Data-Driven 3D

David Fouhey

Recap

Martial

Derek

Abhinav

David

Introduction, Applications, History

Region labels +Boundaries +Objects

Stronger geometric constraints

Volumetric + Functional Constraints

Data-Driven 3D

• • •

• • •

• • •

Works well where parametric modeling is hard but where there's data

Advantages

Volumetric Interpretation Interpretation by 3D Models

Sources

3D Model Databases

Kinect Databases

How do you:

- (a) establish correspondence?
- (b) transfer representations?

Overview

1. How to use 3D models

2. How to use the Kinect

Why 3D Models

Object Detector

Segmentation

3D Model

Why 3D Models

Top 2D (GIST) Match

Top 3DNN Match

3D Models

- Advantages:
 - Full 3D can be rendered and modified
 - Precise models may exist (e.g., IKEA)

- Disadvantages:
 - No corresponding natural color image (untextured or missing)

General Approach

Search over model and viewpoint

Primary Question

Does it match?

~1400 models

~60 viewpoints

Primary Question

Does it match?

~1400 models

~60 viewpoints

Primary Question

~60 viewpoints

Difficulties

Rendered Natural

Texture Occlusion Background

NO NO Fake

YES YES **Natural**

Cross-Domain Matching

Goal: bring image and model into common representation

Chamfer Matching

Assumption: edges in 3D are edges in 2D

Domain-Invariant

Assumption: can estimate 3D property from 2D

Domain-invariant "Images"

Assumption: edges in 3D are edges in 2D Apply standard features/techniques

Masking Features

Assumption: only issue is background

Searching Hypotheses

Render object parts

Matches generate proposals

Aubry et al., 2014

Lim et al., 2013

Results

Results

Results

Issues

What's this?

Issues

Recognition and pose estimation is <u>hard</u>, but made easier by seeing the rest of the room.

2D-3D Scene Matching

3D Model Database

2D-3D Scene Matching

Naïve 2D-3D Scene Matching

1K Models

Naïve 2D-3D Scene Matching

1K Models x 1K Layouts

Naïve 2D-3D Scene Matching

1K Models x 1K Layouts x 100 rotations

2D-3D Scene Matching

Instead: apply what we already know!

2D-3D Scene Matching

Learn w to rank models using ranking svm

Pose and Object Sampling

Render+test enables search over hypotheses generated on the fly

Pose and Object Sampling

On average: 5% gain in accuracy

Initial Estimate

Results

Input

Normals

Semantics

Benefits of 3D

Don't need every viewpoint explicitly!

Overview

1. How to use 3D models

2. How to use the Kinect

Kinect Data

Depth

Kinect Data

RGB Depth Normals

2.5D Data

- Advantages:
 - Corresponding natural color image

- Disadvantages:
 - 2.5D (can't render)
 - Missing data, noise
 - Representations can be difficult to transfer

General Approach

How to transfer representation?

How do we get this correspondence?

Two Approaches

Data-Driven Alignment

Two Approaches

Clustering + Detection

Data-Driven Alignment

Training Set

Training Set

Training Set

Candidate 1

Warped Depths

Karsch et al., 2012; see alternate approach from Liu et al., 2014 62

$$\sum_{i \in \text{pixels}} \left[\sum_{C \in \text{candidates}} w_i (|D_i - C_i|_1 + \gamma |\nabla D_i - \nabla C_i|_1) \right] + \alpha s_i |\nabla D_i|_1 + \beta |D_i - \text{prior}_i|_1$$

 D_i -Depth being optimized

 C_i -Warped depth candidate

$$\sum_{i \in \text{pixels}} \left[\sum_{C \in \text{candidates}} w_i \left(|D_i - C_i|_1 + \gamma |\nabla D_i - \nabla C_i|_1 \right) \right]$$

$$+ \alpha s_i |\nabla D_i|_1 + \beta |D_i - \text{prior}_i|_1$$

Enforce depth to match candidates

Absolute depth Relative depth

$$\sum_{i \in \text{pixels}} \left[\sum_{C \in \text{candidates}} w_i \left(|D_i - C_i|_1 + \gamma |\nabla D_i - \nabla C_i|_1 \right) \right]$$

$$+ \alpha s_i |\nabla D_i|_1 + \beta |D_i - \text{prior}_i|_1$$

Spatial smoothness

$$\sum_{i \in \text{pixels}} \left[\sum_{C \in \text{candidates}} w_i \left(|D_i - C_i|_1 + \gamma |\nabla D_i - \nabla C_i|_1 \right) \right]$$

