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Data-Driven Interpretation 
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Data-Driven Interpretation 

Works well where parametric modeling is 
hard but where there’s data 
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Advantages 
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Interpretation by  
3D Models 

Volumetric  
Interpretation 
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3D Model Databases Kinect Databases 

… 
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How do you:  
 (a) establish correspondence? 
 (b) transfer representations? 



Overview 

1. How to use 3D models 

 

 

 

2. How to use the Kinect 
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Why 3D Models 
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chair 

Object Detector 3D Model Segmentation 

Aubry et al. 2014 



Why 3D Models 
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Input 

Top 2D (GIST) Match Top 3DNN Match 



3D Models 

• Advantages: 

– Full 3D – can be rendered and modified 

– Precise models may exist (e.g., IKEA) 

 

• Disadvantages: 

– No corresponding natural color image 
(untextured or missing) 

20 



General Approach 
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Search over model and viewpoint 

Chairs from Aubry et al. 2014 
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Difficulties 
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Rendered Natural 

Occlusion NO 
Texture YES 

Background 

YES 
NO 

Fake Natural 



Cross-Domain Matching 

 

 

Goal: bring image and model into  

common representation 
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Chamfer Matching 

Assumption: edges in 3D are edges in 2D 
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Image 

3D Model 

Satkin et al., 2012, 2013, 2014; Lim et al., 2013; Ramnath et al., 2014;  

Match? 



Domain-Invariant 

Assumption: can estimate 3D property from 
2D 
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Image 

3D Model 

Satkin et al., 2012, 2013, 2014;  

Match? 



Domain-invariant “Images” 

29 Lim et al., 2013 

Assumption: edges in 3D are edges in 2D 

Apply standard features/techniques 

Image 

3D Model 



Masking Features 
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HOG mask 

Masked classifier HOG Classifier 

Aubry et al., 2014; see also Shrivastava et al., 2011 

Assumption: only issue is background 



Searching Hypotheses 
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Render object parts 

Aubry et al., 2014 

Matches generate proposals 

Lim et al., 2013 



Results 
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Issues 

What’s this? 
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Issues 

Recognition and pose estimation is hard, but 
made easier by seeing the rest of the room. 
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2D-3D Scene Matching 

37 Satkin et al., 2012,2013,2014 

… 

3D Model Database Input 



2D-3D Scene Matching 

38 Satkin et al., 2012,2013,2014 

… 

3D Model Database Input Does it match? 



Naïve 2D-3D Scene Matching 
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1K Models 



Naïve 2D-3D Scene Matching 
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1K Models 

… 

x 1K Layouts 



Naïve 2D-3D Scene Matching 
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2D-3D Scene Matching 

Instead: apply what we already know! 

42 Satkin et al., 2012,2013,2014 

Single 
VP Triplet 

Most likely 
layouts 

Model 
library 



2D-3D Scene Matching 
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f1 
f2 

> 

Satkin et al., 2012,2013,2014 

Learn w to rank models using ranking svm  



Pose and Object Sampling 

Render+test enables search over hypotheses 
generated on the fly 

44 Satkin et al., 2012,2013,2014 



Pose and Object Sampling 

45 Satkin et al., 2012,2013,2014 

Initial Estimate Final Estimate 

On average: 5% gain in accuracy  



Results 

46 

Input Normals Semantics 



Benefits of 3D 
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Don’t need every viewpoint explicitly! 



Overview 

1. How to use 3D models 

 

 

 

2. How to use the Kinect 
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Kinect Data 
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RGB Depth 



Kinect Data 
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RGB Normals Depth 



2.5D Data 

• Advantages: 

– Corresponding natural color image 

 

• Disadvantages: 

– 2.5D (can’t render) 

– Missing data, noise 

– Representations can be difficult to transfer 
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General Approach 
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How do we get this 
correspondence? 

How to transfer  
representation? 



Two Approaches 
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Data-Driven Alignment 

Karsch et al., 2012 



Two Approaches 
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… 

Clustering + Detection 

Fouhey et al., 2013 



Data-Driven Alignment 

55 Karsch et al., 2012 



Finding Correspondences 

56 Karsch et al., 2012 

Input 



Finding Correspondences 

57 Karsch et al., 2012 

… 

Training Set Input 
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Input 
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Finding Correspondences 
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Candidate 1 Candidate 2 

Karsch et al., 2012 



Finding Correspondences 

62 Karsch et al., 2012; see alternate approach from Liu et al., 2014 

… 

Warped Depths 

? 



