitting Upright

Laying Down

Sitting Reclined

Reaching (4 poses)

Separating style and structure

Tenenbaum & Freeman. Separating Style and Content with Bilinear Models. Neural Computation. 2000.

Casablanca Hotel, New York

What do we learn from past history?

Historical perspective

First era: Geometric/symbolic reasoning

Huffman 71, Clowes 71, Kanade 80, 81 Sugihara 86, Malik 87, etc.

Kanade's Origami World, 1978

Kanade's chair... (Artificial Intelligence, 1981)

Scene parsing

[Ohta & Kanade 1978]

- Guzman (*SEE*), 1968
- Yakimovsky & Feldman, 1973
- Hansen & Riseman (VISIONS), 1978
- Barrow & Tenenbaum 1978
- Brooks (*ACRONYM*), 1979
- Ohta & Kanade, 1978

Issues

- Assumed "good" (perfect?) geometric elements inferred from the image.
- Limitations on computation, data, inference techniques prevented practical estimation of geometric primitives.

Second era: Statistical machine learning

Input

Learned model

Training data

Classification

- Now we have the opposite problem:
 - Powerful tools to estimate low-level geometric cues (e.g., surface labels)

- Does not incorporate high-level geometric constraints (e.g., orthogonality, intersections, etc.)
- Does not incorporate higher-level reasoning

Now (Part I): learning+reasoning

Structured prediction tools

Orientation maps (Lee et al. 2009)

Geometric Context (Hoiem et al. 2007)

Structured prediction tools+ search

Input image features *x*

Generate hypotheses Search through hypotheses to pick the best one "Best" = maximum score

Score computation learned from data using structured prediction tools

Final scene configuration

Optimization tools

 $\underset{\mathbf{x} \in \{0,1\}^n}{\arg \max } \mathbf{c}^T \mathbf{x} + \mathbf{x}^T \mathbf{H} \mathbf{x} \quad \text{s.t.} \quad \mathbf{A} \mathbf{x} \le \mathbf{1}$

Convex Concave

+ Richer representations, including reasoning about geometric primitives (e.g., relative placement of surfaces, contact relationships, etc.)

- Taming the combinatorics: How to generate and search hypothesis space efficiently?
- Summarizes a large amount of training data into a "simple" model
- Difficult to capture the richness of big data

Now (Part II): Data-driven interpretation

Label transfer

Karsch, Liu, Kang. Depth Extraction from Video Using Non-parametric Sampling. ECCV 2012.

Fouhey, Gupta, Hebert. Data-Driven 3D Primitives for Single-Image Understanding. ICCV 2013.

Object transfer

Lots of object models

Input image

Output

DPM output

Matched models

Seeing 3D chairs: exemplar part-based 2D-3D alignment using a large dataset of CAD models. M. Aubry, D. Maturana, A. Efros, B. Russell and J. Sivic CVPR, 2014.

Object transfer

Scene transfer

Nearestneighbor search

Lots of 3D models

 (Arbitrarily) richer description: Transfer of semantics, 3D poses, segmentation, material properties, etc.

- How to relate 2D/appearance features to purely 3D geometric representations?
- What matching score/distance metric should be used?
- How to rank matches?

What will we talk about today?

Tutorial Outline

Bottom up classifiers

More explicit constraint+reasoning

Qualitative

Explicit/Quantitative

Outline

Part 1: Derek
Bottom-up Methods for Regions and
Boundaries, Global Constraints

Part 2: Abhinav Volumetric and Functional Constraints

Part 3: David Data-driven Models

Boundaries and objects

Stronger geometric constraints from domain knowledge + physical constraints +functional constraints

Inferred depth

Big Questions

- How to estimate geometric properties from an image?
- How to incorporate geometric constraints and which ones?
- How to combine reasoning tools with statistical classification/regression tools?
- How to use large-scale 3D data (3D models, kinect)
- How to combine with other 3D estimation methods?