$$+ \alpha s_i |\nabla D_i|_1 + \beta |D_i - \text{prior}_i|_1$$

Match the prior

Results

Input

True depth

Inferred depth

Results

Input

True depth

Inferred depth

Discriminative Clustering + Detection

Goal

<u>Visually</u> **Discriminative**

Geometrically <u>Informative</u>

Image

Surface Normals

Goal

Learn from large-scale RGBD Data

Approach

Train time: discriminative clustering w/3D

$$\min_{\mathbf{y}, \mathbf{w}, \mathbf{N}} R(\mathbf{w}) + \sum_{i=1}^{m} \left[c_2 L(\mathbf{w}, \mathbf{N}, \mathbf{x}_i^A, y_i) + c_1 y_i \Delta(\mathbf{N}, \mathbf{x}_i^G) \right]$$

Misclassification loss

Primitive

Patch $\mathbf{x}_i^A \quad \mathbf{x}_i^G$

Regularization
$$\min_{\mathbf{y}, \mathbf{w}, \mathbf{N}} R(\mathbf{w}) + \sum_{i=1}^{m} \left[c_2 L(\mathbf{w}, \mathbf{N}, \mathbf{x}_i^A, y_i) + c_1 y_i \Delta(\mathbf{N}, \mathbf{x}_i^G) \right]$$

Ensure geometric consistency

$$\min_{\mathbf{y}, \mathbf{w}, \mathbf{N}} R(\mathbf{w}) + \sum_{i=1}^{m} \left[c_2 L(\mathbf{w}, \mathbf{N}, \mathbf{x}_i^A, y_i) + c_1 y_i \Delta(\mathbf{N}, \mathbf{x}_i^G) \right]$$

Solved with iterative method similar to block-coordinate-descent.

Include min-membership constraint

$$\min_{\mathbf{y}, \mathbf{w}, \mathbf{N}} R(\mathbf{w}) + \sum_{i=1}^{m} \left[c_2 L(\mathbf{w}, \mathbf{N}, \mathbf{x}_i^A, y_i) + c_1 y_i \Delta(\mathbf{N}, \mathbf{x}_i^G) \right]$$

Primitives

Primitives

Primitives

Test-time Correspondence

Correspondence via detection

Overlaps resolved with averaging

Overlaps resolved with averaging

Results

Results

Confidences

Most Confident Result

Least Confident Result

Conclusions

Introduced Data-Driven 3D Scene Understanding

Full 3D Models

Two Main Problems:

- 1. Correspondence
- 2. Representation Transfer

Future Directions

 How do you get the best of 2.5D and 3D? (see Guo and Hoiem 2013)

• How do you incorporate constraints in data-driven techniques?

Resources

(See tutorial website for links + more data/code + slides)

Survey Books

• D. Hoiem, S. Savarese. Representations and Techniques for 3D Object Recognition and Scene Interpretation. Morgan & Claypool, 2011.

(link on website)

Available Kinect Datasets

- RMRC (NYU + SUN3D)
- NYU v2:

1449 Pairs + semantic labels + raw videos

- SUN3D
 - 415 Sequences in large spaces + raw videos
- Berkeley 3D Object
 849 images + bounding boxes
- MSR-V3D177 sequences

Region labels

+ Boundaries and objects

Stronger geometric constraints from domain knowledge

Volumetric + functional constraints

Datadriven 3D

Hoiem et al., Geometric Context, Saxena et al., Make 3D

Region labels

+ Boundaries and objects

Stronger geometric constraints from domain knowledge

Volumetric + functional constraints

Datadriven 3D

Hoiem et al., Occlusion boundaries Hoiem et al., Putting objects in perspective

Region labels

+ Boundaries and objects

Stronger geometric constraints from domain knowledge

Volumetric + functional constraints

Datadriven 3D

Lee et al., Orientation Maps Hedau et al., Room-fitting

Region labels

+ Boundaries and objects

Stronger geometric constraints from domain knowledge

Volumetric + functional constraints

Datadriven 3D

Gupta et al., Blocks World Choi et al., Geometric Phrases

Region labels

+ Boundaries and objects

Stronger geometric constraints from domain knowledge

Volumetric + functional constraints

Datadriven 3D

Karsch et al., Depth-Transfer Fouhey et al., Data-Driven 3D Primitives Aubrey et al., Seeing 3D Chairs

Region labels

+ Boundaries and objects

Stronger geometric constraints from domain knowledge

Volumetric + functional constraints

Datadriven 3D

Thank You

Martial

Derek

Abhinav

David

Introduction, Applications, History

+Boundaries +Objects

Stronger geometric constraints

Volumetric + Functional Constraints

Data-Driven 3D