Optimizing Depthmaps 

63 Karsch et al., 2012 

-Depth being optimized 

-Warped depth candidate 



Optimizing Depthmaps 

64 

… 

Karsch et al., 2012 



Optimizing Depthmaps 
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Enforce depth to match candidates 

Absolute depth Relative depth 

Karsch et al., 2012 

… 



Optimizing Depthmaps 
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Spatial smoothness 

Karsch et al., 2012 



Optimizing Depthmaps 
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Match the prior 

Karsch et al., 2012 



Results 
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Input True depth Inferred depth 

Karsch et al., 2012 



Results 
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Input True depth Inferred depth 

Karsch et al., 2012 



Discriminative Clustering + 
Detection 
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… 

Fouhey et al., 2013 



Goal 
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Visually 
Discriminative 

Image 

Geometrically 
Informative 

Surface Normals 

Fouhey et al., 2013 



Goal 

Learn from large-scale RGBD Data 

72 NYU Depth v2, Silberman et al., 2012 



Approach 
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Train time: discriminative clustering w/3D 

 

 

 

Instances Detector 

Normals 

Fouhey et al., 2013 



Objective 
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Primitive Patch 

Fouhey et al., 2013 



Objective 
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Primitive Patch 

Misclassification loss 

Fouhey et al., 2013 



Objective 
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Primitive Patch 

Regularization 

Fouhey et al., 2013 



Objective 
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Primitive Patch 

Ensure geometric consistency 

Fouhey et al., 2013 



Objective 
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Primitive Patch 

Solved with iterative method similar to 
block-coordinate-descent. 
Include min-membership constraint 

Fouhey et al., 2013 



Iterative Procedure 
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Iterative Procedure 
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= Avg ( ) 

Fouhey et al., 2013 



Iterative Procedure 
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Patches  
Geometrically  

Dissimilar to N 

Cluster  
Instances 

Fouhey et al., 2013 



Iterative Procedure 
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Fouhey et al., 2013 



Primitives 
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Primitives 
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Test-time Correspondence 
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Correspondence via detection 

Fouhey et al., 2013 



Representation Transfer 
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Representation Transfer 
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Representation Transfer 
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Overlaps resolved with averaging 

Fouhey et al., 2013 
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Representation Transfer 

92 

Overlaps resolved with averaging 

Fouhey et al., 2013 
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Confidences 
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Most 
Confident 

Result 

Least 
Confident 

Result 

Fouhey et al., 2013 



Conclusions 
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Introduced Data-Driven 3D Scene Understanding 

Full 3D Models RGBD Data 

Two Main Problems: 

1. Correspondence 

2. Representation Transfer 



Future Directions 

• How do you get the best of 2.5D and 3D? 
(see Guo and Hoiem 2013) 

 

• How do you incorporate constraints in 
data-driven techniques? 
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Resources 

 

 

(See tutorial website for links + 
more data/code + slides) 
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Survey Books 

• D. Hoiem, S. Savarese. Representations and 
Techniques for 3D Object Recognition and 
Scene Interpretation. Morgan & Claypool, 
2011. 

   (link on website) 

101 



Available Kinect Datasets 

• RMRC (NYU + SUN3D)  

• NYU v2:  

1449 Pairs + semantic labels + raw videos 

• SUN3D 

415 Sequences in large spaces + raw videos 

• Berkeley 3D Object 

849 images + bounding boxes 

• MSR-V3D 

177 sequences 
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Available Code 
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and objects 
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Available Code 
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Hoiem et al., Geometric Context, 
Saxena et al., Make 3D 

Region labels + Boundaries 
and objects 

Stronger geometric 
constraints from 

domain knowledge 

Volumetric + 
functional 
constraints 

Data-
driven 

3D 



Available Code 
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Hoiem et al., Occlusion boundaries 
Hoiem et al., Putting objects in perspective 

Region labels + Boundaries 
and objects 

Stronger geometric 
constraints from 

domain knowledge 

Volumetric + 
functional 
constraints 

Data-
driven 

3D 



Available Code 
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Lee et al., Orientation Maps 
Hedau et al., Room-fitting  

Region labels + Boundaries 
and objects 

Stronger geometric 
constraints from 

domain knowledge 

Volumetric + 
functional 
constraints 

Data-
driven 

3D 



Available Code 
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Gupta et al., Blocks World 
Choi et al., Geometric Phrases 

Region labels + Boundaries 
and objects 

Stronger geometric 
constraints from 

domain knowledge 

Volumetric + 
functional 
constraints 

Data-
driven 

3D 



Available Code 
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Karsch et al., Depth-Transfer 
Fouhey et al., Data-Driven 3D Primitives 
Aubrey et al., Seeing 3D Chairs 

Region labels + Boundaries 
and objects 

Stronger geometric 
constraints from 

domain knowledge 

Volumetric + 
functional 
constraints 

Data-
driven 

3D 



Thank You 

109 

Stronger 
geometric 
constraints 

Region labels 
+Boundaries 

+Objects 

Derek 

Volumetric + 
Functional 
Constraints 

Abhinav 

Introduction, 
Applications, 

History 

Martial David 

Data-Driven 3D 



 

110 


